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Abstract
In this work we explore evolutionary algorithms for selected a visualization application. We demonstrate its potential using
an example from flow visualization showing promising first results. Evolutionary algorithms, as guided search approach, find
close-to-optimal solutions with respect to some fitness function in an iterative process using biologically motivated mechanisms
like selection, mutation and recombination. As such, they provide a powerful alternative to filtering methods commonly used in
visualization where the space of possible candidates is densely sampled in a pre-processing step from which the best candidates
are selected and visualized. This approach however tends to be increasingly inefficient with growing data size or expensive can-
didate computations resulting in large pre-processing times. We present an evolutionary algorithm for the problem of streamline
selection to highlight features of interest in flow data. Our approach directly optimizes the solution candidates with respect to a
user selected fitness function requiring significantly less computations. At the same time the problem of possible under-sampling
is solved since we are not tied to a preset resolution. We demonstrate our approach on the well-known flow around an obstacle
as case with a two-dimensional search space. The blood flow in an aneurysm serves as an example with a three-dimensional
search space. For both, the achieved results are comparable to line filtering approaches with much less line computations.

Categories and Subject Descriptors (according to ACM CCS): Visualization [Human-centered computing]: Visualization
Techniques—Scientific Visualization

1. Introduction

An evolutionary algorithm is a guided search for an optimum which
is based on the principle of natural selection by Charles Darwin
[Dar59]. It can be used for optimization problems, where an an-
alytic solution does not exist and an exhausting exploration is not
feasible. Thereby, the quality of a small set of candidate solutions is
iteratively improved using mechanisms like selection, mutation and
recombination. Such algorithms have been used in many applica-
tions where it is sufficient to obtain a good, but not necessarily opti-
mal solution in a reasonable time. Examples range from parameter
optimization (e.g., curvature of pipes) [BS93], packing, routing and
scheduling problems to biological modeling. More examples and
in-depth description of building blocks can be found in [Bäc96],
a recent book [KBB∗16] discusses evolutionary algorithms in the
context of computational intelligence. Surprisingly, evolutionary
algorithms have not yet found their way into visualization where
many methods can be formulated as optimization problem where
finding the explicit optimum is not necessarily required.

Geometry-based techniques are one of the most frequently used
methods for flow exploration and analysis [MLP∗10]. When focus-
ing on lines, numerical integration is used to obtain integral curves
i.e., streamlines and path lines. A challenge in this context is to find
the most expressive lines to represent the data, highlighting features
of interest while avoiding clutter. A typically applied approach is

the computation of a high number of candidate lines which are sub-
sequently filtered according to user specified properties.

The filtering can be classified into two categories. First, ex-
plicit filtering which explicitly removes lines from the set not ful-
filling the selected criterion, e.g. directly defined by line predi-
cates [SGSM08] or in a view dependent criterion [LMSC11]. Sec-
ond, implicit filtering which facilitates rendering techniques to em-
phasize lines of interest while keeping all lines. One example is the
work by Günther et al. [GRT13, GRT14] who optimize line trans-
parency with respect to a specific importance criterion. Both ap-
proaches share the disadvantage that they discard or hide a high
percentage of the calculated lines. This is especially unfavorable
in cases where line integration is expensive. Additionally, even a
dense seeding does not guarantee finding all interesting features.

This targeted goal of generating the most expressive lines can be
understood as an optimization problem and suggests the application
of an evolutionary algorithm which we call Evolutionary Lines. As
a proof of concept we demonstrate results for the case of stream-
lines in steady data-sets. The main contributions are

• Introduction of evolutionary algorithms to visualization and
demonstration of their usefulness for flow visualization.

• Presentation of an evolutionary algorithm for optimizing seed
positions for line integration in flow data-sets.

• Discussion of the potential of evolutionary algorithms for other
future applications.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/eurovisshort.20181070

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurovisshort.20181070


W. Engelke, I. Hotz / Evolutionary Lines

(a) (b)

Figure 1: (a) Explicitly filtered line set. The original set was gen-
erated by exhaustive exploration of Ω by integration of 3185 points
located on a two-dimensional sub-domain. After filtering 70 lines
where kept. (b) Result of our evolutionary algorithm after 12 itera-
tions with np = 100 and 70 best shown. For both, filtering (a) and
the evolutionary algorithm (b) the same criterion was used.

2. Evolutionary Lines

Evolutionary algorithms are designed to solve an optimization
problem of the following form.

H = {x ∈Ω|∀x′ ∈Ω : f (x)� f (x′)} (1)

The aim is to find an element x in the search space Ω which opti-
mizes a function f : Ω→ R in Ω. The fitness function f defines a
quality measure for the candidate solutions and a comparison op-
erator � in Ω. Based on this measure a set of initial random candi-
dates is iteratively improved. The main mechanisms used are: Se-
lection - keeping the best candidates; CrossOver - combining the
genome of candidates to generate new offsprings; Mutation - ran-
dom altering of a candidate. The specific implementation of the
building blocks of evolutionary algorithms are highly problem spe-
cific. Additionally, parameters e.g., population size, mutation prob-
ability steer the algorithm.

In the following we consider the visualization task of generat-
ing an expressive set of streamlines for a steady flow data-set with
respect to a given criterion. This goal is comparable with explicit
streamline filtering. In this case the search space Ω is defined by
the streamlines’ seeding domain. The fitness function is defined as
predicate, which can be obtained from the line geometry (e.g., line
length, line curvature, etc), or directly from the flow data-set (e.g.,
velocity magnitude, vorticity, λ2 [JH95]). The Evolutionary Line
algorithm optimizes a set of initial, random candidates. The de-
tails of the algorithm like the encoding of the candidates, selection
method, genetic operators (i.e., mutation, crossover), and a termi-
nation criterion will be described in Section 3.

Figure 1 illustrates a comparison between our evolutionary algo-
rithm and an exhaustive exploration of Ω starting with a dense reg-
ular streamline sampling followed by filtering. Here, our approach
performs less integrations and achieves a better visual result than
the brute-force method.

3. Algorithmic Details

NOTATION The following notation is used throughout the paper.
We refer to a single solution candidate as individual I. The fitness
of a specific individual Ii is referenced as f (Ii). Furthermore, np

of these individuals form the population P. For steering the algo-
rithm’s behavior, percentages for Elite Selection pe, mutation pm,
Crossover pc, and Insertion pi are used with respect to np.

INITIALIZATION During the initialization the population P of
size np is created. Each individual I ∈ P represents one solution
candidate encoded by its genome the seeding position p ∈ R3. The
initial population contains only individuals with random genomes.

EVALUATION During this step the fitness function is evaluated
and assigned to all individuals. With this, we obtain a value f (Ii)
with i ∈ [0 . . .np − 1]. Therefore, we use two different functions,
namely line arc-length and line curvature evaluated on the stream-
line integrated numerically for each individual.

FITNESS-BASED SORTING After the evaluation the list of indi-
viduals is sorted according to their fitness. Subsequent algorithm
steps, such as elite selection, mutation, crossover, and the calcula-
tion of convergence measures rely on an ordered list of individuals.

ELITE SELECTION Keeping the ne best individuals for the next
generation P′ is referred to as elite selection. This ensures that an
already good solution is kept between generations. Individuals are
selected from the ordered list according to Ii with i ∈ [0 . . .ne− 1]
and ne = pe ·np.

CROSSOVER The first genetic operator combines the genome of
n individuals to create n offsprings. In its simplest form n = 2, each
offspring inherits half of each parents’ genetic information. In cur-
rent implementation we do not use the crossover operator since our
genome only contains three coordinates and therefore it would lead
to inserting copies of individuals in the population.

MUTATION The second genetic operator alters each individuals
genome slightly, whereas the probability, the type and strength of
mutation is configurable. In our implementation we add a weighted
displacement vector d ∈ [−1.0,1.0]d to the individuals genome;
here d is the dimension of the search space. Futhermore, we facil-
itate a generation dependent weight which decreases with increas-
ing generation count by a constant factor. This ensures that with
increasing average fitness of the population good solution candi-
dates are less altered. Individuals are selected from the ordered list
according to Ii with i ∈ [nc . . .ne−1] and nc = pc ·np, ne = pe ·np
The parameters are all kept constant throughout the paper.

INSERTION During this step a part of the population is replaced.
Therefore, pi · np individuals in P are replaced by new individuals
when inserted in P′. Similar to the initialization the new individu-
als genome is randomly generated. This genetic diversity ensures
further random exploration of the search space.

4. Experiments

For the demonstration of the effectiveness of the proposed method
two data-sets related to technical and medical flow simulation have
been chosen. At first a simulation of the well-known Kármán Vor-
tex Street is used [CSBI05]. Secondly, an aneurysm simulation
from the CFD Rupture Challenge 2013 [BRB∗15] is used. Be-
sides the different target functions and the constrains the same set-
tings where used for both data-sets and are listed in Section 5.
Throughout this paper the algorithm was configured with np = 100,
pe = 10%, pc = 0%, pm = 45%, pi = 45%
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Figure 2: Five different solutions of our method after 15 iterations for a timestep of the Kármán Vortex Street. Settings and initial conditions
for the algorithm are identical. Images show the area behind the cylinder. Color encodes line arc-length.

KÁRMÁN VORTEX STREET: The data-set represent a simula-
tion of a three-dimensional flow around an obstacle, in our case a
squared cylinder. The left boundary plane represents the inflow and
the right boundary plane the outflow area. The search space Ω is
defined by the two-dimensional inflow plane and the fitness func-
tion is the geometric length of the streamline, which is integrated
until it leaves the domain. This choice is based on the assumption,
that a streamline is longer if passing a vortex.

Figure 1 compares the evolutionary lines with a standard filtering
approach. The result of the new algorithm clearly outperforms the
standard method while computing less than half as much stream-
lines. The flow behavior close to the vortex is better expressed
while still giving some context of the surrounding flow. Since the
optimization is a guided random process it not always converges to
the same result however with a constant quality. Figure 2 illustrates
the variation of the results for identical initial conditions, fitness
function and algorithm configuration.

FLOW IN AN ANEURYSM: CFD CHALLENGE CASE 1: The
Simulation depicts the blood flow within an aneurysm data-set pre-
sented for the CFD Challenge in 2013. Here, complex flow struc-
tures are formed within the aneurysm sack. The search space Ω

is here the entire three-dimensional domain. Streamlines are inte-
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Figure 3: Convergence behavior of the optimization process for the
Kármán Vortex Street. (1) shows the maximum fitness for a dense
seeding with 5000 streamlines. (2) maximum fitness of population.
The average fitness for 10 (3), 50 (4) and 100 (5) percent of the
ordered population are shown in blue colors.

grated in backward and forward direction until they leave the do-
main. An additional termination criterion is a maximum number
of integration steps to avoid numerical issues close to zeros in the
data. Due to the irregular domain streamline length is not an opti-
mal choice as fitness function. Instead the average line curvature is
a good measure to find streamlines passing vortices and has been
used as fitness function.

Figure 4 compares the evolutionary lines with a filtering ap-
proach using line curvature. The dense line set in Figure 4(a) con-
sists of 5000 streamlines of which 97 (1.94%) are kept after fil-
tering as shown in Figure 4(b). In contrast, Figure 4(c) shows evo-
lutionary lines using a population of 100 individuals using 20 it-
erations. With this, we were able to clearly extract the core of the
complex vortex near the center of the aneurysm sack.

5. Analysis

CONVERGENCE: The analysis of the convergence behavior gives
insight into the mode of operation of the evolutionary process. Fig-
ure 3 shows the populations’ fitness value for the Kármán Vortex
Street in dependence of the number of iterations. Plotted are the
maximum fitness (2) in red and three averages over 10%, 50%, and
100% of the population size in blue (3,4,5). The maximum fitness
value achieved using a random dense seeding of 5120 lines has
been plotted as reference in grey (1). The evolutionary algorithm
tops this value already after 12 iterations. The 10% best lines are
converging rapidly against this value. The average fitness of all
lines does never exceed more than half of the maximum value due
to the 45 percent newly generated lines in each iteration. Those
lines can be used as context to the feature lines with the highest
fitness value. A similar behavior but even faster convergence can
be seen for the aneurysm data, Figure 4(d). Here, one can observe
the fast increase in overall fitness already during the first eight iter-
ations. After iteration 18 the fitness of the best 10% is identical to
the maximum fitness.

POPULATION SIZE: The population size is one of the most es-
sential parameters of the algorithm. To understand the influence
of this parameter we have made a study measuring the number of
required iterations to reach a benchmark streamline quality. There-
fore, we let the algorithm run until a specific number of streamlines
with fitness value higher than a given value is reached. Thereby,
we consider the standard filtering approach as a special case with a
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Figure 4: CFD Challenge Case 1: (a) Exhaustive exploration of the search space by seeding 5000 streamlines within the domain. (b)
Resulting set after filtering contains 97 lines. (c) direct optimization of 100 individuals after 20 iterations. (d) Convergence of optimization
process with maximum fitness (1), average fitness of 10 (2), 50 (3) and 100 (4) percent of the ordered population for 35 iterations.

high population size applying one iteration. As a number of stream-
lines we have chosen 14 and the fitness value is set to 80% of the
maximal value in the data-set. The results are plotted in Figure 5.
This plot shows that in the optimal case for a population of 100
an efficiency gain of one order of magnitude can be achieved. The
corresponding images can be found in the supplementary material.

PERFORMANCE: The performance of the evolutionary lines is
dominated by the evaluation of the fitness function, which is the
streamline integration and predicate computation. Thus, a fair com-
parison with standard filtering methods, which also require stream-
line integrations and predicate computations, is the total number of
integrations necessary to reach comparable results, Figure 5.

6. Comparison

META-HEURISTICS: Simulated annealing (SA), evolutionary al-
gorithms (EA), or hill climbing are referred to as meta-heuristics
used if the target function is discrete or the search space very large.
These algorithms aim for finding a close to optimal solution. Hill
climbing as a deterministic process can get stuck in local extrema.
Where in contrast SA and EA accept temporarily worse candidate
during the optimization process. The general difference is the us-
age of a single candidate solution (SA), or a population (EA) which
allows for a faster exploration of the search space, higher flexibility
provided by genetic operators and it is parallelizable.
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Figure 5: Correlation of population size and required streamline
integrations for Kármán Vortex Street. In the optimal case of a pop-
ulaton size of 100 the efficiency gain is one order of magnitude.

STREAMLINE PLACEMENT: Most streamline based methods
use either intelligent placement or selection to find expressive sets.
Typical approaches for selection are either based on similarity mea-
sures [MJL∗13] or information theory [XLS10]. Such methods
have the advantage that they allow for large varieties of visualiza-
tions, including viewpoint dependency [TMWS13] but they require
the pre-computation of large line pools. Placement methods gener-
ally follow different goals and consider mostly seeding points only.
Our method avoids the expensive pre-computation, it can be di-
rectly applied to an unknown data-set and can be parallelized since
the solution candidates do not exchange information.

7. Discussion and Conclusion

With this paper we presented first experiments with an evolution-
ary algorithm in the context of geometry-based flow visualization.
We tested our approach for streamlines in steady vector fields and

carefully analyzed convergence and parameters. While the chosen
examples are simple, they clearly demonstrate the potential of the
approach with efficiency gains up to one order of magnitude. So
far, we did not yet exploit the full power of the framework of evo-
lutionary algorithms, e.g the mechanism of CrossOver which be-
come interesting for complex genomes. For increasing complexity
of the fitness function and genome it is to expect that even higher
efficiency improvements or even solutions that are unfeasible with
classical approaches are achieved. As such we plan to investigate
time-dependent data-sets i.e., optimize sets of path, time, and streak
lines with a four dimensional search space and evaluate useful flow
and line measures which can serve as fitness function for this. A
further interesting field is the optimization of surface structures.

Besides the promising results discussed above we have also ob-
served similar cases which cannot directly be solved within our
framework. The algorithm, in its current form, is targeted towards
finding isolated maxima. As soon as one candidate falls in the
neighborhood of a dominant maximum the candidates from other
less expressed maxima are running the risk of extinction. This
means handling ridges in the fitness function landscape is not
straight forward. We consider it as a challenging task for future
investigations to develop evolutionary methods for the extraction
of extremal structures, e.g., in derived scalar fields like FTLE or
λ2. Finally we will study possibilities for a GPU-based implemen-
tation of our algorithm for handling large population sizes as well
as improve run-time of the optimization process.
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