Projection Navigation In Extremely Large Datasets (PNIELD)

J. F. Kruiger1,2, A. C. Telea1, C. Hurter2
1University of Groningen, the Netherlands
2École Nationale de l’Aviation Civile, France

1. Introduction

Multidimensional projections (MPs) visualize high-dimensional data by mapping a set \(X = \{ x_i \} \subset \mathbb{R}^n \) of such observations to a lower-dimensional space. Formally put, a projection \(P \) is a function

\[
P : \mathbb{R}^n \to \mathbb{R}^m, \quad m \ll n.
\]

If \(m = 2 \), we can represent the projected data by a traditional scatter-plot. Many MP methods exist, offering various trade-offs between ease of use (automation), accuracy of representing \(n \)-dimensional distances [PVG17] or neighbourhoods [vdMH08], computational scalability [JCC11], and robustness with respect to small changes in the data [RFT16]. For a very large number of observations \(N = |X| \) and a large number of dimensions \(n \), computing a single high-accuracy projection \(P(X) \) of the entire dataset \(X \) becomes either too expensive or creates too large inaccuracies. In the limit, very large \(N \) values make even the rendering of \(P(X) \) hard to follow, due to clutter. Such problems are partially solved by so-called landmark methods, such as LAMP [JCC11], LSP [PNML08], or LandmarkMDS [DST03]. These methods select a small subset \(X_l \subset X \) of so-called landmarks, representatives, control points, or anchors. Next, \(X_l \) is projected to \(Y_l \subset \mathbb{R}^m \) using a—a typically high-accuracy—method \(P \) or manual placement [JCC11], and the projections of remaining observations \(X \setminus X_l \) are arranged around points in \(Y_l \) based on a local low-cost stress minimization principle. Landmark MPs can thus be described by

\[
\hat{P} : \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m,
\]

\[
\hat{P}(X, X_l, P(X_l)) = Y.
\]

While faster than classical methods, landmark MPs cannot directly represent very large datasets \(X \): A single subsampling \(X_l \) may not be enough, as this yields either too many landmarks for the expensive landmark-projection \(P \) to work quickly, or too few landmarks in which case \(P \) has a large error. Also, it is not evident how to control the level-of-detail in \(Y \) so as to emphasize specific data patterns with controlled error.

We propose a framework for the exploration of large high-dimensional datasets via MPs that addresses the above challenges, with the following key contributions \(C_i \):

Scalability (\(C_1 \)): We handle large datasets \(X \) in time linear to \(|X| \).

Level-of-detail (\(C_2 \)): We propose a multiscale view on \(P \) which ranges between overviews of the full \(X \) (with higher errors) and detailed views on subsets of \(X \) (with lower errors).

Continuity (\(C_3 \)): Navigation between our multiscale levels is continuous in the projection space \(\mathbb{R}^2 \). This helps users maintaining their mental map.

Control (\(C_4 \)): For navigation, we extend classical 2D zoom-and-pan, familiar to most users, to handle \(\mathbb{R}^2 \) space. Intuitively put, we allow exploring a high-dimensional space via a ‘Google Earth’ metaphor of navigating point clouds, where more details—i.e., more points—are automatically added, on-demand.

2. Method

Our method can be compactly described in terms of three operations—subsampling, projection, and exploration—as follows.

Subsampling: We handle very large input datasets \(X \) by subsampling these by an operator \(S^M : \mathbb{R}^n \to \mathbb{R}^m, S^M(X) \subset \mathbb{R}^m \). Subsampling allows us to construct a smaller dataset \(|S^M(X)| = M \ll |X| \) which we can next project by landmark MPs (Sec. 1). Simple subsampling methods that are linear in \(|X| \) include random sampling [Vit85, Knu81], which we denote as \(S^\text{RND} \).

Projection: With \(X_l = S^M(X) \) computed as above, we project \(X_l \) by LAMP [JCC11], with metric MDS [PVG17] used for accurate projection of \(X_l \subset X \), where landmarks \(X_l \) are selected by further subsampling \(X \). In detail, we define

\[
\begin{align*}
X_r &= S^\text{RND}(X), \\
X_l &= S^M(X_l), \\
Y_l &= P_{\text{MDS}}(X_l), \\
Y_r &= \hat{P}_{\text{LAMP}}(X_r, X_l, Y_l),
\end{align*}
\]

that is, we subsample \(X \) to \(M_r = 1000 \) observations, of which we next select \(M_l = 50 \) landmarks to project via MDS, and using this, construct the projection \(Y_r \) of \(X_r \) using LAMP.

Exploration: Our method’s main strength becomes apparent when we consider interactive exploration. Applying Eq. (1) to our whole input data \(X \) yields an overview scatterplot \(Y_r \) which shows the general structure of \(X \). However, we do not have details, since \(Y_r \) is a coarse subsampling of \(X \). We next enable interactive level-of-detail exploration of the data by multiscale projections (see also Fig. 2): The user selects a focus point \(y \in \mathbb{R}^2 \), e.g., at the mouse location. We next select all observations \(X_k \subset X \) whose projections in \(Y_r \) are the \(k \)-nearest neighbours of \(y \) in the \(2D \) space, where \(k \) defines the zoom level—e.g., setting \(k \) to 90% of \(M_r \) yields a zoom of roughly 10%. Points outside \(X_k \) are discarded. There is now room for \(M_r - k \)

\(\text{DOI: 10.2312/europ.20171181} \)
more points, so we compute the set \(X_c \) of \(M_l - k \) observations from \(X \setminus X_k \) that are closest to \(X_k \). Next, we define the new set of observations \(X'_l = X_c \cup X_k \), and project it using as landmarks \(X'_l \) a set of \(M_l \) randomly chosen points from \(X_k \), i.e., \(X'_l = SM_{\text{RND}}(X_k) \). The projection \(Y'_l \) of the landmarks is not re-computed, to preserve visual continuity, but is set to the points from \(Y_k \) that map the observations in \(X'_l \). The new set of landmarks yields a new projection \(Y'_v = PLAMP(X'_l, X'_l, Y'_v) \), analogous to Eq. (1). Finally, we interpolate between the current scatterplot \(Y_v \) and the new one \(Y'_v \) by linearly interpolating the positions of the points common to the two plots and also fading out points that exist in \(Y_v \) (but not in \(Y'_v \)) and fading in points that exist in \(Y'_v \) (but not in \(Y_v \)). This ensures a smooth transition during zooming (see also the additional material).

Figure 2: Multiscale projection exploration. a) Subsampling the dataset \(X \subset \mathbb{R}^n \). b) Projecting \(S(X) \) to 2D. c) User selects ROI in 2D. d) Landmarks are sampled from ROI points. e) \(\mathbb{R}^n \) observations are selected as nearest-neighbors of observations mapped to ROI points. Newly selected points are projected with the other remaining points using landmarks from (d).

Results: Our method has several key advantages vs. state-of-the-art MP methods. Following Sec. 1, these are as follows. (C2): We can smoothly navigate between coarse views of large datasets \(X \) and detailed views of subsets \(X_k \) of such datasets. (C3): We ensure continuity during navigation, by the consistent use of landmarks \(X_k \) during zooming (Sec. 2), and by the linear interpolation of the scatterplot positions. (C4): Navigating \(\mathbb{R}^n \) data spaces is simple—just use classical point-and-zoom 2D tools. This is the first time, to our knowledge, that this mechanism has been used for the navigation of \(\mathbb{R}^n \) spaces. Simply put: our proposal lets users zoom in/out in \(\mathbb{R}^n \) datasets as easily, and intuitively, as when doing it in 2D space. We coded the proposed framework in Python 3 using SciPy [JOP+17]. Our implementation can easily handle datasets of over a million observations with real-time zoom exploration.

3. Acknowledgements

This work was partly supported by the project MOTO (H2020-SESAR-2015-1), grant 699379, offered by the European Commission.

References

