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Abstract

Reinforcement learning (RL) is a branch of machine learning where an agent learns to maximize reward through trial and
error. RL is challenging and data/compute intensive leading practitioners to become overwhelmed and make poor modeling
decisions. Our contribution is a Visual Analytics tool designed to help data scientists maintain situation awareness during RL
experimentation. Our tool allows users to understand which hyper-parameter values lead to better or worse outcomes, what
behaviors are associated with high and low reward, and how behaviors evolve throughout training. We evaluated our tool
through three uses cases using state of the art deep RL models demonstrating how our tool leads to RL situation awareness.

CCS Concepts

e Human-centered computing — Visualization systems and tools; ¢ Computing methodologies — Reinforcement learning;

Computational control theory;

1. Introduction

Reinforcement learning (RL) is a rapidly evolving branch of ma-
chine learning that uses trial and error to learn an optimal policy.
Models learn the best action given observations based on a feed-
back signal, e.g. reward function, from the system. RL has signifi-
cant potential benefit for control systems. For example, an RL algo-
rithm learned how to control the HVAC system in a large building
to maintain comfort while minimizing energy [WWZ17]. RL may
reduce the need for manual calibration and monitoring by enabling
an engineer to specify higher-level goals, allowing the system to
more quickly adapt to changes with less human intervention.

However, RL is known to have significant sample inefficiency
even compared with other machine learning techniques, e.g., mil-
lions of observations and days of training for many commonly used
RL benchmark systems [HMvH*17]. Furthermore, as the model
gains the necessary experience to learn a good policy, the data sci-
entist iterates over and optimizes different model parameters. So, it
is a challenge for the RL practitioner to maintain an understanding
of the outcomes of experiments over multiple days and develop an
effective understanding of the data generated.

An additional challenge is the evaluation of the behaviors learned
by the system. Typically, the performance of an RL model is eval-
uated using the total reward per task-attempt as a function of train-
ing time. However, the reward output is not a robust indicator of
whether the behaviors and strategies learned by the system meet
the needs and desires of the analyst. In fact, RL models are suscep-
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tible to "reward hacking," where the model exploits a flaw in the re-
ward function to achieve a high score without actually learning the
desired behavior [AOS*16]. Understanding of the actual behaviors
and strategies that are employed by the learned policy is important.
This is especially true when experimenting with several different
possible reward functions, as the reward output will no longer be
directly comparable between runs using different reward functions.
Data scientists can become overwhelmed and not understand the
performance and learned the model behaviors, which could be im-
proved through better situation awareness during experimentation.

Endsley’s definition of Situation Awareness (SA) has three
levels [End95], which we map to RL experimentation: (SA1)
perception—seeing what happened during many iterations of
model training; (SA2) comprehension—understanding patterns
of behaviors across training iterations and over time; and (SA3)
projection—knowing what would happen under a new set of con-
ditions, such as model parameters or reward function. Good sit-
uation awareness should lead to better decision-making, i.e., the
selection of more performant and stable models for deployment.

Many approaches to understanding RL models help with SA1
by showing the reward performance as a function of training
time [HMvH*17, AWR*17], but this is inadequate to summarize
the highly complex behaviors learned by the system. Some RL vi-
sualizations oriented towards SA2 have been created, including t-
SNE embeddings of observations [JCD*18,ZBM16] and saliency
maps [GKDF17]. However, these approaches fail to help the data
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scientist gain insight without significant ad hoc analysis. DQN-
Viz [WGSY19] is a recent tool that partially facilitates SA1&2.
However, a limitation of DQNViz is its specialization to a single
RL environment having a small, discrete action space.

Our contribution is ReLVis, a Visual Analytics system that di-
rectly facilitates SA1&2 during RL experimentation (we leave SA3
entirely to the judgment of the RL practitioner). We address the
above challenges by allowing data scientists to understand the re-
lationship between modeling choices and successful learned strate-
gies, explore the relationship between the system’s state, the agent’s
action, and the reward signal, and more deeply understand the pat-
terns of behavior within and between training iterations. Finally,
ReLVis is designed for continuous control environments and pro-
vides new insight for understanding complex continuous state and
action spaces compared to the state of the art.

2. System: ReLVis

ReLVis helps a data scientist maintain SA during RL experimen-
tation by facilitating exploratory data analytics on data logged by
RL models. Unlike “traditional machine learning,” e.g., supervised
classification, RL does not rely on a pre-collected set of training
data. Instead, the model learns by taking exploratory actions within
the environment and collecting observational state data. The model
receives a reward feedback signal designed to guide the agent to
a desired behavior or goal state. An RL model uses observations
of the environment and the reward signals to make model updates
to maximize the cumulative reward. Each attempt that the model
makes to accomplish the task at hand is called an episode. The
model learns how to better accomplish a goal by attempting many
episodes within a training run.

A data scientist will perform multiple such runs while tuning
model hyper-parameters, such as the learning rate or the explo-
ration policy, to optimize the effectiveness of the learning. The re-
lationship between runs, episodes, observations, and other RL ter-
minology is illustrated in Figure 1. ReLVis ingests log files pro-
duced during RL experimentation in batches of one or more runs.
To produce this log data, we modified the logging functionality of
keras-1l [Plal6] to output detailed state, action, and reward logs at
each step of training. ReLVis runs analytics on logged data in two
phases: when a run is ingested, and also on demand, when a user is
interacting with the user interface.

2.1. Data Ingestion & Analytics

A key concept in ReLVis is the “squiggle” which is a thumbnail
representation of an episode, found by projecting observations into
2-D. Squiggles are simplified “Time Curves” [BSH*16] intended
to provide an impression of the complexity of the behavior within
the episode and allow the user to visually assess similarity between
episodes. They are used in multiple different views to help the data
scientist understand relationships between episodes, reward, and
learning. We used Incremental PCA [RLLYO08] to ensure squiggles
are consistent across runs; the model is partially fitted each time a
log file is processed. For environments with periodic behavior, we
estimate the spectral density of the observation time series using a
periodogram and identify the peak frequency which we take to be
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Figure 1: Reinforcement learning data and terminology

the characteristic time scale of the learned behavior. A single rep-
resentative time slice of this temporal scale was selected from the
observations from the midpoint of the time series for each episode
to improve the clarity of the squiggle representation. The most re-
cent PCA model and representative time window are stored in a
database along with the corresponding runs and episodes.

2.2. Workflow, User Interface, & Visualization
The ReLVis user interface supports the following workflow:

1. Overview—the data scientist understands the relationship be-
tween hyper-parameters and model performance, and selects
runs to explore in detail (Figure 2A). The following views lets
the data scientist perceive what has happened during experi-
mentation, thus largely supports SA1. The overview is an icicle
plot [BNO1, KL83] of runs, each containing:

a. Reward plot: the reward of each episode in the run shown as
a Sparkline [Tuf06], designed to show the rate and stability
of performance improvement; and

b. Example Episodes: the squiggles for five characteristic
episodes, designed to show how the complexity of learned
behaviors evolves throughout the training process. These
are chosen by binning by episode number and selecting the
episode with the median reward in each bin.

2. Discover patterns—here the data scientist primarily compares
runs and episodes at a behavioral level. This supports SA2 by
allowing her to comprehend patterns and trends across episodes
and over time through the following views:

a. Squiggle Reward Plot (Figures 2D, 2F): an arrangement of
squiggles where the x-axis is episode number and the y-axis
is reward, designed to provide insight into how behaviors
evolve according to the selected feedback function;

b. Episode Embedding (Figure 2B): an arrangement of episode
squiggles projected with UMAP [MH18], where the distance
metric uses the frequency or time domain, designed to show
different clusters of behavior or model strategies; and
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#runs  #epis. #obs. Al IS
Environment
cartpole 70 7,034 690,384 1 4
doublependulum 3 10,963 587,385 1 9
lunar 4 4,588 1,391,966 2 8
mountaincar 141 6,985 4,462,205 1 2
pendulum 16 5,988 1,197,447 1 3
walker 15 15,943 3,766,511 4 24

Table 1: Runs, episodes, observations, and dimensionality for each
environment. |A| and |S| are the action and state dimensions.

c. Learning Table (Figures 2C, 2G): a heatmap designed to
show how learned behaviors change during training.

3. Reveal episode details—the data scientist compares episodes’
raw data. The following views further support SA1:

a. Reward and Movie (Figure 2G): when an episode is selected,
the right panel shows that episode’s reward over time and a
video of the agent’s behavior in its environment, this show
how the abstract squiggles correspond to real behavior; and

b. State & Action (Figure 2E): an agent’s raw state and ac-
tion functions are shown as line plots, with a separate plot
for each dimension, designed to provide additional insights
into the actual behavior learned by the system. If multiple
episodes are selected, then these are combined into a single
plot for easier comparison across episodes.

The squiggle reward plot and episode embedding are scatter
plots of episodes. Instead of abstracting episodes as points, we
show each episode’s squiggle. The size of the squiggle is user-
defined, and a greedy algorithm prevents over-plotting by hiding
squiggles that would overlap with those already drawn.

3. Evaluation

For evaluation, we apply RL models to standard environments
and show via three use cases how ReLVis leads to improved sit-
uation awareness. We used Deep Deterministic Policy Gradient
(DDPG) models [LHP*15] for continuous tasks and Deep Q Net-
works (DQN) [MKS*15] for discrete control tasks. To develop and
evaluate the visualization capabilities of the tool, we used six con-
trol tasks implemented in the OpenAl Gym framework [BCP*16].
Table 1 shows the amount of data generated and the dimensional-
ity of each environment. From these, we selected three use cases
of varying difficulty, illustrated in Figure 2, to show how ReLVis
led to insights regarding learned strategies and improved situation
awareness beyond reward summarization.

Inverted Pendulum (easy): Here the task is to rotate and balance
a pendulum in an inverted position—this is a textbook continuous
control task. The reward plot view of ReLVis, which allows sort-
ing by reward performance, revealed that some parameter settings
led to faster learning (steeper increase in reward) and more stable
performance (less dips in the reward towards the end of training).
Moving beyond simple reward scoring, we identified three different
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successful strategies for the task by looking at the squiggle projec-
tion view combined with video playback: a single swing to the top,
a double swing to the top, and maintaining balance at the top in
the cases where pendulum started there. Both the projection layout
and the visible similarity of the squiggle shapes allowed us to iden-
tify similar behaviors, while viewing the video playback allowed us
to identify the corresponding strategy. By observing the squiggles
and video playback in the learning table, we found that the dou-
ble swing strategy was learned earlier in training while the single
swing and balancing took more training time to emerge.

Mountain Car (easy): Here the task is to learn to drive a car up
a steep hill by building momentum on a neighboring hill. We ex-
perimented with a sparse reward, where reward is only provided
when the car reaches the goal, and a shaped reward, where the re-
ward function is the car’s elevation. Using the detailed reward plot,
we observe that the sparse reward leads to more consistent perfor-
mance results. The squiggles for the shaped reward have longer
trajectories indicating that those strategies were more complex. By
observing the state and action time series plots showing the direc-
tion that the car was moving, we found the sparse reward func-
tion leads to strategies that leveraged the neighboring hill. Success-
ful behaviors avoid the temptation of short-term gain of the sub-
optimal strategy of immediately climbing the hill.

Bipedal Walker (hard): Here a bipedal robot with four leg joints
must learn a walking locomotion to progress forward over un-
even ground. This is the most challenging of the six environments.
We use the detailed reward plot combined with video playback to
demonstrate that while the system was able to learn a successful
walking gait, it was not able to maintain the desired behavior in a
consistent or stable manner. By looking at the learning table, we
find that many episodes demonstrate failed behavior even late in
training, with the agent eventually forgetting the best strategies. Us-
ing this same view, we found that the type of behaviors exhibited
by the agent evolved rapidly, indicating that a lower learning rate
might improve the performance of the model.

4. Conclusion

RL is difficult to apply in practice due to sensitivity to hyper-
parameters, a time-consuming development process with large vol-
umes of output data, and difficulty evaluating model performance.
ReLVis addresses these challenges by providing insights into strate-
gies learned by the model and enabling the user to identify and
explain undesirable system behaviors. Future work could support
SA3 by helping the data scientist decide what to try next. The tech-
niques we developed for understanding RL data may generalize to
other application domains involving collections of time series.
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Inverted Pendulum (easy)
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Figure 2: Use case evaluation of ReLVis across three continuous control environments.
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