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Figure 1: Enabling new interactions with Tree-Based Adaptive Mesh Refinement techniques, illustrated with our HyperTreeGrid implemen-
tation in VIK. From left to right, 2D 100 million cells Shockwave data and 3D 300 million cells asteroid fall simulation result explored
smoothly on a laptop, 3D 1 billion cells bubbles expansion simulation, 2D 6 billion cells Mandelbrot calculation result and 3D 72 billion
cells astrophysics simulation data visualized interactively respectively on one, two and sixteen 32-cores, 128 GBytes memory nodes of the

Tera-1000-1 supercomputer.

Abstract

With the constant increase in compute power of supercomputers, high performance computing simulations are producing higher
fidelity results and possibly massive amounts of data. To keep visualization of such results interactive, existing techniques such
as Adaptive Mesh Refinement (AMR) can be of use. In particular, Tree-Based AMR methods (TB-AMR) are widespread in
simulations and are becoming more present in general purpose visualization pipelines such as VIK. In this work, we show
how TB-AMR data structures could lead to more efficient exploration of massive data sets in the Exascale era. We discuss
how algorithms (filters) should be designed to take advantage of tree-like data structures for both data filtering or rendering. By
introducing controlled hierarchical data reduction we greatly reduce the processing time for existing algorithms, sometimes with
no visual impact, and drastically decrease exploration time for analysts. Also thanks to the techniques and implementations we
propose, visualization of very large data is made possible on very constrained resources. These ideas are illustrated on million
to billion-scale native TB-AMR or resampled meshes, with the HyperTreeGrid object and associated filters we have recently

optimized and made available in the Visualisation Toolkit (VTK) for use by the scientific community.

CCS Concepts

e General and reference — Design; Performance; Evaluation; ® Human-centered computing — Visualization; e Software
and its engineering — Designing software; e Information systems — Data compression;

1. Introduction

In high performance computing, different kinds of meshes can be
used to represent simulation data, each having their own advantages
and drawbacks [FGO8]. Adaptive Mesh Refinement (AMR) tech-
niques mitigates between memory for mesh description and sim-
ulation properties storage by refining where phenomena occur, in
a semi-structured way. Such meshes can be block-based [BC89] or
tree-based [BO84]. Tree-based AMR representation (TB-AMR) al-
lows to exploit very large data, and has the extra capability to make
the high fidelity resampling of existing non AMR data sets possible
while keeping memory footprint controlled.

In this paper, we give some insights on how TB-AMR meshes and
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adapted smart visualization filters design can help make the ex-
ploration process smooth and efficient to explore massive data sets
interactively. We combine these ideas with their hierarchical prop-
erties to optimize further the exploratory visualization process. Im-
plemented in the Visualization Toolkit (VTK) [M0098], our contri-
butions enable high savings in time for the analysts, high efficiency
on large resources for visualization, and even make it possible to
fit a Petascale class data set onto the limited resources found in a
small-factor computer such as a laptop. We conclude that the tech-
niques we proposed and tested can be the foundations for enabling
the visualization of future Exascale class simulations.
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2. Tree-Based AMR for visualization

In this section, we briefly recall the key concepts behind TB-AMR
meshes and their VTK implementation: the HyperTreeGrid.

Figure 2: Tree-Based AMR visualization of a 2D shockwave sim-
ulation, with refinement factor of 3, thus having 9 children for each
coarse cell. Colors represent tree levels, from blue root unrefined
cells to most refined red cells in this visualization.

2.1. Tree-Based AMR data structure

A TB-AMR data structure is generally represented as a tree, where
each node can be refined by a fixed factor where details are needed.
One example is the octree [Mea82]. The concept of a grid of
trees [NSLD99], illustrated in Figure 2, can be introduced to of-
fer for instance some load-balancing optimizations.

In VTK, this is instantiated with the HyperTreeGrid (HTG), a data
object representing a rectilinear grid of trees (HyperTree). HTG
supports arbitrary uniform refinement, generally 2 or 3 and coarse
nodes are always completely refined. The data structure is thus very
regular, and only stores the index (pointer) to the elder child for
each coarse node. A (bit)mask attached to the HTG is introduced
to mask children nodes not being part of the mesh. In section 5,
we will see that this design choice makes interesting optimizations
possible. Other approaches such as those of [LK11,KSA13] exist to
implement an octree, where a bitmask and pointers restricted to the
actual children are present in each node. Declaration of HTG leaf
nodes can be avoided by smartly build the trees, thus resulting in
a drastic reduction of the memory footprint. Interested readers can
turn to [HLP17b, HLP17a] for the HTG development foundation.

2.2. Operating on TB-AMR meshes and filter design

For visualization and data analysis of the simulation results, algo-
rithms are applied to extract information of interest. This process
is often referenced as filtering, and thus algorithms are generally
called filters. It is crucial to take advantage of intrinsic hierarchical
properties of AMR meshes in filters. To make the design of algo-
rithms easier and consolidate code development, iterators can be
designed to handle trees traversal and respect TB-AMR features.
The mesh can then be seen as a container operated on by an algo-
rithm with the use of iterators, such as in the C++ Standard Tem-
plate Library design [Err00]. In the frame of VTK HyperTreeGrid,
we introduce special iterators called cursors and supercursors. It is
mandatory to use them to respect HTG-related information like bit-
mask or Depth-Limiter during traversal. Both are used to traverse
a single tree and supercursors are neighborhood-aware. They can

be oriented or non-oriented and thus respectively allow only to de-
scend or move up and down in the tree. Depending on their com-
plexity, HTG traversal time can be 50x longer.

Therefore, when designing HTG-aware filters one should pay at-
tention to instantiate the proper (super)cursor(s) to avoid the use of
an unnecessary costly iterator. Also, one should take advantage of
the HTG features like the bitmask to optimize filters by virtually
pruning trees. This is illustrated in the next section.

TB-AMR data structures generally have cells of different levels,
thus introducing the concept of T-Junctions. Filters such as Contour
must be written carefully to handle these, otherwise artifacts can
appear. Solutions to address problems such as T-Junctions or crack-
free surfaces are presented in [HLP17b, HLP17a], which lay down
the foundations of our VTK HTG design. Regarding T-Junction,
we proposed to generate the dual unstructured mesh of the primal
AMR-mesh on the fly using the (super)cursors. It is beyond the
scope of this paper to develop this technique, which has the nice
property of putting "primal” AMR cell-centered attributes to the
vertices of the dual mesh, thus providing exact crack-free Contour.

3. Hierarchy-aware algorithms

We focus now on two of the filters we implemented to illustrate how
we can drastically reduce the memory footprint and offer accelera-
tion. Next, we consider how such data structures offer great oppor-
tunities to accelerate the rendering process of very large scenes.

3.1. Optimized filtering

A filter takes input data and generates output filtered data. Input
and output data can be of same nature, like the Threshold filter
implementation we provide in VTK. On the contrary they can be
of different nature, like for the Contour filter we created in VTK,
which takes an HTG and generates an unstructured mesh.

The Threshold filter extracts cells of interest based on user pro-
vided thresholds (min/max) and a selected simulation field array.
The output of the Threshold filter can be a new mesh with its new
field arrays. At worst, the memory footprint would thus double with
a naive approach when output mesh is equal to input mesh. For the
visualization of very large simulation data this might be problem-
atic as the memory resource per processing element is constrained.
To be more efficient memory-wise, we propose to shallow copy the
input grid of trees to generate an identical output grid at almost no
memory cost. The field array being attached to the grid, it is also
shallow-copied in the process. Then we attach a new bitmask to the
output grid to keep filtered cells only. The added memory cost for
thresholding is very limited with our approach.

Contour filter, illustrated in Figure 3, creates an isosurface or iso-
line based on a user provided isovalue and a selected field array.
How to compute the isosurface is beyond the scope of this paper
and interested readers can turn to [Mas56] for some pointers. It is
enough to know that neighborhood information is required when
traversing the mesh to generate the isosurface. Consequently, one
would logically want to use a complex supercusor and traverse the
grid of trees. Due to the cost of this complex supercursor and the
nature of Contour filter, we have considered to introduce a two-
times traversal algorithm. First traversal is made with a cheap cur-
sor (relative cost 1) and a new bitmask is created to virtually prune
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the trees. Second traversal with a more complex supercursor (rel-
ative cost 50) is done on the pruned trees to handle calculations.
We tested this approach on a variety of data sets and we observed
speed-ups of up to 10x with no penalties. These results greatly de-
pend on how effectively pruned the trees can be, therefore compen-
sating the two-times traversal process.

3.2. Optimized rendering

Rendering can also benefit from both the geometry exposed by the
grid of trees and the per level refinement of each tree. We propose
to use rendering information such as the camera focal point and the
screen resolution (pixel size) in the rendering process. By know-
ing where the user is looking at, one can easily select the trees or
nodes actually involved in the rendering. It is then possible to avoid
traversal of nodes outside the screen. One can also stop traversing
a tree as soon as information gets subpixel. For very deep trees,
our approach drastically reduces the rendering time. Furthermore,
sometimes a whole subtree has the same values to render. It is then
useless to generate the finer cells as one can create a single larger
cell representing it. This helps optimize the size of the actual out-
put used for rendering and provide acceleration. To do so we im-
plemented a two-times traversal scheme. In a first traversal subtrees
are identified and tagged. Then the actual optimized output for ren-
dering is generated by traversing a second time the tagged subtrees
solely. In section 5, our implementation offers 10x to 1000x higher
framerates and a decrease in memory footprint of 13x.

4. Controlled hierarchical data reduction

Generally, simulation codes and visualization tools do not present
the same execution profiles. the former can be highly compute in-
tensive while the latter might be more memory intensive. Thus
depending on the visualization needed, full simulation resolution
might either (1) not be of interest to produce general far-away
pictures or (2) not be possible on the visualization-dedicated re-
sources. Such hardware might be a small visualization cluster,
workstations or even handheld devices with very limited memory.

For visualization purpose it might be of interest to depth-limit the

Figure 3: Depth-limiting the water splash Contour of YA31. From
left to right, top to bottom, level 0 to 3 depth-limited blue Contour
is shown. White Contour is the ground truth using maximum level
of 6. Level 4 depth-limited Contour (not shown here) shows no dif-
ference from ground truth, from this viewpoint.
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trees. At most, removing levels,moveq levels of the TB-AMR mesh
removes f4¥/eVelsenad podes, i.e. 81€V¢lSrmaed for a 3D octree. De-
pending on the trees depth and desired treatments or pictures, re-
moving several levels might not be noticeable and would greatly
decrease storage requirements and execution times. Analysts can
choose the resolution required at any time based on their expertise
and thus greatly accelerate the exploration process.

Also, when TB-AMR is represented as a grid of trees, it is triv-
ial to remove large mesh portions by limiting spatial boundaries to
the trees participating in a smaller volume. Memory footprint will
be drastically reduced and filtering or rendering process greatly ac-
celerated. This approach has been used to optimize rendering in
previous section and can be extended to filters.

Figure 4: Depth-limiting thresholding of YA31 water splash to
level 0 to 3, from left to right and top to bottom. Until level 2, when
threshold values are changed result is instantaneous.

4.1. Enabling interactive filtering

Analysts might want to depth-limit the filtering process because
they are in an exploratory phase. We implemented a HTG depth-
limiting filter to offer this possibility. HTG is shallow-copied and
the HTG depth-limiter scalar is positioned appropriately and so
applying this filter is inexpensive. This strategy leads to impres-
sive results, such as a real-time direct volume rendering of a large
dataset as seen in [DHL18], or the possibility to interactively test
the isovalue of Contour filter several times per second before ac-
tually applying Contour on the full-depth trees. This also enables
the user to try more camera viewpoints, more values for interactive
filters, or even identify hotspots more easily as values put on coarse
cells can be driven. Coarse values can come from the simulation
results, and we implemented a HTG coarse cell evaluation filter to
assign computed values to them, such as maximum or minimum of
children values, to help identify hotspots more rapidly for instance.
To be noted, input HTG is full resolution and so related memory
consumption is not impacted by depth-limitation. Only output gen-
erated afterwards will benefit from it in terms of memory.

4.2. Reducing storage

We propose to apply this depth-limiting strategy for reading and
storing HTG as well. Therefore, loading and HTG building times
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will be reduced and further filters execution will be sped-up. To
be noted, overall memory consumption will be decreased because
the actual instantiated mesh resolution is lower. This strategy is ap-
plied to the storing step as well. If the full resolution mesh and cor-
responding simulation fields have been loaded and some filtering
applied, then the resulting mesh can be reduced. Depth-limiting the
stored trees will also reduce future loading times from storage and
data exploration at the expense of a controlled reduced resolution.

5. Results

We evaluate the presented techniques with the following simula-
tion data represented in Figure 1: (1) Shock100, 2D 100 million
cells shockwave simulation; (2) YA31, 3D 300 million cells, sim-
ulated asteroid fall [PR17]; (3) S1, 3D 1 billion cells, structured
bubbles expansion; (4) Mandel6, 2D 6 billion cells, Mandelbrot
calculations [Hol87]; (5) Astro72, 3D 72 billion cells, astrophysics
simulation. YA31 and S1 illustrate performance of meshes we re-
sampled to HTG. In [DHL18], YA31 is explored on one core of a
supercomputer node or laptop whereas original unstructured visu-
alization required hundreds. In this paper, we do not expose how
YA31 and S1 were resampled, but suffice it to say that we keep
the full simulation resolution. Astro72 is a very large dataset, re-
quiring TeraBytes of memory for complex visualization pipelines.
With usual techniques it is only exploitable on multiple nodes of
a cluster. Shock100 and Mandel6 are 2D meshes illustrating opti-
mized TB-AMR rendering. Experiments were conducted on either
a Dell Latitude 7480, Core i5-6300U, 16 GigaBytes memory and
512 GigaBytes SSD or up to 16 nodes of the Tera-1000-1 super-
computer [Ter17], 2* Xeon ES5-2698v3 16C 2.3GHz and 128 Gi-
gaBytes memory per node and Peta-class Lustre storage. Results
are executed on appropriate hardware depending on each dataset
memory consumption. For Astro72, the largest dataset, we use 16
Tera-1000-1 nodes, and for the smaller datasets or those reduced
with our techniques we can use less nodes or even just one core
of the laptop. Table 1 shows a reduction of execution times from
minutes to less than a second for different filters and volume ren-
dering on a single timestep of YA31. Pictures corresponding to the
first levels are presented in Figures 3 and 4. To be noted, loading
time from storage remains constant at about 30 seconds because
we load the full-depth trees. Loading times of depth-limited data

Table 1: Execution times (seconds) achieved for depth-limited
Contour, Threshold and volume rendering (splatting) for YA31 on
one timestep. Speed-up is tightly correlated to the amount of cells.

Depth limit 0 1 2 3 4 5 6
Contour 0.1 0.3 1.7 | 4| 13 | 30 | 117
Thresh. 0.1 0.2 05| 2 9 25 | 105
Volume <1 1.5 2 71 20 | 64 | 285

Cells (10e6) | 0.008 | 0.75 | 0.6 | 5 | 18 | 64 | 306

sets are shown in Table 2. Gains obtained allow analysts to load
different timesteps of ensemble data faster to identify specific mo-
ments of interest. In YA31, the asteroid strikes the water after a
dozen timesteps, so one can identify this moment in seconds with
depth-limited loaded timesteps instead of minutes at best. The wa-
ter splash created by the impact reaches its maximum height several

Table 2: Loading time in seconds and space savings when depth-
limiting the trees. For each data set, each load is realized with the
same fixed resources for the sake of comparison. In the first column,
dataset name and maximum level are provided.

Depth limit LO0-3 L4-Lyax—1 Linax
Shock100 ; 7 <0.5 ; <5MB 0.5-1;32-221MB 2:1.3GB
S1:;7 <1 ; <40MB <10;0.2-8.8GB <60 ; 67GB
Mandel6 ; 10 | 4-7 ;<100MB | 7-20;227MB-54GB | 30; 144GB
Astro72 ; 12 <6 ;<2.4GB 9-240 ; 20GB-2TB 240 ; 2TB
YA31 ;6 <1 ;<100MB <5 ;405MB-1.5GB 20 ; 6.9GB

hundred timesteps later. It can be retrieved in minutes interactively
with depth-limitation during loading. To be noted, storage gains are
directly related to the number of cells refined for each levels. For
Astro72, last levels refine few cells and so storage gains are limited.
We are able to easily control resolution of Astro72 and make this
large data set displayable on a laptop for collaborative purposes.
Table 3 presents optimized rendering performance. For the moder-
ate Shock100 data set, interactivity evolves from stuttered manip-
ulation to a smooth experience. The billion scale Mandel6 is only
exploitable with the optimized rendering we introduced, as stan-
dard approach provides 1 frame every 20 seconds and consumes
dozens of GigaBytes of video memory. As depth-limiting to sub-
pixel information is involved, performance is sensitive to the dis-
play configuration: reducing the rendering window size results in
higher performance, linearly. Our optimized rendering also frees up
video memory, occupying 13x less for Mandel6. More video mem-
ory is then available for GP-GPU capable visualization pipelines.

Table 3: Framerates and video memory occupancy of 2D opti-
mized and naive rendering. Screen resolution is 3440x1440.

Optimized Rendering | Standard Rendering
Shock100 | 8-20 fps 1 GB 2 fps 4GB
Mandel6 1-5 fps 3GB 0.05fps 40GB

6. Conclusion and future work

In this paper, we reflected on the design of Tree-based AMR
meshes and optimized filters or rendering and introduced opti-
mization of the visualization process with controlled hierarchical
data reduction. We implemented these concepts in the HyperTree-
Grid object we contributed in VTK and provided associated filters
and rendering capabilities. Using HyperTreeGrid, we illustrated
that analysts can greatly reduce their processing time with con-
trolled reduction, achieving speed-ups of 10x to 1000x and corre-
sponding decrease in memory footprint. Our implementation also
leads to very efficient interactive visualization at the billion-scale.
Controlled space savings are also enabled when loading or stor-
ing simulation results. The techniques we exposed can serve as
building blocks for analyzing in-sifu Exascale simulation results,
like in [CML18]. In the future, we aim at further improving load-
balancing of TB-AMR meshes, and explore visualization pipeline
optimization for shared memory or GPUs.
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