Abstract
Mental workload is a cognitive effort felt by users while solving tasks, and good visualizations tend to induce a low mental workload. For better visualizations, various visualization techniques have been evaluated through quantitative methods that compare the response accuracy and performance time for completing visualization tasks. However, accuracy and time do not always represent the mental workload of a subject. Since quantitative approaches do not fully mirror mental workload, questionnaires and biosignals have been employed to measure mental workload in visualization assessments. The electroencephalogram (EEG) as biosignal is one of the indicators frequently utilized to measure mental workload. Since everyone judges and senses differently, EEG signals and mental workload differ from person to person. In this paper, we propose a mental workload personalized estimation model with EEG data specialized for each individual to evaluate visualizations. We use scatter plot, bar, line, and map visualizations and collect NASA-TLX scores as mental workload and EEG data. NASA-TLX and EEG data as training data are used for the mental workload estimation model.

CCS Concepts
• Human-centered computing → Visualization design and evaluation methods; • Computing methodologies → Supervised learning by classification;

1. Introduction
Mental workload is a cognitive effort felt by users while solving tasks. To evaluate the mental workload from visualization, researchers ask users to solve visual analytics tasks through visualizations. Many researchers say that visualization can be evaluated with accuracy and response time because good visualization makes successful completion of given tasks [Loh97, SML+17]. Nevertheless, it is difficult to achieve both high accuracy and low response time at the same time [Pla04]. Therefore, it is necessary to use additional metrics along with response time and accuracy to measure mental workload in visualization evaluation. Generally, questionnaires such as NASA Task Load Index (NASA-TLX) [AH21] have been utilized to measure mental workload. However, participants have the hassle of repeating the evaluation session every time after performing each task during the entire experiment to measure the mental workload. Therefore, researchers examine biosignals such as electroencephalogram (EEG) to avoid questionnaires in the evaluation process [GTLM+21, CXL21]. However, as far as we know in visualization evaluation, there is only one study. Anderson et al. [APM+11] study visualization evaluation using mental workload. They employ Extraneous Cognitive Load (ECL) calculated with alpha and the frequency bands in the EEG. Their study is similar to our approach in that the visualization is evaluated using EEG. They estimate mental workload with mathematical analysis on EEG data and evaluate only the boxplot visualization. However, we apply deep learning on EEG data to estimate mental workload and evaluate the scatter, bar, line, and map visualizations. In this paper, we study the mental workload estimation model using EEG in the visualization evaluation. Since there is a difference in individual mental workload when extracting information from data visualizations [LKK17], we propose a mental workload estimation model with EEG data specialized for each individual to evaluate visualizations. We have participants perform visualization tasks to collect EEG data and NASA-TLX scores. After performing the visualization tasks, the participants answer the NASA-TLX questionnaires. In the preprocessing, band power data of EEG are extracted as train data, and the NASA-TLX scores as labeled data are converted to a 10-point Likert workload level using a weighted matrix. Then, we train the model with the train data and label data for mental workload estimation.

2. Experiment Design
In this section, we present the experiment for data collection to train our mental workload estimation model as visualization evaluation. In the experiment, we showed four visualization types, including scatter plot, bar chart, line chart, map for R datasets and
In this section, we present our mental workload estimation model.

3. Mental Workload Estimation Model for Visualization

In this section, we present our mental workload estimation model using only EEG data. The proposed model classifies the mental workload level as 0~10 with EEG band power data. In the model, we utilize the EEG data preprocessed in Section 2 as input. We also convert the NASA-TLX score calculated in Section 2 to mental workload level and utilize the level as a label. Then, we estimate the mental workload level utilizing with various models, including Support Vector Machine (SVM), which is the most used machine learning model in previous studies, and Deep Neural Network (DNN), Convolutional Neural Network (CNN), and Long-Short Term Memory (LSTM), which are deep learning models.

We perform the classification as a model for estimating mental workload. Since classification is the task of classifying data into appropriate labels, the NASA-TLX score calculated in Section 2 is used as the label. However, the NASA-TLX score is a 100-point Likert scale, and the range is too broad. Therefore, it is difficult to achieve good performance because the number of scores corresponding to each label is small. Hence, the NASA-TLX score is reduced to a 10-point Likert scale, which is used as a label for the classification. Note that the larger Likert scale indicates more mental workload. We measure the F1-scores when applying the test set in the models trained using the train set. The mental workload estimation average accuracies of the models for the 7 participants are 26.22% for SVM, 88.57% for DNN, 82.67% for CNN, and 80.76% for LSTM.

4. Conclusion

In this paper, we proposed a mental workload estimation model for visualization evaluation using EEG data. EEG data and NASA-TLX score measured from 7 participants were preprocessed and used to train models, including SVM, DNN, CNN, and LSTM. The performances were compared with F1 scores, and the DNN model produced the best performance. From this study, we believe it is possible to evaluate visualizations with our proposed model. While EEG data is collected when a participant performs visualization tasks, the mental workload is predicted instantly. Since the EEG signal patterns vary depending on the participants, we trained the model separately with individual EEG data and obtained satisfactory performances. However, there exist differences in the prediction accuracies. Therefore, we plan a study to improve the prediction accuracy of the model by finding the changing patterns of EEG data according to mental workload through additional data collection. Also, we plan to improve the model performance with various EEG data preprocessing methods, such as the corresponding PSD analysis and feature extraction. We also examine more diverse visualization type to distinguish various mental workload levels.

5. Acknowledge

This work was partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2022-0-00305, Development of automatic data semantic information composition/expression technology based on augmented analysis for diagnosing industrial data status and maximizing improvement, 50%) and (No.2021-0-00469, Development of heterogeneous fusion data detection and tracking technologies, 50%).
References


