The Impact of Visualizing Uncertainty on Train Trip Selection Annex

M. Wunderlich, K. Ballweg, and T. von Landesberger

Part I

Study Data and Visualizations

1 Description of the Train Trips

Attribute	TO1	TO2	TO3
Departure	\approx	$\mathrm{b} \prec \mathrm{a}$	$\mathrm{a} \prec_{S} \mathrm{~b}$
Arrival	$\mathrm{a} \prec_{S} \mathrm{~b}, \mathrm{~b} \prec_{D} \mathrm{a}$	$\mathrm{b} \prec \mathrm{a}$	$\mathrm{b} \prec_{S} \mathrm{a}, \mathrm{a} \prec_{D} \mathrm{~b}$
Travel duration	$\mathrm{a} \prec_{S} \mathrm{~b}, \mathrm{~b} \prec_{D} \mathrm{a}$	$\mathrm{b} \prec^{\mathrm{a}}$	$\mathrm{a} \prec_{S} \mathrm{~b}, \approx_{D}$
Transfers	no transfers	2 in a and b, longer in a	1 in b
Delays	a 's delay meets deadline $(\mathrm{C} 2)$	never critical	critical transfer
Alternatives	none	none	1 for b's transfer

Table 1: Attribute-wise comparison of the two train trips TO1-TO5 per decision situation. (a denotes the first, b the second trip; \approx similar for a and b ; shorter/earlier with a : $\mathrm{a} \prec \mathrm{b}$; according to schedule: s; according to (maximum) expected delays: ${ }_{D}$)

Attribute	TO4	TO5
Departure	$\mathrm{a} \prec \mathrm{b}$	\approx
Arrival	\approx	$\mathrm{a} \prec_{S} \mathrm{~b}, \mathrm{~b} \prec_{D} \mathrm{a}$
Travel duration	$\mathrm{b} \prec \mathrm{a}$	$\approx_{S}, \mathrm{~b} \prec_{D} \mathrm{a}$
Transfers	2 in b	1 in a and b
Delays	never critical	critical transfers
none	1 for each transfer	

Table 2: Attribute-wise comparison of the two train trips TO1-TO5 per decision situation. (a denotes the first, b the second trip; \approx similar for a and b ; shorter/earlier with a : $\mathrm{a} \prec \mathrm{b}$; according to schedule: S; according to (maximum) expected delays: D)

TO1 Direct influence of train delay on the arrival time: Both train trips depart at the same time and have no transfers. The travel duration with the first connection is shorter according to the schedule while the travel time with the second connection is shorter according to the (maximum) expected delays.

TO2 Influence of delay on transfer time: Departure and arrival times of the two trips are similar whereas the travel duration with the second trip is slightly shorter. Each trip has two transfers. The transfer durations of the first connection are longer according to the schedule but shorter according to the expected delays at the transfer stations.

TO3 Influence of a critical delay on arrival time via potential miss of a connecting train: The travel duration of the first trip is longer but the trip contains no transfers. The second trip contains one transfer that is also critical, i.e., the connecting train of the second connection might be missed due to the expected delays. If the connecting train is missed, the arrival time of the second trip is before the arrival time of the first trip. If the connecting train is reached, the order of the arrival times is vice versa.

TO4 Trade off between travel duration and transfers: The arrival time of both trips is similar. The first trip contains no transfers but departs earlier, i.e., its travel duration is longer. The second trip contains two transfers but none of them is critical (i.e., the connecting trains will most probably will be reached).

TO5 Influence of arrival time due to critical delay: Each of the trips contains one transfer of equal duration. The connecting trains in both trips might be missed due to the delay of the preceding trains. The arrival time of the first connection is earlier if the connecting train is reached and later otherwise.

2 Visulizations of the Train Trips

Figure 1: Train Trips TO1 displayed with design $D_{\text {cum }}$

Figure 2: Train Trips TO2 displayed with design $D_{\text {cum }}$

Figure 3: Train Trips TO3 displayed with design $D_{\text {cum }}$

1) $09: 00$

$13: 00$

gende	
	zug Die Lange des Zuges entsprichi der Fahrizeit mil diesem Zug (nach Fahrplan)
zug	
	Kritischer Zug Zug, der wegen der Verspatung eines vorausfahrenden Zuges u.U. nicht erreicht werden kann
zug	
	Umstieg Die Länge des Umstiegs entspricht der Umsteigezeit (nach Fahrplan)
]-[Verspatung Gibt an, mit welcher Wahrscheinlichikeit der Zug ab wann ankommt. Der Wahrscheinlichkeitswert ergib sich aus der Farbe:
	0\% 100\%
100	Kritische Verspatung Verspatung ist U.U. . groser als
	Alternative Anschlusszüge Zug 2b" ist ein alternativer Anschlus szug (statt „Zug 2a"), der spater als zug 2a" abfahr

Figure 4: Train Trips TO4 displayed with design $D_{\text {cum }}$

Figure 5: Train Trips TO5 displayed with design $D_{\text {cum }}$
1)
$09: 00$

Figure 6: Train Trips TO1 displayed with design $D_{\text {noncum }}$

Figure 7: Train Trips TO2 displayed with design $D_{\text {noncum }}$

Figure 8: Train Trips TO3 displayed with design $D_{\text {noncum }}$

Figure 9: Train Trips TO4 displayed with design $D_{\text {noncum }}$

Figure 10: Train Trips TO5 displayed with design $D_{\text {noncum }}$

Figure 11: Train Trips TO1 displayed with design $D_{v i s}$

Figure 12: Train Trips TO2 displayed with design $D_{v i s}$

Figure 13: Train Trips TO3 displayed with design $D_{v i s}$

Figure 14: Train Trips TO4 displayed with design $D_{v i s}$

Figure 15: Train Trips TO5 displayed with design $D_{v i s}$

Figure 16: Train Trips TO1 displayed with design $D_{\text {text }}$

Figure 17: Train Trips TO2 displayed with design $D_{\text {text }}$

Figure 18: Train Trips TO3 displayed with design $D_{\text {text }}$

Figure 19: Train Trips TO4 displayed with design $D_{\text {text }}$

Figure 20: Train Trips TO5 displayed with design $D_{\text {text }}$

Part II

Study Results

3 Decisions

(c) Train connections TO1 and temporal constraint C1

(g) Train connections TO2 and temporal constraint C1

(k) Train connections TO3 and temporal constraint C1

(d) Train connections TO1 and temporal constraint C2

(h) Train connections TO2 and temporal constraint C2

(l) Train connections TO3 and temporal constraint C2

Figure 21: Distribution of the decisions for each situation composed of a set of train connections TO1-TO5 and a temporal constraint $\mathrm{C} 1 / \mathrm{C} 2$. The values are relative to the number of answers for each design. Option 1, Option 2, For me, both trips are of equal value, I can not decide based on this depiction, because: [text input], and I don't know Above each bar chart the decision situation is displayed with $D_{\text {cum }}$.

Figure 22: Distribution of the decisions for each situation composed of a set of train connections TO1-TO5 and a temporal constraint $\mathrm{C} 1 / \mathrm{C} 2$. The values are relative to the number of answers for each design. Option 1, Option 2, For me, both trips are of equal value, I can not decide based on this depiction, because: [text input], and I don't know

4 Statistical Evaluation

4.1 Dependence on the Availability of Delay Uncertainty

The Fisher's Exact Test showed that the decisions on train trip selection significantly depend on the availability of delay uncertainty visualization for eight out of ten decision scenarios (cf. Table 3).

	C1	$\mathbf{C 2}$
TO1	$<0.001^{* * *}$	$<0.001^{* * *}$
TO2	$<0.001^{* * *}$	$<0.001^{* * *}$
TO3	$<0.001^{* * *}$	$<0.001^{* * *}$
TO4	1	0.281
TO5	$<0.001^{* * *}$	$<0.001^{* * *}$
Significance levels: p-value $<0.001:$		

Table 3: P-values according to Fisher's Exact Test for decisions depending on the availability of delay uncertainty information in the visualization.

4.2 Dependence on the Design of Connection Display

We tested whether decisions differ depending on the type of display with Fisher's Exact Test. We specifically analyzed two cases: with uncertainty ($D_{\text {cum }}$ and $D_{\text {noncum }}$) and without uncertainty ($D_{v i s}$ and $D_{\text {text }}$).

	C1	$\mathbf{C 2}$
TO1	$<0.001^{* * *}$	$<0.001^{* * *}$
TO2	$<0.001^{* * *}$	$<0.001^{* * *}$
TO3	$0.001^{* *}$	$<0.001^{* * *}$
TO4	0.047^{*}	0.336
TO5	$<0.001^{* * *}$	$<0.001^{* * *}$
Significance levels: p-value $<0.001^{* * *},<0.01:^{* *},<0.05:^{*}$		

Table 4: P-values according to Fisher's Exact Test for decisions depending on the design of train trip display.

		$D_{\text {cum }}$ vs. $D_{\text {noncum }}$	$D_{\text {vis }}$ vs. $D_{\text {text }}$
TO1		$0.002^{* *}$ 。	0.752
TO2		0.74	0.396
TO3	C1	1	0.116
TO4		0.023 *	0.106
TO5		0.332	0.04 *
TO1		1	1
TO2	C2	1	0.115
TO3	C2	0.593	0.729
TO5		0.839	0.32

Table 5: P-values according to Post-hoc Fisher's Exact Test for decisions depending on the type of delay display and depending on whether display is visual or text.

4.3 Dependence on the Existence of an Arrival Deadline

TO1	TO2	TO3	TO4	TO5
${ }^{\dagger}<0.001^{* * *}$	${ }^{\dagger} 0.096$	0.029^{*}	0.789	${ }^{\dagger} 0.08$

${ }^{\dagger}$ includes the decision that both connections are of equal value
Significance levels: p-value $<0.001:^{* * *},<0.01:^{* *},<0.05:^{*}$
Table 6: P-values according to McNemar Test for decisions depending on the time constraint.

	$D_{\text {cum }} \& D_{\text {noncum }}$	$D_{\text {vis }} \& D_{\text {text }}$
TO1	$0.004^{* *}$	$\dagger 0.039^{*}$
TO2	1	0.034^{*}
TO3	1	0.724
TO4	0.221	$\dagger 0.096$
TO5	1	

${ }^{\dagger}$ includes the decision that both connections are of equal value Significance levels: p-value $<0.001:^{* * *},<0.01:^{* *},<0.05:^{*}$

Table 7: P-values according to McNemar Test for decisions depending on the time constraint for designs with uncertainty $\left(D_{\text {cum }} \& D_{\text {noncum }}\right)$ and without uncertainty $\left(D_{v i s} \& D_{\text {text }}\right)$.

	$D_{\text {cum }}$	$D_{\text {noncum }}$	$D_{\text {vis }}$	$D_{\text {text }}$
TO1	0.023^{*}	0.248		
TO2	1		$\dagger 0.059$	0.48
TO3	1		0.505	0.046^{*}
TO4	1	0.248	0.134	0.617
TO5	1	0.48	1	

${ }^{\dagger}$ includes the decision that both connections are of equal value Significance levels: p-value $<0.001:^{* * *},<0.01:^{* *},<0.05:^{*}$

Table 8: P-values according to McNemar Test for decisions depending on the time constraint for each design.

5 Decision Making Durations

Decision Situation		D ${ }_{\text {cum }}$	$\mathrm{D}_{\text {noncum }}$	$\mathrm{D}_{\text {vis }}$	$\mathrm{D}_{\text {text }}$
T01	C1	33,33	35,40	30,32	41,33
TO2		29,67	19,15	19,29	49,72
T03		18,38	16,65	16,64	33,50
T04		13,33	20,55	12,07	24,56
T05		24,04	29,45	17,43	32,67
T01	C2	15,00	15,45	14,11	18,28
TO2		17,33	16,15	13,14	34,22
TO3		11,38	14,05	17,00	29,22
TO4		11,54	10,65	11,86	25,78
TO5		17,25	27,15	13,75	25,00

Table 9: Decision Making Durations

Figure 23: Decision Making Durations

