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Abstract
Recent dimensionality reduction algorithms operate on a manifold assumption and expect data to be uniformly sampled from
that underlying manifold. While some algorithms attempt to be robust for non-uniform sampling, their reliance on k-nearest
neighbours to approximate manifolds limits how well they can span sampling gaps without introducing shortcuts. We present
a minimum-spanning-tree-based manifold approximation approach that overcomes this problem and demonstrate it crosses
sampling-gaps without introducing shortcuts while creating networks with few edges. A python package implementing our
algorithm is available at https://github.com/vda-lab/multi_mst.

CCS Concepts
• Computing methodologies → Dimensionality reduction and manifold learning;

1. Introduction

Dimensionality reduction techniques are commonly used to visu-
alise and explore multidimensional data. Classical techniques—
such as PCA and MDS—operate globally by attempting to preserve
variance or all pairwise distances. More recent techniques operate
on a manifold assumption, preserving locality and neighbourhoods
instead (e.g., [RS00, Ten00, vdMH08]). These algorithms first ap-
proximate the manifold using an undirected graph and then com-
pute a layout that preserves the graph’s structure.

Generally, such dimensionality reduction algorithms assume
data is uniformly sampled from an underlying manifold
(e.g., [BN03]), meaning the complete manifold is observed and
sampled without gaps. While UMAP is designed to be robust
against this assumption [MHM18], there are scenarios in which
more than a k-nearest neighbour network (k-NN) is needed to ap-
proximate a manifold (f.i., Figures 2a and 2b). This poster presents
a k-nearest Minimum Spanning Tree (k-MST) manifold approxi-
mation approach that can deal with such non-uniform sampling.
Our main research question is: How do k-NNs and k-MSTs com-
pare in modelling non-uniformly sampled manifolds?

2. k-nearest Minimum Spanning Tree (k-MST)

The k-nearest Minimum Spanning Tree (k-MST) is inspired by
Pathfinder networks that, with a specific parameter selection, yield
the union set of all possible MSTs in a network (e.g., [QCGB∗08,
AKM17]). We generalise k-nearest neighbour networks to min-
imum spanning trees, to make MST unions work for distances
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Figure 1: (a) The Boruvka algorithm adapted to find the k-shortest
edges between connected components. (b) A distance threshold ε

provides an upper distance limit for the 2-to-k additional edges.

which may have few identically weighted connections. We believe
using more than only the MST (as in, f.i., [DTS∗20]) aids the
preservation and interpretation of local structure.

Our implementation adapts fast HDBSCAN’s version of the
Boruvka Algorithm [MC23] (Figure 1a). It relies on a KDTree to
find each point’s k-nearest neighbours that are not in the same con-
nected component. Then, the shortest k candidates per component
are added to k-MST. Only the shortest edge is used to update the
connected component to ensure the algorithm finds all edges in-
cluded in a normal MST. This process repeats until one connected
component remains. Since data points start as distinct components,
all k-NN edges are included in the k-MST.

A distance threshold ε can be applied to avoid creating shortcuts
or sparsify the manifold (Figure 1b). The parameter is specified as
a fraction of the shortest edge between components and provides
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Figure 2: Top-down views of a non-uniformly sampled 3D Swiss
roll for a (a) 5-NN and (b) 2-MST. Force directed layouts [Hu05]
of a horse-shaped mesh reconstruction dataset [SP04] for a
(c) 5-NN and (d) 3-MST. UMAP’s cross-entropy optimised lay-
outs [MHM18] (spectral initialisation, 200 epochs with repul-
sion strength 0.1, 300 epochs with repulsion strength 1.0) of
MNIST [LBBH98] for a (e) 5-NN and (f) 2-MST with ε = 1.1. All
edges are drawn using Datashader [BCT∗23] with 45 random ob-
servations per digits drawn as the graph’s nodes.

an upper distance limit for the 2-to-k alternative edges. A similar
threshold for k-NNs also avoids shortcuts, but prevents crossing
observation gaps.

3. Demonstration

We present three cases to compare k-MSTs with k-NNs (Figure 2).
k-NNs were computed as UMAP graphs, using NNDescent to find

approximate nearest neighbours [DML11]. Compute times on an
8-core 3.8 GHz CPU are listed in each case.

The first case demonstrates the methods’ ability to cross sam-
pling gaps on a non-uniformly sampled Swiss roll (22.196 ob-
servations, 3 features). The data was constructed from lengths
l and depths d: x = sl2 cos(l), y = sl2 sin(l), z = d, s = 0.03.
Gaussian noise was added to all coordinates scaled by the length:
σ = 0.0395l. Specific depth—length samples were removed be-
tween l = 16.2 and l = 19.8 to create a small observation gap along
the manifold. The 5-NN was computed in 124 ms and crosses the
gap but also introduces a shortcut (Figure 2a). The 2-MST required
105 ms to compute and recovers a small manifold approximation
graph without shortcuts (Figure 2b).

The second case quantifies the methods’ quality as dimension-
ality reduction approach by the Sortedness [PSNCP23] of their
force directed layouts [Hu05] on a horse-shaped mesh reconstruc-
tion dataset [SP04] (8.431 observations, 3 features). The 5-NN was
computed in 68 ms and does not recover a single connected man-
ifold (Figure 2c). It has a Sortedness of 0.72. At 10 neighbours,
the k-NN’s Sortedness improves to 0.89, but the manifold remains
disconnected and details in local structures start to obscure. The 3-
MST required 40 ms to compute and recovers a small, connected
manifold with a high Sortedness: 0.90 (Figure 2d).

The third case demonstrates the methods’ behaviours and graph
sizes on a dataset with clusters: MNIST [LBBH98] (70.000 obser-
vations, 784 features). The 5-NN required 1.91 s to compute and
recovers a fully connected graph containing 427.046 edges (Fig-
ure 2e). The 2-MST with ε = 1.1 was computed in 647 s and recov-
ers the data’s structure using only 201.032 edges (Figure 2f).

4. Discussion and Future Work

Our method’s main benefit over regular k-nearest neighbour net-
works is its improved handling of non-uniformly sampled mani-
folds. The k-MST can span sparse regions without introducing
shortcuts. This property is also helpful to create models of datasets
that are better interpreted as multiple distinct manifolds. In that
case, our approach captures the distance and direction between
these separate entities.

Using minimum spanning trees as a basis makes the k-MST dis-
cover connectivity at all (relevant) distance scales. Capturing this
longer-range connectivity at low values of k balances the local and
global structure—which is desirable in dimensionality reduction
(e.g., [MHM18,MvDW∗17])—and results in small models that are
cheap to lay out. We speculate it also reduces the method’s sensi-
tivity to scale compared to k-NN based approaches such as UMAP
and t-SNE, which would simplify the parameter tuning stage.

A limitation of our implementation is the compute cost asso-
ciated with KDTrees on some data sets. A NNdescent-based ap-
proximation for MSTs could make our techniques computationally
competitive for larger datasets.
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