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Abstract
Scatterplots are widely utilised in Explainable Artificial Intelligence (XAI) to investigate misclassifications and patterns among
instances. However, when datasets are large, overplotting diminishes the effectiveness of scatterplots. This poster introduces a
new quality metric to measure the overplotting of scatterplots in the context of XAI. Initially, we assess the significance of each
data point within a scatterplot by continuous density transformation, Mahalanobis Distance and a mapping function. Building
on this foundation, we develop a quality metric for scatterplots. Our metric performs well accounting for rendering orders and
marker sizes in scatterplots, showcasing the metric’s potential to improve the effectiveness of XAI scatterplots.

CCS Concepts
• Human-centered computing → Visualisation design and evaluation methods; • Computing methodologies → Machine
learning;

1. Introduction

Three primary stages of explainable artificial intelligence (XAI) are
model understanding, performance evaluation & enhancement, and
stakeholder communication [SSSEA20]. Within these stages, com-
mon XAI tasks aim to investigate feature importance, feature de-
pendencies and model accuracy. Scatterplots are widely utilised in
those tasks, e.g., to show SHAP values of local feature dependen-
cies or misclassifications via t-SNE output.

A key issue with scatterplots is overplotting, especially with big
datasets. Existing overplotting metrics are calculated from either
the values of data that is plotted (e.g., [SNLH09]) or images of the
plot that is created (e.g., [TAE∗09]). However, few metrics take ac-
count of how important different visual patterns are for the insights
users gain in XAI or visual factors such as marker size.

Our approach addresses the gap by introducing a quality metric
for scatterplot overplotting that considers the significance of each
data point, data point coordinates and visual factors. This poster
describes the metric and evaluates them with two XAI classification
model scenarios.

2. Related Works

We categorise quality metrics according to the number of variables
and measurement approach. The number of variables is either two
(X and Y) or three variables (X, Y and a category encoded us-
ing colour or shape). Regarding the measurement, metrics either
are based on rendered images or coordinate data from the scatter-
plot. This bifurcation yields four groups: 1) XY scatterplots based
on coordinate data, such as Pearson’s coefficient [MPOW17]; 2)

three-variable scatterplots measured with coordinate data, such as
the Distance Consistency [SNLH09]; 3) XY scatterplots through
rendered images, like the Rotating Variance Measure [TAE∗09];
and 4) three-variable scatterplots assessed via rendered images, in-
cluding Class Density Measure [AEL∗10, TBB∗10].

3. Method

We propose a quality metric that initially evaluates the significance
of each data point’s impact on observers’ insights. Subsequently,
we quantify the extent of information that remains obscured for
three-variable scatterplots.

3.1. Data Point Significance

We employ an approach to determine the significance of data points
with three steps: 1) transforming the data points into a continuous
density representation in arrays, effectively capturing the data in-
formation at the pixel level. The transformation relies on the mark-
ers’ size and shape, by quantifying the extent of pixel coverage by
each marker; 2) calculating the significance of each data point by
Mahalanobis Distance, which assigns a distance to each data point
based on its position relative to a specified distribution, involving
either a cluster or a correlation pattern. A greater distance indicates
a higher significance of a data point, suggesting that it is further
from the central tendency of the distribution, and 3) mapping the
significance to fall within the range of 0 and 1. We employ a two-
step method to normalise these values, which includes initial nor-
malization followed by a power function to enhance distinctions.
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Figure 1: The sensitivity of quality metric to marker sizes. Scat-
terplots rendered with varying marker sizes illustrate the impact
of marker size on our quality metric. (a) achieves a quality metric
score of 0.76. In contrast, scatterplot (b) scores lower at 0.41.

3.2. Quality Metric

In this section, we introduce the principles of our proposed quality
metric, which represents how much information remains obscured
within a scatterplot. The foundational concept of the metric in-
volves quantifying the activation of pixels—specifically, the count
of activated pixels and the frequency of their activation—integrated
with the weight values (significance values). The final result is a
number between 0 and 1, where a higher value indicates less infor-
mation is hidden.

In a scatterplot, consider a pixel as k ∈ K, where K is the set
of all pixels. Each pixel k is overlaid by N data points, and each
data point, denoted as mi where i ∈ {1,2, . . . ,N}, within this pixel
each data point carries a weight value shown as wk

i , calculated using
Mahalanobis Distance and mapping function. Data points within
each pixel are rendered in sequence from i = 0 to i = N. The data
point at i = N is referred to as the top-layer data point. We calculate
the top-layer information by the weight value of a top-layer data
point for a pixel k, shown as qk

t = wk
i=1.

Beneath the top-layer data points lie hidden data points, which
correspond to hidden information. The hidden information for a
pixel k is composed of two parts, depending on whether the hidden
data points belong to the same class as the top-layer data point.
These parts are calculated using Eq. (1) and (2):

qk
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Here, qk
s represents the hidden information when hidden data

points are in the same class as the top-layer data point, while qk
d

accounts for those in different classes. The ⊮{·} notation denotes
the indicator function, yielding 1 when the condition is true, and 0
otherwise. The variable ck

i denotes the class of the i-th data point
on pixel k, and ck

t denotes the class of the top-layer data point. Our
overall quality metric, combining these elements among all the pix-
els K in the scatterplot, is formalised in Eq. (3):

(a) (b)

Instances visibleInstances covered

Figure 2: Sensitivity of the quality metric to rendering orders. In
(a), the digits 2, 5, and 8 are rendered before the others, while in
(b) the three digits are rendered after all others, leading to different
quality metric scores of 0.41 and 0.61 respectively.
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4. Results

We assessed the effectiveness of the quality metric proposed by
generating scatterplots with varying marker sizes and rendering or-
ders to determine the sensitivity of the metric to visual factors.

The first example employed an XGBoost model to classify adult
income dataset [AN07], with the scatterplots to visualise SHAP
values, which are utilised to examine the sensitivity of our quality
metric to variations in marker sizes. Fig. 1 showcases two scatter-
plots with marker sizes set to 5 and 120. As the marker size in-
creases, a greater number of data points labelled Husband are ob-
scured by those labelled Wife, leading to a corresponding decrease
in our quality metric scores from 0.76 to 0.41. This outcome aligns
with the expectation that increasing marker size can aggravate over-
plotting in scatterplots.

The second example utilised a CNN model for classifying the
MNIST dataset [Den12], with results visualised in scatterplots
where each point represents a single instance (see Fig. 2). The two
scatterplots render the data in different orders and demonstrate how
that influences our quality metric scores. Certain critical instances
that are obscured in (a) are pivotal for AI experts to identify model
errors. Our quality metric assigns scores of 0.41 for (a) and 0.61
for (b), indicating that scatterplot (b) hides less information.

5. Limitations and Future Work

Despite the strengths of our quality metric, it has limitations, such
as its lack of consideration for the opacity of scatterplots. Although
both examples originate from the XAI field, we believe our quality
metric is versatile and can be applied to scatterplots in various other
domains.
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