Explorative Study on Semantically Resonant Colors for Combinations of Categories with Application to Meteorological Data

L. Pelchmann1, S. Bremm2, K. Ebell1 and T. von Landesberger1

1University of Cologne, Germany
2Frankfurt University of Applied Sciences, Germany

Abstract

We present an exploratory study of semantically resonant colors for combinations of categories. The goal is to support color selection of multi-labeled classes of classified data. We asked participants to assign colors to different categories in the meteorological domain and then to their combinations. Our results show that the colors chosen for the combinations are related to the colors for the individual categories. We also found indications that people tend to prefer darker color values for combinations of categories. Our results can be used to color code meteorological data.

CCS Concepts

• Human-centered computing → Visualization; Scientific visualization; Visualization design and evaluation methods;

1. Introduction and Related Work

Colors corresponding to the semantics of words play a very important role in the understanding of data visualizations [LFK*13]. They are used to indicate classes of classified data (see Figure 2). In this example, the particles measured in the air were categorized as ice, rain/drizzle, cloud droplets, melting ice, aerosols, and insects, extended by combinations of these categories, namely rain/drizzle & cloud droplets, melting ice & cloud droplets, aerosols & insects, and ice & supercooled droplets [HO*07, NEL*19]. The current color scheme (see Figure 1a, top) illustrates the challenge of assigning colors to this data. The colors are not semantically resonant [KHMC20], nor do the colors of the combined categories represent the individual category components.

Previous work, such as [ZH16, STWB17, WCG*19, FWD*17, RLLS20, SS16] considers color associations for individual categories only, not combined categories. The closest approach to this problem are categorical hierarchies [TdJ14]. In our case, the color combinations do not form a hierarchy, because category Cloud Droplets is combined with two different categories (Figure 1a).

We conducted an exploratory study to answer the following questions What colors are semantically resonant for combinations of categories? How do the colors of combined categories relate to the colors of individual categories?
The distance range of the selected colors was significantly larger for participants with a meteorological background (avg. 55.01) than for those without a meteorological background (avg. 46.69). We calculated the distances between the selected color values per category for each participant (see Figure 3). There is a significant dependence between the individual and combined categories (Fischer’s exact test, p=0.0026). The color values differ only up to a max. distance of 40.26, and on avg. the colors chosen for the combinations of individual categories were only between 22.11 and 25.41 away from the mean of the colors of the two individual categories. Thus participants were more oriented toward what they perceived to be an avg. color value between the two individual categories than toward the two colors of the categories themselves.

Darkness of the Combined Color: We found indications that colors chosen for the combined categories were darker than the colors representing the mathematical avg. of the two individual categories. Our participants chose a color for the combined categories that was an avg. of 6.9 darker than the avg. of the two chosen colors for the individual categories (min. 3.32, max. 10.32) (see Figure 1b).

User Feedback: Interestingly, the individual categories of melting ice and cloud droplets were seen as combined categories, and not just the combined categories. This holds true for participants with and without a meteorological background.

4. Discussion and Conclusion

Quantitative Results: Our initial assumption that the color associations for individual categories would be related to those for the combinations was confirmed by the data we measured. Although the division and selection of individual categories makes sense from a meteorologist’s point of view, some of the meteorological participants did not perceive the multicolor individual categories as such semantically, raising the question of how far this aspect can be explored in further studies; Hall et al. [HKB22] have explored professional differences in the understanding of visualizations.

Further Indications: Although the two individual categories clearly played a role in the color choice of the combined category, the average of the chosen individual colors was never closer than a distance of 20 to the chosen color for the combination of categories.

Conclusion: Our results show that there is a relationship between the colors for each category and the color for the combination of categories. Since the average of two colors representing individual categories is never a bad choice for the combination of the two individual colors, we can recommend that color choices for such cases actually be based on the average of the colors, including an increase in darkness. It remains to be investigated in further studies what the best choice away from the mean in certain individual cases is. Our results also need to be verified with other colors and thematic directions, but can then be applied to create color scales when needed for visualizations in use cases with combined categories. Other use cases have already been identified, such as in the medical field.

Acknowledgements

We acknowledge ACTRIS and Finnish Meteorological Institute for providing the data set which is available for download from https://cloudnet.fmi.fi/. The cloud radar data for Ny-Alesund was provided by the University of Cologne, the ceilometer and microwave radiometer data by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research. We gratefully acknowledge the funding by BMBF WarmWorld Project and the Deutsche Forschungsgemeinschaft DFG (German Research Foundation) - project number 268020496 - TRR 172, within the “Transregional Collaborative Research Center ’ArcticC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3’.”
References

[EMRO22] EBELL K., MATURILLI M., RITTER C., O’CONNOR E.: Classification data from ny-Ålesund on 29. aug.
https://cloudnet.fmi.fi/file/7a93ef5-e05b-43b1-be3e-17ae49e9ad. 2022. AC-TRIS Cloud remote sensing data centre unit (CLU).

[Fin] FINNISH METEORLOGICAL INSTITUTE: Cloudnet data portal.


