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Abstract
Visualizing low-dimensional non-linear manifolds underlying high-dimensional data is a challenging data analysis prob-
lem. Different manifold visualization methods can be characterized by the associated definitions of proximity between high-
dimensional data points and score functions that lead to different low-dimensional embeddings, preserving different features
in the data. The geodesic distance is a popular and well-justified metric. However, it is very hard to approximate reliably from
finite samples especially between far apart points. In this paper, we propose a new method called Minimap. The basic idea is to
approximate local geodesic distances by shortest paths along a neighborhood graph with an additional penalizing factor based
on the number of steps in the path. Embedding the resulting metric by Sammon mapping further enhances the local structures
at the expense of long distances that tend to be less reliable. Experiments on real-world benchmarks suggest that Minimap can
robustly visualize manifold structures.

Categories and Subject Descriptors (according to ACM CCS): I.4.10 [Image Processing and Computer Vision]: Image
Representation—Multidimensional

1. Introduction

Many high-dimensional data sets can be characterized by low-
dimensional, locally linear but globally non-linear structures, i.e.,
manifolds. Examples include image, audio, and video data as well
as many scientific data sets such as various sources of genomics
and physics data. In many of these instances, conventional linear
approaches such as principal component analysis (PCA), are insuf-
ficient due to non-linearities between the intrinsic structure of the
manifold and the high-dimensional representation in the observed
(ambient) space, see e.g. [LV07].

A large number of non-linear dimensionality reduction meth-
ods have been proposed. Among these methods, Isomap is a rep-
resentive one. Instead of using the Euclidean distance, Isomap is
based on approximating geodesic distance along the manifold. Ex-
amples of successful applications of Isomap include visualization
of biomedical data [HILM09] and head pose estimation [RSH02].
However, Isomap is vulnerable to problems causes by “short-cuts”
between points lying on different parts of the manifold [BST∗02].
These problems are more severe for points that are far apart since
the paths connecting them traverse through many intermediate
points, each of which increases the inaccuracy.

Another successful approach is called neighborhood embedding
(NE). It is based on a definition of proximity in terms of a probabil-
ity measure defined by the pairwise Euclidean distances. The em-
bedding is driven by a divergence measure that encourages preser-

vation of local structure (short distances) at the expense of the
global structure (long distances). A third idea, underlying a recent
manifold clustering method [YHD∗12], is to define proximities in
terms of random walks instead of shortest paths. In order to retain
locality, the random walks are adjusted by an attenuation factor that
places more weight on walks with a small number of steps than on
walks with many steps. This reduced the problems associated with
Isomap when dealing with paths with a large number of steps.

In this paper, we try to combine the advantages of these three
approaches. We argue that a combination of geodesic distance de-
fined using shortest paths penalized by an attenuation factor that
places more weight on paths with a small number of steps and a
score function that leads to an embedding that focuses on the local
structure, leads a robust manifold visualization. We demonstrate
the proposed method, which we call Minimap (it emphasizes the
small detail in the mapping), on common real-world benchmarks.
The advantages of the method are seen both visually as well as in
terms of a numerical score measuring separability.

The remainder of this paper is organizes as follows. We review
relevant approaches related to our method in Sec. 2. In Sec. 3, we
provide justification for the use of a limited number of steps of
geodesic distance, and describe our Minimap method in detail. Ex-
perimental results are presented in Sec. 4.
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2. Preliminaries

We briefly present related previous methods more formally in order
to introduce the building blocks of our method in the next section.
Given a set of multivariate data points {x1,x2, ...,xn} in an ambient
space RM , we denote by D a matrix of pair-wise proximities (or
similarities), so that the elements of the matrix di j represent the
proximity between points xi and x j. The definition of proximity
is an important element of the method. An embedding of the data
onto a lower-dimensional space, Rm, is a mapping xi 7→ yi ∈ Rm for
i = 1, ...,n such that the similarities in the low dimensional space
δi j approximate the proximities di j.

Dimension reduction techniques can be divided into several cat-
egories depending on one hand on whether the proximities are lin-
ear or non-linear in the distance between the points in the ambient
space and on the other hand on whether they aim to preserve global
or local structures [LV07].

MDS. Multidimensional Scaling (MDS) [CC00] is a linear, global
structure preserving method. Both di j and δi j are commonly mea-
sured by Euclidean distance, di j = ‖xi−x j‖2, δi j = ‖yi−y j‖2. The
mapping is optimized by minimizing the score function ∑i j(di j−
δi j)

2. In practice, the mapped coordinates yi can be obtained by
finding eigenvectors of the similarity matrix using singular value
decomposition.

Due to the squared distance used in the MDS score function,
the importance of larger distances tends to be exaggerated com-
pared to shorter distances. This can be rectified by the use of Sam-
mon mapping [Sam69]. The idea is to assign each di j an associated
weight wi j that emphasizes small values of di j . The score function
becomes ∑i j

1
wi j

(di j−δi j)
2. Usually the weight is given in the form

wi j ∝ d−k
i j where k = 1 or k = 2. It has been shown that in many

applications, Sammon mapping leads to improved local structure
preservation, see e.g. [Ten98], [Ver06].

Isomap. Isomap [TDSL00] differs from MDS by using geodesic
distance to compute pairwise input-space distances rather than sim-
ple Euclidean distances. To approximate the geodesic distances, a
neighborhood graph is first constructed by connecting each point to
its k nearest neighbours (in Euclidean distance). The geodesic dis-
tance is then obtained by computing the shortest path xi to x j along
the neighborhood graph. The resulting geodesic distances are used
to compute an embedding by MDS.

Yang [Yan04] also proposd a variant of Isomap where the MDS
step is replaced by Sammon mapping in order to emphasize the
local structure. However, we have observed that the variant is not
competitive wrt. other existing techniques such as t-SNE (see be-
low) or in fact even standard Sammon mapping in the benchmarks
we use.

t-SNE. t-SNE [VdMH08] is a recent nonlinear, local structure pre-
serving method that has become a popular visualization technique.
t-SNE preserves similarities between points using a probabilistic
formulation. It first computes a conditional probability distribution

using a Gaussian kernel as follows:

pi| j =
exp(−||xi− x j||2/2σ

2
i )

∑k 6=i exp(−||xi− xk||2/2σ2
i )

where pi j stands for the probability of point xi to be a neighbour of
point x j in the high dimensional space. In the desired low dimen-
sional space, the same is done but the kernel is changed to Student’s
t-kernel.

qi, j =
(1+ ||yi− y j||2)−1

∑k 6=l(1+ ||yk− yl ||2)−1

t-SNE measures the distance between these two distributions by
the Kullback-Leibler (KL) divergence. Due to the properties of the
KL-divergence, t-SNE pays more attention to short distances than
methods such as MDS. This is further emphasized by the heavy tail
property of the t-distribution.

3. The Minimap method

Let us first motivate the choices we make in designing a new di-
mension reduction and visualization method. The main goal of the
method is to quickly gain understanding of the coarse structure of a
large, high-dimensional dataset. We particularly focus on preserv-
ing the identity of locally compact subgroups, or clusters, that may
exist in the data, even though we do not assume this to be the case.

3.1. Proximity by random walk

To illustrate different proximity measures, L. Yang [Yan04] and
Z. Yang et al. [YHD∗12] consider an idealized situation where the
neighborhood graph should be a block-diagonal matrix as shown
in Figure 1(a). In the matrix, rows and columns corresponding to
instances in the same cluster should have large values whereas en-
tries corresponding to instances in different clusters should have
low values.

If the similarities are defined directly in terms of a k-nearest
neighbor graph, the similarities between non-neighboring pairs are
set to zero. Figure 1(b) shows an example of a neighborhood graph
built by symmetrical 5-nearest neighbors. As we can see, compared
to the ideal case, this matrix is very sparse, i.e., not all pairs of in-
stances in the same cluster are connected.

An alternative way to measure proximity is to use random walks
as proposed by [YHD∗12]. Denote Q = D−1/2SD−1/2 the nor-
malized similarity matrix, where D is diagonal matrix with Dii =

∑ j Si j. We can then assign a decaying weight α∈ (0,1) to each step
so that each subsequent step has less effect on the end result. In each
step, the proximity is increased by (αQ) j, where j represents the
jth step. In the limit j→∞, we get S′ =∑

∞
j=0(αQ) j = (I−αQ)−1.

To compute S′, a matrix inverse operation is required which is of
complexity O(n3), which may be impractical for large matrices.

3.2. Proximity by directed walk

Inspired by the random walk idea, we propose a novel variant of lo-
cal geodesic distance as the proximity measure. First, to avoid the
accumulation of approximation error along long geodesic paths, we
adapt the idea of an attenuation factor on each step of the walk from
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Figure 1: Illustration of similarity graphs between handwritten dig-
its 1 & 2 from MNIST dataset: Left: the correct clusters in the data,
Middle: symmetrized 5-NN graph, Right: constructed graph after
three steps of directed walk.

Z. Yang et al.. However, instead of considering random walks orig-
inating from point xi, many of which are irrelevant when the target
is point x j , we consider a walk directed toward x j. The selected
path is the one that has the least weighted distance where the edge
lengths are magnified as a function of the number of steps on the
path. This can reduce the approximation error by focusing on paths
with fewer steps.

In practice, a simple and robust heuristic is to assign equal prox-
imity to all paths with no more than L steps and to ignore all paths
with more than L steps. This way, the proximity matrix only de-
pends on local connectivity within a radius of L steps. The con-
structed proximity matrix with L = 3, Fig. 1(c), is much denser
than the 5-nearest neighbor graph. Another key benefit compared
to computing the full geodesic distance, including paths with any
number of steps, is computational efficiency.

Computing all pairwise geodesic distance takes O(kN2 logN)
by using Dijkstra’s algorithm, while local geodesic distances up
to paths with L steps can be implemented using only O(kLN). For
each point, we store its k nearest neighbors in a dictionary structure.
Then we expand a point’s dictionary using depth-limited breadth-
first search. After L expansions, we can get all neighbours that can
be connected with this point. Assuming that dictionary look-up and
insertion operations can be implemented in O(1) time leads to the
claimed time complexity O(kLN).

3.3. The Minimap procedure

We are now ready to piece things together to complete the Mini-
map method. The method consists of three stages. First, the prox-
imity matrix D is populated by letting the proximity between points
reachable by short directed walks be equal to a constant λ, as de-
scribed in the previous subsection. Second, the remaining proxim-
ities between points for which a short walk doesn’t exist, are de-
fined in order to complete the matrix. Here we use another constant
greater than λ. The ratio between the two constants turns out to
be a critical choice. We have observed that no fixed constant inde-
pendent of the size of the problem is suitable in all situations. The
reason for this is that as the size of the data set grows, the num-
ber of unconnected points grows much faster than the number of
connected points, and the importance of the connected points van-
ishes unless their relative weight is increased accordingly. Hence,
we propose the default choice of δi j = λ = log2

10(n)/n, where n is

the number of data points, for points connected by a short walk,
and the choice δi j = 1 for points unconnected by a short walk.

The third and final stage of Minimap is the embedding. For the
reasons outlined above, we adopt Sammon mapping as the embed-
ding method. Note that letting λ decrease as the sample size grows
implies that the weight wi j = d−k

i j assigned to the distances between
connected points increases with the sample size. Another heuristic
choice that we found out to be useful is to first run MDS for 10
iterations with weights given by w−2

i j to get the rough structure ini-

tialized, and then to switch to weights w−1
i j until convergence. As

with the t-SNE method, the embedding stage is the computational
bottleneck.

4. Experiments

Datasets. Here we show experimental results on three datasets:
i) The Coil-20 dataset is a collection of grayscale images of 20
different objects. For each object, 72 pictures were taken in dif-
ferent orientations. The objects are uniformly scaled to fit within
a 128× 128 bounding box. ii) The Umist face dataset is another
collection of grayscale images, consisting of a total of 575 images
of 20 different persons, each represented as a 112× 92 pixel im-
age. iii) The USPS digits dataset contains images of handwritten
digits. Each image is of size 16× 16. Here we used a subset con-
taining the digits 2, 4, 6, 8. All datasets are used directly without
any preprocessing.

Experiment setup. In the experiments, we compute results using
Isomap, t-SNE, and our Minimap method. For Isomap and t-SNE
we use the default settings. For Minimap we limit the short walks
to L = 4 steps and k = 7 for defining the k-nearest neighbor graph.
(Due to restricted space, we omit a sensitivity analysis showing that
these choices are not critical.) The other settings were as described
above.

Figure 2 presents the mapping results of different methods on
the three datasets. To measure the projection results numerically,
we the use the standard adopted by [EV11], i.e., the percentage of
the k = 5 nearest neighbours from the same class of points (defined
in each data set as the set of points corresponding to a single object,
person, or digit).

In both the Coil-20 (top) and Umist (middle) data sets, the
visualized points represent images of objects shown from differ-
ent angles, and hence, it is natural that they form either circular
or linear structures parametrized by the angle. In the Coil-20
data, the t-SNE method captures some of the circular structures but
misses most of them. In the Umist data, some of the linear struc-
tures, each of which is shown in a single color, are broken up by
t-SNE. In both cases, Isomap provides an inferior result, but Mini-
map performs well. In the USPS data, none of the methods are able
to extract further structure than the differences between the clusters
corresponding to different digits.
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Isomap t-SNE Minimap

Figure 2: Visualizations of three data sets (from top to bottom) Coil-20, Umist, USPS obtained by Isomap (left column), t-SNE (middle),
and our Minimap method (right). Ground truth is shown in different colors. Accuracy is showed at the top right corner of each panel.
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