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Abstract
We present a novel approach for tracking space-filling features, i.e., a set of features covering the entire domain. The assignment
between successive time steps is determined by a two-step, global optimization scheme. First, a maximum-weight, maximal
matching on a bi-partite graph is computed to provide one-to-one assignments between features of successive time steps.
Second, events are detected in a subsequent step; here the matching step serves to restrict the exponentially large set of potential
solutions. To this end, we compute an independent set on a graph representing conflicting event explanations. The method is
evaluated by tracking dissipation elements, a structure definition from turbulent flow analysis.

1. Introduction

Feature tracking is a key technique to gain insight into the tempo-
ral evolution of objects in time-varying data sets. Existing feature
tracking approaches, e.g. [RPS01, SSZC94, SW97], usually opera-
te on the assumption that features only cover a small fraction of
the data domain. These approaches test all candidate features from
one time step for overlap with a template feature from a neighbo-
ring time step and use the best combination of all candidates as
solution. First, they check for splitting features from ti to ti+1, then
for merges in the other direction. However, if space-filling featu-
res, i.e., structures that cover the entire domain, should be tracked,
this approach suffers from two issues. First, the number of possible
candidates overlapping with a certain feature grows significantly.
Since the number of potential explanations, including continuati-
ons, splits, and merges – the latter two of which may include an
arbitrarily large subset of overlapping candidates – grows exponen-
tially with the number of overlapping features, the problem quickly
becomes intractable in this setting. Second, an assignment of one
feature to one or more features in the other time step is usually
chosen greedily. This leads to a locally optimal assignment, i.e.,
the best available solution for the given feature, but it might preclu-
de explanations for other features, which – taken in combination –
might be part of a globally optimal event detection. Instead, all ex-
plained features are deleted from the search space and are therefore
not available for further investigation.

In order to address these issues, we formulate the assignment by
means of two graph optimization problems. We first model con-
tinuations as a weighted matching problem. We then construct a
graph of all conflicting event explanations on which we search for
an independent set representing non-conflicting explanations. The
bi-partite matching on the features of two consecutive time steps
provides one-to-one assignments of features with sufficient over-

lap. This step significantly reduces the number of possible candi-
dates involved in an event with one feature and with it the possible
assignments to be tested. Building a graph containing one node for
every possible event explanation and edges to encode conflicts bet-
ween explanations enables us to consider all possible events and
obtain a globally optimal assignment. Additionally, there is no de-
pendency on the ordering of features or events and therefore no
preference for continuations, splits, or merges.

2. Method

Our feature tracking approach consists of two steps as illustrated
in Figure 1: the bi-partite matching and the subsequent event de-
tection. The first step yields one-to-one assignments for most of
the features. Continuations, as well as the largest component of a
feature participating in a split or merge between the corresponding
time steps are found this way. The event detection step uses the
result of the matching as starting point. For all matching edges,
an extension with unmatched nodes is tested by building a second
graph containing all possible explanations, i.e., splits, merges, and
the continuations indicated by the matching, as weighted nodes and
conflicts between those events as edges. On the resulting graph, we
compute a maximum weight independent set. The selected nodes
indicate the features involved in an event like splitting, merging or
continuation; all others are assumed as birth or death. These two
steps are described in detail in the following sections.

2.1. Weighted Matching

Given two consecutive time steps ti and ti+1, our approach sets up
a weighted, bi-partite graph containing one node for every object
in ti in the set U and one node for every object in ti+1 in the set V .
The edges between the nodes of U and V are weighted according to
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Figure 1: Illustration of the feature tracking steps. a) shows the bi-partite matching graph for two consecutive time-steps. b) shows the
resulting edges of the matching (bold edges) and the nodes considered to paticipate in an event with the first node of U. c) shows the resulting
graph on which the independent set is computed, and d) shows the resulting events in the bi-partite graph.

the similarity between the corresponding objects. While the simi-
larity measure can be chosen arbitrarily in principle, we currently
use normalized volume overlap [SW97]. For all combinations of
objects which are not overlapping, the edges are not explicitly sto-
red and their weight is assumed to be 0. An example of the resul-
ting graph is illustrated in Figure 1a). On this graph, a maximum-
weight, maximal matching is computed using an adapted version
of the pseudo-flow algorithm by Goldberg and Kennedy [GK95].
This matching provides one-to-one assignments for most of the fea-
tures. In Figure 1b) the edges found by the matching are printed
in bold. A detailed description of the matching step can be found
in [SGKH15].

2.2. Event Detection

The matching step is followed by an event detection using the mat-
ching result as input. First, all possible split events containing one
matched node from U and a set of nodes from V are construc-
ted. For each matched node u ∈ U all currently unmatched nodes
ṽ ∈V connected by a valid edge to u are enumerated. In Figure 1b)
this step is illustrated for u1. In this example, the matching edge
connects u1 with v1. Additional possible candidates are v2 and v3.
The power set of the possible candidates is computed and for every
element of the power set an event explanation is stored containing
the nodes connected by the matching edge, in this case u1 and v1,
and the nodes in the subset. Thus, the number of potential explana-
tions grows exponentially with the number of overlapping features.
In the example, this results in the four possible explanations “u1
continues as v1“; “u1 splits into {v1,v2}“; “u1 splits into {v1,v3}“;
and “u1 splits into {v1,v2,v3}“. For each of these explanations, a
benefit, in our case an increase in normalized volume overlap, is
stored. All explanations which share at least one node from U or
V conflict with each other, because they provide different explana-
tions for the same feature. Thus, explanations built from different
elements of the same power set are conflicting.

All possible merge events containing one matched node from V
and a set of nodes from U are constructed afterwards in the sa-
me manner. From this data, we construct a second graph, which
contains a node with corresponding weight for every explanation
and edges between nodes if the corresponding explanations are in
conflict. This results in a graph containing cliques as shown in the
Figure 1c).

To choose the best explanation for every node, we determine a

maximum weight independent set on this graph using a branch and
bound algorithm. While the independent set problem is NP-hard
in general, the matching step allows us to reduce problems to a
tractable size. The solution is a set of nodes that are mutually un-
connected. These correspond to a set of explanations, i.e., splits,
merges, and continuations relating features from ti and ti+1, that
do not conflict with each other. After inserting those events in the
bi-partite graph, we receive a solution as depicted in Figure 1d).

3. Discussion & Conclusion

We have presented a novel approach for feature tracking and event
detection on space-filling structures based on the combination of
a bi-partite matching and an event detection using a maximum
weight independent set problem. In contrast to previous methods
which are designed to solve the correspondence problem on sparse
data, we use the matching step to reduce the possible candidates
for events. Without the matching, the number of possible events in
a data set from a direct numerical simulation with a spatial resolu-
tion of 1283 containing up to 6.000 features per time step would be
at least two orders of magnitude higher than the number of poten-
tial events when factoring in the matching step. Thus, the matching
reduces the complexity of the graph on which the independent set
is calculated massively. Our approach can be applied to spatially
sparse features as well, however, due to relatively small explanati-
ons sets, benefits over existing greedy methods might be limited.

Another important aspect for tracking on space-filling data is the
ambiguity of possible assignments. The matching as well as the in-
dependent set provide the best possible explanation for a feature
which overlaps with more than one other object in the other time
step. In previous work, an explanation for an object might be cho-
sen if the rating is locally optimal and the object is not considered
to be part of any other event anymore. In our approach, all possi-
ble events are enumerated and the best solutions are chosen by the
independent set. For the aforementioned data set, our approach se-
lects events with an average score of more than 80% normalized
volume overlap.

Our current solution is based on the overlap criterion. In future
work we will investigate further options to correlate features. Ano-
ther aspect is the size of the resulting independent set graph. Sin-
ce the explanation set is still based on an enumeration of a power
set, which grows exponentially, we plan to investigate filtering and
thresholding mechanisms to further limit the problem size a priori.
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