
Eurographics Conference on Visualization (EuroVis) 2016 Short Paper
E. Bertini, N. Elmqvist, and T. Wischgoll
(Guest Editors)

Using icicle trees to encode the hierarchical structure of source code

I. Bacher1, B. Mac Namee2, J. D. Kelleher1

1Dublin Institute of Technology, Dublin, Ireland
2University College Dublin, Dublin, Ireland

Abstract

This paper presents a study which evaluates the use of a tree visualisation (icicle tree) to encode the hierarchical structure
of source code. The tree visualisation was combined with a source code editor in order to function as a compact overview to
facilitate the process of comprehending the global structure of a source code document. Results from our study show that pro-
viding an overview visualisation led to an increase in accuracy and a decrease in completion time when participants performed
counting tasks. However, in locating tasks, the presence of the visualisation led to a decrease in participants’ performance.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

1. Introduction

Efficiently understanding source code is an important problem in
software engineering [Tel14]. Indeed, previous studies have shown
that understanding source code accounts for more than half of
software development effort [Sta84, Cor89]. Source code contains
many types of relationships and hierarchies, such as the dependen-
cies of packages, the package-class-method-statement hierarchy, or
hierarchies of data structures. Given these particular properties and
the high complexity of source code it is reasonable to consider
how visualisation can facilitate source code comprehension, as it
is recognised that visual representations tap into the capabilities of
the powerful and highly parallel human visual system [Moo09].

A source code editor is a text editor designed specifically for the
writing and editing of source code, which makes it a fundamental
tool for software developers. These editors typically have features,
such as syntax highlighting and pretty printing, which facilitate the
process of viewing, reading, and comprehending source code. This
is done by making the structural and syntactical composition of a
source code document more visible, through the use of indentation,
spaces, line-breaks, colour, and font-face. Previous studies have
shown that the typographic appearance of source code [BM90] and
the indentation style used within source code [MMNS83] can influ-
ence the speed and accuracy of program comprehension. However,
source code documents are frequently too large to be displayed on
a single screen. This introduces the need for scrolling, which can
cause a cognitive burden for the user who must mentally assimi-
late the overall structure of the information space and their loca-
tion within it [CKB09]. While source code editors provide users
with an overview of the package-class-method-statement hierarchy
in a software project, they fall short in providing the user with an
overview of the hierarchical structure of a source code document,

which at the same time encodes the users current location within
the information space. Thus, exacerbating the cognitive burden in-
troduced by scrolling.

Overview is a frequently used notion and design goal in infor-
mation visualisation research and practice. However, it is difficult
to find a consensus on what an overview is. For this work we de-
fine overview with the help of a taxonomy created by Hornbaek
and Hertzum [HH11], as it incorporates the most important aspects
of how the notion of overview is used in information visualisation.
Using the taxonomy [HH11, p. 511] we define an overview as an
awareness of the structure of an information space, acquired by
information reception throughout a task, useful for understanding
with good performance, and provided by a semantically shrunken
dynamic visualisation.

Our research presents a study that evaluates the use of a tree
visualisation that provides the viewer with an overview of the hi-
erarchical structure of a source code document. The goal of the
overview visualisation is to provide a compact representation of a
source code document, which in turn should support software de-
velopers during software development tasks. The main contribu-
tions of this work are: (1) The use of a tree visualisation to provide
an overview of the hierarchical structure of a source code docu-
ment. (2) An evaluation of the visualisations ability to aid source
code comprehension by means of a between group experiment.

2. Related work

Hierarchies are a common and powerful tool for structuring rela-
tional information. A tree structure or tree diagram is an appropri-
ate way of representing the hierarchical nature of information in

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/eurovisshort.20161168

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurovisshort.20161168


Bacher et al. / Using icicle trees to encode the hierarchical structure of source code

graphical form. Many techniques have been developed for the dis-
play of hierarchically structured information. Treevis.net [Sch11],
a web based survey and overview, includes more than 180 differ-
ent tree visualisation techniques. These techniques can be split into
two categories: implicit and explicit tree visualisations [SHS11].
Explicit tree visualisations, such as the node link diagram (Figure
1), show parent-child relations as straight lines, arcs, or curves. Im-
plicit tree visualisation, such as tree-maps (Figure 2) and icicle trees
(Figure 4), represent parent-child relations by the use of juxtaposi-
tioning, which can lead to a more space efficient layout. As the aim
of this work is to provide a compact overview visualisation of the
hierarchical structure of a source code document, we will focus on
implicit tree visualisations.

Figure 1: Node-link diagram

Figure 2: Tree-map Figure 3: Cicular tree-map

Figure 4: Icicle tree Figure 5: Sunburst diagram

Tree-maps [JS91] (Figure 2) provide an overview of an entire
hierarchy and are generated by recursively slicing the available dis-
play space into smaller boxes for each level of the hierarchy, using
horizontal and vertical slicing algorithms. Hierarchical relations are
encoded by the use of nesting, thus all elements of a hierarchy are
able to be displayed in the available display space. Circular tree-
maps [WWDW06] (Figure 3) are an extension of the tree-maps.
Instead of boxes, the technique uses nested circles, which makes
it easier to see groupings and hierarchical organisation. Sunburst
diagrams [SCGM00] (Figure 5) rely on a circular or radial display
to represent hierarchy. Nested discs or portions of disks are used
to compactly visualise each level of a hierarchy, where the deep-
est element in the hierarchy is located the furthest from the center.
Icicle trees (adjacency diagrams) [HBO10] (Figure 4) are largely

similar to node-link diagrams, but instead of a node-link construct,
they employ an adjacency-area method where a series of juxtaposed
rectangles indicate rank. Icicle trees are able to adopt either a verti-
cal or horizontal layout, thus making them highly adaptive to space
and layout constraints.

While, to the best of our knowledge, no experiments have been
done looking explicitly at the use of tree visualisations in the con-
text of providing an overview of the hierarchical structure of a
source code document, several experiments have been done in the
area of information visualisation to evaluate the usability of various
tree visualisation techniques.

Cawthon and Moere [CM07] investigated the results of an on-
line survey of 285 participants, measuring both perceived aesthetic
as well as the efficiency and effectiveness of retrieval tasks across
a set of 11 different tree visualisation techniques. Their findings
show that sunburst diagrams and icicle trees performed highest in
terms of correct responses. Stasko et al. [SCGM00] conducted two
empirical studies of two tree visualisation techniques for depict-
ing file hierarchies. These techniques were tree-maps and sunburst
diagrams. In both studies participants were given a series of tasks
where all of the tasks required a participant to find or identify a
particular file or directory, or to make a comparison of two files or
directories. Results indicated that the sunburst method aided task
performance more frequently, both in correctness and in time, par-
ticularly for larger hierarchies. This was due to the fact that the
sunburst method explicitly portrayed the structure of a hierarchy,
which appeared to be a primary contributor to its performance.
Overall, participants in both studies preferred the sunburst method.
Barlow and Neville [BN01] conducted a study in the context of
decision tree analysis that compared node-link diagrams to three
alternative tree visualisations: icicle tree, tree-map, and tree-ring.
The study evaluated the ability of tree visualisations to communi-
cate a decisions tree’s topology and support for common decision
tree analysis tasks. Decision trees depict rules for dividing data into
groups and the predictive model created by the decision tree sug-
gests which variables and relationships are important. Overall the
tree-map was uniformly disliked by the participants and their per-
formance while using it was worse than with the other tree visuali-
sations. Results suggest that the icicle tree is equivalent to or better
than the node-link diagram and tree-ring in most tasks. Moreover,
the authors also mention that certain tasks favoured the icicle tree,
while others the tree-ring.

The studies described above illustrate that many different tree vi-
sualisation techniques can be used to depict the hierarchical struc-
ture of an information space. Although tree-maps are well known,
this method falls short in conveying the global structure of a hier-
archy as non-leaf nodes are not shown [War13, p. 229]. Thus tech-
niques, such as sunburst or icicle trees, which portray the structure
of a hierarchy through juxtaposition, are more suitable for overview
visualisations. For this work, we explore the use of an icicle tree for
encoding the hierarchical structure of source code, as we believe
this technique best satisfies the design rational stated in section 3.

3. Overview visualisation approach

Figure 6 illustrates our prototype interface, which is composed of
an icicle tree and a source code editor. Nodes within the icicle tree

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

98



Bacher et al. / Using icicle trees to encode the hierarchical structure of source code

encode the hierarchical structure of the HTML document, located
in the source code editor, and are represented as graphic prim-
itives. Parent-child relationships are encoded by horizontal adja-
cency, meaning that child nodes are placed to the right of their par-
ent. Depending on which structural element the text cursor is lo-
cated within the source code editor, the corresponding node within
the icicle tree is highlighted. The icicle tree’s layout is calculated
using a space-filling algorithm, in order to use the available display
space and avoid scrolling. However, this introduces a limitation that
at a certain number of nodes, the visualisation becomes too packed
to comprehend. This limitation was taken into consideration, as our
experiment was explicitly designed to evaluate the performance of
the icicle tree for different levels of source code complexity, which
is measured using metrics such as lines of code and total number of
nodes. Further details can be found in section 4.

Figure 6: Prototype interface composed of an overview visualisa-
tion and source code editor

In order to help visualisation designers and researchers, sev-
eral design guidelines and principles have been proposed [Wat05,
PBG98, PdQ∗06, SHS11]. While all of these design guidelines and
principles are applicable, we felt that a subset correspond par-
ticularly well for the purpose of visualising hierarchical relations
within source code. These can be described as follows: Language
specific, Order adjacency, Awareness, Interaction, and Scalability

Language specific [SHS11]: Many different types of computer
languages exist such as Java, C#, JavaScript, HTML, and XML,
each containing their own set of relations and hierarchies. For ex-
ample, Java contains a Package-File-Class-Method-Statement hier-
archy, while JavaScript is more flexible and does not impose this
strict hierarchical structure. The goal of the overview visualisation
is to provide the viewer with an overview of the hierarchical struc-
ture of a source code document. Hence, depending on which com-
puter language the source code is written in, different hierarchical
structures can be extracted. For our work, HTML was the language
of choice, because it imposes a very strict hierarchical structure.

Order Adjacency [Wat05]: In the context of source code,
specifically HTML source code, the ordering of the structural el-
ements is particularly important as it specifies the rendering of the
document to some extent. Thus, this natural ordering should be pre-
served in order not to confuse the viewer and add mental burden.
We felt that the icicle tree best fulfils this requirement as the it

provides a natural projection of the ordering that aligns with the
indentation of the code. Other implicit tree visualisations such as
tree-maps, sunburst diagrams, and circular tree maps were also con-
sidered. However, the tree-map and circular tree map do not impose
any type of ordering, and the sunburst technique uses a clockwise
ordering. Hence, the icicle tree was the tree visualisation of choice.

Awareness [PdQ∗06]: The goal of an overview visualisation is
to provide a viewer with an overview of an information space, and
show their current location within the information space. The ici-
cle tree displayed in Figure 6 encodes the hierarchical structure of
a source code document, hence, the viewer should be informed in
which structural element they are currently located in within the
information space. We identify the structural element that is cur-
rently of interest to the user based on the location of the cursor in
the source code editor. The corresponding node is then highlighted
in the icicle tree. Figure 6 illustrates this feature, as the cursor is
currently located on line 136 in the source code editor, which con-
tains a header element. Line number 136 to 138 are highlighted
as this corresponds to the opening and closing part of the header
element. The corresponding node is highlighted in the icicle tree.

Interaction [PBG98, PdQ∗06]: Users should be able to use the
overview visualisation to navigate though the source code located
in the source code editor. The interaction should allow the user to
interact with the overview visualisation to change the point of fo-
cus of the source code editor. Allowing the user to move rapidly
to any location within the information space. In the current proto-
type (Figure 6), users are able to click on a node, within the ici-
cle tree in order to navigate to the line of code which corresponds
to the start of the structural element. However, in order to control
for interaction effects in our evaluation experiments, no additional
interactions were implemented. Future studies could include addi-
tional interaction options, which could be used to improve overall
comprehension and understanding.

Scalability [PBG98]: In order to obtain a broad level of under-
standing of how many structural elements and hierarchical levels
a typical HTML source code document is composed of, a HTML
web-scraper was implemented. The web-scrapper queried the top
10.000 websites, ranked based on their monthly traffic. Results
show that the median nesting level is 13 and the median number
of nodes is 718. Our evaluation was designed to test the icicle tree
across a range of source code documents with different levels of
complexity with these median values included within the range of
the complexity of our test documents.

4. Evaluation

The experiment followed a between group design and was imple-
mented as a web application. Two versions of the application were
hosted online, where the overview visualisation was present in one,
while omitted in the other. 39 subjects participated in the experi-
ment, of which 25 were currently enrolled in a computer science,
web development, or software engineering course. 17 participants
completed the experiment using the prototype with the visualisa-
tion, while 22 completed the experiment using the prototype with-
out the visualisation.

The experiment consisted of four phases and took approximately

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

99



Bacher et al. / Using icicle trees to encode the hierarchical structure of source code

30 minutes to complete. During the first phase participants were
presented with definitions for terms such as node, child node and
ancestor node in order to become accustomed to the wording used
within the experiment. In the second phase the participants were
shown an image of the prototype, which included several annota-
tions. The annotations were used to describe functionality such as
a text search feature, or to describe the visualisation. In the third
phase participants were given three source code documents and
for each document they were asked to answer a set of questions.
Each participant was presented questions and source code docu-
ments in random order. During this phase question accuracy and
response time were gathered. The fourth phase consisted of a sur-
vey where the participants were asked to respond to general ques-
tions including programming experience, age group, and gender.
Participants that completed the experiment with the visualisation
were presented with two additional questions in the survey, which
required them to rate the usefulness of the visualisation.

Three HTML source code documents were used and can be dif-
ferentiated based on their complexity, which is measured using
lines of code (loc), total nodes, and nesting levels. The easy source
code document consisted of 47 loc, 8 nesting levels, and 30 nodes.
The medium source code fragment consisted of 247 loc, 6 nesting
levels, and 167 nodes. The hard source code fragment consisted
of 2,787 loc, 13 nesting levels, and 1,605 nodes. Participants were
asked to answer a series of questions for each source code docu-
ment. The questions can be categorised into two types depending
on the task the participant had to perform, counting or locating. Ex-
amples of the questions are: How many child/descendant/leaf nodes
does node “X” contain and what node is the closest common an-
cestor of nodes “X” and “Y” (where, “X” and “Y” were replaced
with unique identifiers that identified nodes within the source code
using the HTML id attribute, e.g. id = “ZBHRB”).

5. Results and discussion

In the experiment 39 participants completed 819 questions where
accuracy and response time was recorded for each question. Figures
7 and 8 depict the percentages of correct answers for counting and
locating tasks corresponding to each source code fragment.

In regards to participant accuracy, an interesting pattern emerged
when comparing questions based on task type. For questions that
involved counting nodes, accuracy seemed to increase when the
overview visualisation was present (Figure 7) for all three source
code documents. This was surprising, as we only expected partic-
ipants to have a higher accuracy score in the medium source code
document due to the fact that the easy source code document only
consisted of 30 nodes, and the hard source code document tested
the limitations of the space-filling layout algorithm used for the
overview visualisation. We suggest that this increase in accuracy is
due to the fact that the visualisation fundamentally encodes struc-
tural elements of source code, thus making them easier to count.
For questions which involved locating nodes, accuracy seemed to
decrease when the overview visualisation was present (Figure 8).
However, we believe that this could be improved by adding ad-
ditional encodings to the overview visualisation, such as the use
of colour for depicting previously visited nodes. In terms of ques-
tion completion times, participants were generally faster using the

Figure 7: Counting task accuracy (A - without vis, B - with vis)

Figure 8: Locating task accuracy (A - without vis, B - with vis)

overview visualisation, however, this also led to a decrease in accu-
racy in certain questions. This is an interesting finding, as it sug-
gests that using an inappropriate visualisation can actually have
a detrimental effect on task performance, while at the same time
giving participants false confidence that they are performing well.
These results can be used as a first step towards illustrating the
benefits and shortcomings of the use of tree visualisations in the
context of providing an overview of the hierarchical structure of a
source code document.

6. Conclusion

This work presented a study, which evaluated the use of a tree vi-
sualisation for encoding the hierarchical structure of source code,
in order to facilitate source code comprehension. This is a first step
towards providing empirical evidence on the usefulness of tree vi-
sualisations as overviews in combination with source code editors.
Future work directions include evaluating similar tree visualisa-
tions, such as sunburst diagrams, using existing results as bench-
marks. Additional interaction techniques such as zooming could
also be added to the tree visualisation in order to support larger
source code documents. Furthermore, different encodings could be
added to the tree visualisation in order to make the viewer aware
of previously visited nodes. This would also correspond with com-
ments received from participants, as most did note that additional
functionality would have been useful. The prototype is available on
the Internet from http://tiny.cc/no1ray.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

100

http://tiny.cc/no1ray


Bacher et al. / Using icicle trees to encode the hierarchical structure of source code

References
[BM90] BAECKER R. M., MARCUS A.: Human factors and typography

for more readable programs. Addison-Wesley, Reading, Mass, 1990. 1

[BN01] BARLOW T., NEVILLE P.: A comparison of 2-D
visualizations of hierarchies. In IEEE Symposium on In-
formation Visualization (2001), IEEE, pp. 131–138. URL:
http://doi.ieeecomputersociety.org/10.1109/
INFVIS.2001.963290. 2

[CKB09] COCKBURN A., KARLSON A., BEDERSON B. B.: A review
of overview+detail, zooming, and focus+context interfaces. ACM Com-
put. Surv. 41, 1 (Jan. 2009), 2:1–2:31. URL: http://doi.acm.
org/10.1145/1456650.1456652, doi:10.1145/1456650.
1456652. 1

[CM07] CAWTHON N., MOERE A. V.: The effect of aesthetic on
the usability of data visualization. In Information Visualization,
2007. IV’07. 11th International Conference (2007), IEEE, pp. 637–
648. URL: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=4272047. 2

[Cor89] CORBI T. A.: Program understanding: Challenge for the 1990s.
IBM Systems Journal 28, 2 (1989), 294–306. 1

[HBO10] HEER J., BOSTOCK M., OGIEVETSKY V.: A tour through the
visualization zoo. Commun. Acm 53, 6 (2010), 59–67. 2

[HH11] HORNBÆK K., HERTZUM M.: The notion of overview in in-
formation visualization. International Journal of Human-Computer
Studies 69, 7 (2011), 509–525. URL: http://linkinghub.
elsevier.com/retrieve/pii/S1071581911000322, doi:
10.1016/j.ijhcs.2011.02.007. 1

[JS91] JOHNSON B., SHNEIDERMAN B.: Tree-maps: A space-filling ap-
proach to the visualization of hierarchical information structures. In
Visualization, 1991. Visualization’91, Proceedings., IEEE Conference
on (1991), IEEE, pp. 284–291. URL: http://dx.doi.org/10.
1109/VISUAL.1991.175815. 2

[MMNS83] MIARA R. J., MUSSELMAN J. A., NAVARRO J. A., SHNEI-
DERMAN B.: Program indentation and comprehensibility. Communica-
tions of the ACM 26, 11 (1983), 861–867. URL: http://dl.acm.
org/citation.cfm?id=358437. 1

[Moo09] MOODY D.: The "Physics" of Notations: Toward a Scien-
tific Basis for Constructing Visual Notations in Software Engineer-
ing. IEEE Transactions on Software Engineering 35, 6 (Nov. 2009),
756–779. URL: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5353439, doi:10.1109/
TSE.2009.67. 1

[PBG98] PETRE M., BLACKWELL A., GREEN T.: Cognitive questions
in software visualization, 1998. 3

[PdQ∗06] PETRE M., DE QUINCEY E., ET AL.: A gentle
overview of software visualisation. PPIG News Letter (2006), 1–
10. URL: http://www.ppig.org/sites/default/files/
2006-Petre.pdf. 3

[SCGM00] STASKO J., CATRAMBONE R., GUZDIAL M., MCDONALD
K.: An evaluation of space-filling information visualizations for depict-
ing hierarchical structures. International Journal of Human-Computer
Studies 53, 5 (2000), 663–694. URL: http://linkinghub.
elsevier.com/retrieve/pii/S1071581900904208, doi:
10.1006/ijhc.2000.0420. 2

[Sch11] SCHULZ H.-J.: Treevis. net: A tree visualization reference.
Computer Graphics and Applications, IEEE 31, 6 (2011), 11–15. 2

[SHS11] SCHULZ H.-J., HADLAK S., SCHUMANN H.: The design space
of implicit hierarchy visualization: A survey. Visualization and Com-
puter Graphics, IEEE Transactions on 17, 4 (2011), 393–411. 2, 3

[Sta84] STANDISH T. A.: An essay on software reuse. Software Engi-
neering, IEEE Transactions on, 5 (1984), 494–497. 1

[Tel14] TELEA A. C.: Data visualization: principles and practice. CRC
Press, 2014. 1

[War13] WARE C.: Information visualization: perception for design,
3rd ed. Interactive technologies. Elsevier, 2013. 2

[Wat05] WATTENBERG M.: A note on space-filling visualizations and
space-filling curves. In Information Visualization, 2005. INFOVIS 2005.
IEEE Symposium on (2005), IEEE, pp. 181–186. 3

[WWDW06] WANG W., WANG H., DAI G., WANG H.: Visualization of
large hierarchical data by circle packing. In Proceedings of the SIGCHI
conference on Human Factors in computing systems (2006), ACM,
pp. 517–520. URL: http://dl.acm.org/citation.cfm?id=
1124851. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

101

http://doi.ieeecomputersociety.org/10.1109/INFVIS.2001.963290
http://doi.ieeecomputersociety.org/10.1109/INFVIS.2001.963290
http://doi.acm.org/10.1145/1456650.1456652
http://doi.acm.org/10.1145/1456650.1456652
http://dx.doi.org/10.1145/1456650.1456652
http://dx.doi.org/10.1145/1456650.1456652
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4272047
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4272047
http://linkinghub.elsevier.com/retrieve/pii/S1071581911000322
http://linkinghub.elsevier.com/retrieve/pii/S1071581911000322
http://dx.doi.org/10.1016/j.ijhcs.2011.02.007
http://dx.doi.org/10.1016/j.ijhcs.2011.02.007
http://dx.doi.org/10.1109/VISUAL.1991.175815
http://dx.doi.org/10.1109/VISUAL.1991.175815
http://dl.acm.org/citation.cfm?id=358437
http://dl.acm.org/citation.cfm?id=358437
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5353439
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5353439
http://dx.doi.org/10.1109/TSE.2009.67
http://dx.doi.org/10.1109/TSE.2009.67
http://www.ppig.org/sites/default/files/2006-Petre.pdf
http://www.ppig.org/sites/default/files/2006-Petre.pdf
http://linkinghub.elsevier.com/retrieve/pii/S1071581900904208
http://linkinghub.elsevier.com/retrieve/pii/S1071581900904208
http://dx.doi.org/10.1006/ijhc.2000.0420
http://dx.doi.org/10.1006/ijhc.2000.0420
http://dl.acm.org/citation.cfm?id=1124851
http://dl.acm.org/citation.cfm?id=1124851

