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Abstract

We have created the Neurostimulation Uncertainty Viewer (nuView or νView) tool for exploring data arising from deep brain
stimulation (DBS). Simulated volume of tissue activated (VTA), using clinical electrode placements, are recorded along with
patient outcomes in the Unified Parkinson’s disease rating scale (UPDRS). The data is volumetric and sparse, with multi-value
patient results for each activated voxel in the simulation. νView provides a collection of visual methods to explore the activated
tissue to enhance understanding of electrode usage for improved therapy with DBS.

Categories and Subject Descriptors (according to ACM CCS): J.3 [Computer Applications]: Life and Medical Sciences—Health

1. Introduction

Deep brain stimulation (DBS) is an established therapy for the
treatment of Parkinson’s disease (PD) and shows great promise for
the treatment of several other disorders. However, while the clinical
analysis of DBS has received great attention, a relative paucity of
quantitative techniques exists to define the optimal surgical target
and most effective stimulation protocol for a given disorder.

There is broad agreement that the effects of DBS for PD patients
are critically dependent on stimulation location, and there has been
growing recognition that analysis of previously implanted patients
can be used to predict outcomes for future patients if three impor-
tant factors are taken into account [BCH∗11]. First, DBS param-
eters and electrode location(s) act synergistically in each patient
and together they define the spread of stimulation to surrounding
neural structures. Second, there is evidence to suggest that the opti-
mal stimulation target of DBS may not be the subthalamic nucleus
(STN) itself, but rather nearby structures. Third, there is substantial
variability among PD patients with regard to the anatomical regions
that are affected during DBS.

We are currently developing the Neurostimulation Uncertainty
Viewer (nuView or νView) tool for visualizing the results of the
computational volume tissue activated (VTA) with regard to patient
outcome. In the context of DBS, the VTA is defined as the threshold
of voltage in brain tissue causing an axonal activation [BCHM07].
The goal of νView is to both directly explore the simulation results,
helping scientists design and troubleshoot experiments, and to help
understand the relationship of electrode placement and settings in
the context of DBS clinical efficacy. The challenges to this goal

stem mainly from the complexity of the data; we are given multiple
patient scores for each voxel. The structure of the data is inherently
difficult; the spatial domain of the data is 3D, so simply displaying
the data causes occlusion and clutter. Indicating further attributes
within the 3D context is a formidable challenge. To address this
issue, we have created νView to experiment with the collection of
visualization techniques, including three-dimensional spatial dis-
plays, as well as the incorporation of information visualization ap-
proaches, to find meaningful visual representations.

The broader goal of this work is to develop visualization tech-
niques that can concisely express the nature of the uncertainty
within this type of complex data for domain scientists and health
care professionals alike. The main contributions of this work stem
from the use of multiple visualization approaches to get a sense of
the uncertainty in the data. Due to the complexity of the data and
the domain, multiple views are employed to allow the user to ex-
plore different characteristics of the data. Each visual interface is
designed to highlight specific aspects of the uncertainty within the
data display, and interactions within a specific display are linked, as
appropriate, to the other views. While each specific view is limited
in its novelty for displaying this type of uncertainty information, the
strength of our technique lies in the combination of our selected
views to extract aspects of the uncertainty that is complimentary
to the other views and appropriate visualization of uncertainty in
DBS for the specific needs of our domain scientists. We feel that
this approach contributes knowledge to the field by demonstrating
a collection of visualization techniques appropriate for uncertainty
information within a 3D spatial domain that addresses the needs of
scientists working with this specific type of complex data.
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2. Background

2.1. Probabilistic Analysis of Activation Volumes in Deep
Brain Stimulation

A patient-specific computer model of DBS is a tool that can be used
to implicate regions of the brain that are related to benefits and side
effects of this surgical approach. A patient-specific model allows
for visualization of the effects of DBS by using a reconstruction of
an individual DBS lead on a neuro-anatomically correct morphed
atlas and MRI scan, thereby allowing for direct quantification of
lead location, neuro-anatomical regions of interest, and VTA.

These models can be utilized to determine how much an indi-
vidual effect is due to direct stimulation of a target region or due
to overlap with other regions. When prescribing DBS there are two
major variables that must be decided on an individual patient ba-
sis: 1) the electrode location, which is planned prior to surgery; 2)
the stimulation protocol, which consists of the voltage, pulse width,
frequency and configuration of anodes and cathodes. As our body
of knowledge about DBS grows, we are identifying not only dif-
ferent stimulation targets for PD (STN versus GPi) but also sub-
regions near each anatomical target that are correlated with specific
motor or neuro-psychological outcomes.

We have recently created a novel computational framework that
integrates magnetic resonance imaging data, finite element electric
field models, and predictions on the VTA generated by DBS on a
patient-specific basis. The purposes of this framework are to: 1)
predict the effects of DBS on an individual patient basis; 2) ex-
press VTAs from a multi-patient cohort in the context of an atlas
brain; and 3) construct a PSA that incorporates clinical outcomes.
A summary of this approach from a recently-published prospec-
tive study [BCH∗11]. Using this method we identified subregions
around the STN where stimulation-induced activation was corre-
lated with motor improvement on a per-symptom basis.

2.2. Uncertainty Visualization

Interest in uncertainty visualization has increased during the past
few years [GS06, JS03, MRH∗05, PWL97], and the topic has
been identified as a top research problem [Joh04]. Related to this
work are techniques aimed at incorporating uncertainty information
into volume rendering and isosurfaces, using linked multiple win-
dows, the visual representation of probability distribution functions
(PDFs), and displaying the results of parameter-space explorations.

Volume rendering and isosurfacing are techniques designed to
convey spatial characteristics of volumetric scalar data. Approaches
to add uncertainty information include pseudo-coloring, overlay,
transparency, glyphs and animation [DKLP02, JLRP98, LLPY07,
RLB∗03]. Fout and Ma [FM12]propose a computational model that
computes a posteriori bounds on uncertainty propagated through
the entire volume rendering algorithm and developed an interactive
tool to inspect the resulting uncertainty.

Rather than using isosurfaces to directly convey uncertainty in
data, they can be used to show shape and extent of clusters [Luc06].
Probabilistic formulations of marching cubes [PWH11] and iso-
contours [SZD∗10] allow for the display of positional uncertainty
of isosurfaces colored by their distance from a mean [PH11].

While these three-dimensional representations are quite useful
for conveying geometric structure and providing context, the com-
plexity of the data often requires multiple presentation types to en-
able full understanding. For this reason multi-window linked-view
systems are popular for addressing uncertainty [FKLTI10,HMH08,
PWB∗09, SZD∗10].

Another way to look at uncertainty is to consider the multi-
ple values as PDFs and to use statistical methods for character-
izing them. Initial work in the area began by extending exist-
ing techniques to work with PDFs [LKP03]. Clustering [BKS04]
and slice planes [KLDP02] can be used to reduce the dimension-
ality of the data for visualization, while colormaps, glyphs, and
deformations have been used to express summaries and clusters
[KDP01, KVUS∗05].

Finally, the type of data we are looking at here can be thought
of in terms of parameter-space exploration in which the effect of
perturbations of input parameters is related visually to outcomes
through techniques such as parallel coordinates [BPFG11] and
preattentive highlighting [FKL∗10]. Similar work was presented
in Rosen et al. [RBPJ13] with a viewer for myocardial ischemia.
However, their approach used primarily cross-sectional analysis
and isosurface extraction. Such analysis was applicable to their ap-
plication and did not utilize uncertain volumetric rendering.

3. Visualization System

νView is an interactive n-way linked view system, where the main
view contains a 3D visualization of the data, see Fig. 1. A statistical
panel contains information on a user selected voxel (via picking)
showing histogram patient data. Additionally, a parallel coordinates
view of overall outcome per patient is also provided.

All interfaces are manipulated through mouse interactions and a
small menu system. Basic controls for choosing the statistic, set-
ting clipping planes and picking opacity isovalue (i.e., the value of
a voxel’s opacity which specifies where along the line of site the
selected voxel will be selected) are provided in a modeless dialog
widget as seen in Fig. 2. Users can select either the mean, variance,
minimum value, maximum value, or number of samples (patient
outcomes) as the displayed statistic.

The data input into our system consists of a four-dimensional ar-
ray. The fourth dimension is the number of patient outcomes which
varies from seventeen to twenty-four from different data sets (UP-
DRS scores). The first three dimensions are the spatial extents for
the simulation, here 120 x 120 x 120 voxels.

3.1. Visual Interfaces

3D View: We volume render the patient outcome statistics using
transfer functions that are initially set by a given statistic. This is
explained more thoroughly in section 3.2. Our system allows users
to select a subset of the patient group for a data set and to view the
statistics related only to that subset. The user may also load relevant
brain nuclei for spatial context of the VTA.

Voxel Histogram View: The user can select voxels in real-time, by
clipping the volume along one of the major orthogonal axes. The

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

38



Hollister et al. / Visualization for Understanding Uncertaintyin Activation Volumes for Deep Brain Stimulation

(a) (b)

Figure 1: (a) Linked 3D view of number of patient outcomes at each voxel for Bradykinesia efficacy in DBS. Picked voxel and histogram
of patient scores are shown in the right panel for the selected voxel at the white spherical glyph. (b) Linked 3D view of mean UPDRS
for Bradykinesia with parallel coordinates. The parallel coordinates show patient scores for all loaded data sets. 3D view shows the VTA
along with the subthalamic (STN) nucleus. The tool allows for any of the nuclei to be loaded for reference to targeted stimulation areas by
clinicians.

Figure 2: Modeless dialog allowing user to select statistic to be
displayed in the 3D view. The user may also adjust picking opacity,
and the location of the x, y, or z aligned clipping planes.

selected voxel is then shown in the histogram view. This provides a
user the ability to drill-down into the data by pinpointing where in
the VTA they wish to see the patient results.

Parallel Coordinates View: Parallel coordinates are an alternative
way to explore the high-dimensional space of the data. We supply
a parallel coordinates interface where each dimension represents a
single patient. The values for each patient correspond to their UP-
DRS outcome and are colored by the dataset / clinical measure-
ment. This allows the user to gain an overview of patient outcomes
across the loaded datasets. For example, in Fig. 1 (b), there are six
datasets simultaneously loaded and displayed in the parallel coor-
dinates view.

3.2. Transfer Functions for Uncertain Voxels

Because of the complexity of the data, we have adopted a number
of transfer functions to color the data, each designed to aid under-
standing in a unique way.

Value-based Coloring: Each statistic’s range of values is mapped
automatically by the tool, such that the minimum value is assigned
to blue, the mean value to green, and the maximum value to red.
For transfer functions that are intended to allow the user to find
given ranges of values in a particular statistic, opacity is initially

set to fully opaque. The user can adjust any points in the transfer
function. The transfer functions use piecewise-hermite functions to
allow interpolation between points set by either the user or the tool
itself.

Value-based Opacity: For the mean, maximum, minimum, and
number of patients, we also provide opacity mapping via the tool.
An example of this can be seen in Fig. 3. We normalize the opaci-
ties of each voxel based as a fraction of each voxel’s own variance
divided by the maximum variance from the data set. The variance
is taken from the UPDRS scores. The lesser the variance in UPDRS
score, the greater the applied opacity of the voxel is.

Figure 3: A transfer function for the maximum value statistic
whose opacity is scaled based on the variance of the UPDRS scores
at each voxel.

4. Preliminary Results

Our results were obtained from code written in Python and
Pvtkpython [Wil12]. We used data from computational models to
analyze 39 PD patients who received unilateral DBS, 22 in globus
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pallidus interna (GPi) and 17 in STN. This study used a previously-
published method to create patient-specific computational models
of DBS [BCHM07]. The VTA was determined for each patient,
and from the VTAs a probabilistic stimulation atlas of outcomes
was constructed. All patients had a pre-operative MRI which was
fused to a post-operative CT. All patients were implanted with a
mono-lateral Medtronic 3387 DBS lead. The probabilistic stimula-
tion atlas was created using 4-month UPDRS outcomes. In order
to make comparisons, all patient specific models were mapped into
a common coordinate space via a non-linear, diffeomorphic atlas
building method.

Our initial experiments have been performed primarily on six
UPDRS outcomes for categories of electrode placement and pa-
rameters across a patient cohort. Our software takes a few moments
to load data (10-20 seconds) with a patient cohort size of approx-
imately twenty. During loading, we calculate the moments of the
patient outcome distributions, which causes this operation to be the
most time intensive among the other operators. Overall, the soft-
ware is interactive.

We developed this tool as part of a team of visualization and
biomedical researchers to better understand the physiology of DBS
and patient outcome. νView is being actively developed simulta-
neously with the development of the probabilistic atlas model and
VTA simluation studies, allowing results from the simulation to be
explored within νView, and the insights gleaned from νView to be
incorporated back into the DBS model. While our results to date are
still in the experimental phase, we have already had some success
within this collaboration.

5. Future Work

This work is an initial exploration of uncertainty data obtained from
DBS, thus we still have much work yet to do. Prior to the devel-
opment of νView, the biomedical researchers used simple glyphs
scaled spatially to represent each voxel in the VTA. We believe our
close collaboration with the simulation scientists will greatly guide
the choices we make regarding visualization, particularly in light of
our discovery of regions of high variance in patient outcome where
those regions had the most overlap in stimulation between patients.
Prior studies of DBS in this area suggest correlation between pa-
tient outcomes. Such a discovery also encourages the question of
the computation of the brain atlas, which we plan to further investi-
gate through techniques to allow users to see variation in electrode
placement along with individual patient VTA.

Additionally, from a scientific point of view, these studies can
also give us a better understanding of the relationship of VTA un-
certainty to both brain atlas computation and VTA simulation. In
the future, we aim to provide information about simulation param-
eters and electrode visualization. It may be that for some problems,
the level of uncertainty will not greatly effect the results, while for
other applications, the uncertainty will invalidate an approach. It
may also indicate that uncertainty levels in the VTA should pro-
hibit electrode parameters for a desired efficacy. This could then
spark research into generating better electrode parameters and sim-
ulation of more specific VTA. Both clinical problems and scientific
exploration provide opportunities for improvement in uncertainty

visualization techniques, and we look forward to extending νView
to have greater research and clinical impact.
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