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Abstract
Streamlines are a popular way of visualizing flow in vector fields. A major challenge in flow field visualization is selecting the
streamlines to view. Rendering too many streamlines clutters the visualization and makes features of the field difficult to identify.
Rendering too few streamlines causes viewers to completely miss features of the flow field not rendered.
The fractal dimension of a streamline represents its space-filling properties. To identify complex or interesting streamlines, we
build a regular grid of scalar values which represent the fractal dimension of streamlines around each grid vertex. Vortices and
turbulent regions are often associated with regions of high fractal dimension. We use this scalar grid both to filter streamlines
by fractal dimension and to identify and visualize regions containing vortices and turbulence. We describe an interactive tool
which allows for quick streamline selection and visualization of regions containing vortices and turbulence.

Categories and Subject Descriptors (according to ACM CCS): I.3.0 [Computer Graphics]: General—Flow Field Visualization

1. Introduction

A flow field is a specific type of vector field that represents the flow
of some fluid. Each point in a flow field is a vector that represents
the direction and rate of mass transport of a flow. Flow fields are
used in several different fields of science and engineering. They
can be used to model large scale simulations such as atmospheric
behavior, air flow during wind tunnel tests, or blood flow. Flow
field data sets contain several different features, such as vortices,
and have regions with different types of flow behavior. Visualizing
these different regions and features is crucial to understanding the
flow data.

A common way to visualize flow fields is with streamlines. A
streamline is a curve that is tangent to the velocity vector of the flow
field at each point of the curve. Streamlines are computationally
inexpensive to generate and allow a viewer to see the behavior of
a region of the flow field. A large challenge in using streamlines
to visualize flow fields is choosing which streamlines to display
to both prevent cluttering the visualization as well as ensuring a
proper sampling of the flow field.

To appropriately filter the streamlines and identify important
flow field features, we examine the geometric properties of stream-
lines using the box counting ratio defined by Khoury and Wenger.
The box counting ratio measures the space-filling properties of an
object and quantifies its complexity. With this measurement, we are
then able to categorize streamlines based on their complexity. Such
a measurement allows for filtering to remove clutter while still re-
taining important or defining flow field features. We construct a
scalar grid with values that are representative of the complexity

of the streamlines in some nearby neighborhood. This scalar field
allows us to easily identify which regions of the flow field are com-
plex. Lastly, we apply a variety of interactive visualization tech-
niques to the scalar field to allow the user different insights on the
flow data.

2. Related Work

There has already been a considerable amount of work done in
streamline filtering and flow field feature identification, but many
of these methods require prerequisite knowledge of the flow field
or depend on restrictive definitions of features. Streamline seeding
in 2D or on surfaces in 3D is discussed in [TB96], [MHHI98], and
[MAD05]. While these techniques create clear and evenly spaced
streamline visualizations for surfaces, they are difficult to extend
into a general 3D space.

McLoughlin et al. [MJL∗13] seek to reduce streamline clut-
ter by requiring a predefined rake and then removing streamlines
along that rake that exhibit significant amounts of similarity. View-
points of streamlines are evaluated in [MCHM10] by analyzing the
amount of occlusion present. Streamline filtering methods based on
concepts of entropy are discussed in [XLS10] and [LMSC11].

Critical points of the flow field are analyzed in [YKP05] and dif-
ferent seeding strategies are used depending on the behavior near
the critical points. [JBTS08], [Jän10], and [BKH∗15] use concepts
such as statistical complexity and invariant moments to indentify
various regions of flow fields. In [SS06], various definitions are
constructed for different flow field features and the features are
searched for in the flow field. Similarly, various features such as
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(a) simple line (b) complex line

Figure 1: Examples of the box counting ratio measuring streamline
complexity in 2D. (a) Simple line calculated to have a box counting
ratio of log2

12
5 = 1.26. (b) Complex line calculated to have a box

counting ratio of log2
29
8 = 1.86.

vortices are defined in [HEWK03] and the vectors of the flow field
are examined to see if they meet requirements of the properties. In
all [SP99], [SPM∗98], and [ZHA98] features of a vortex are de-
fined and then searched for in the flow field. [MBS∗04] segments
the flow field into regions of different behavior.

We attempt to avoid any strict definition of flow field features
to prevent restricting our algorithm to only find specific features.
Instead, we treat the complexity of a streamline as how it fills a
space. In a previous work by Chaudhuri et al. [CLSW14], they in-
troduce measuring the streamline complexity with fractal dimen-
sions to observe behavior at different scales. Fractal dimensions
are further discussed in [KW10]. Features in the flow field can then
be organized by their complexity as well as what scale the feature
appears in. Using the box counting ratio, we are able to both have a
general definition of complexity and provide scalar values that are
representative of the flow field complexity.

3. Box Counting Ratio

Khoury and Wenger [KW10] defined the box counting ratio and
used it to analyze isosurfaces. The box counting ratio of a set is a
real number between 0 and 3 that is determined by how the set fills
the space. The box counting ratio of a set S is defined as:

dimε (S) = log2
Nε (S)
N2ε (S)

(1)

where Nx(S) is the number of boxes that the set S will intersect on
a fixed grid that has boxes with edge lengths of x.

We then measure the box counting ratio of the streamlines by
defining a fixed grid, counting the number of boxes of widths 2ε

and ε that a streamline intersects, and then solving for the final box
counting ratio. With this new formula, we expect that the straight
and simple streamlines will have a box counting ratio near 1, as they
do not have any space filling properties. As the streamline becomes
more complex and fills a 3D region more densely, we expect the
box counting ratio to increase towards 3. These measurements are
illustrated in 2D examples in Figure 1.

4. Streamline Complexity Grid

The streamline complexity grid is a scalar grid which represents the
complexity of the flow behavior around each grid vertex using the

local box counting ratio. We let 2λ denote the length of each grid
edge.

Let ζ be a streamline generated from the flow field and let Gp be
a w×w×w grid of cubes with edge length 2λ centered at point p.
The local box counting ratio of ζ at p is dimλ (ζ ∩Gp). If the value
N2λ (ζ ∩Gp) is below a threshold c, then we discard this measure-
ment. We implement this threshold to ensure that a large enough
portion of a streamline is being examined to calculate a stable mea-
surement. In particular, this threshold helps increase the stability of
the box counting ratio near the grid boundary.

To generate the values for the streamline complexity grid,
streamlines must be generated to properly sample the vector field.
We generate this set of streamlines as follows. For each voxel v,
generate a new streamline ζ through the center, if v is intersected
by fewer than five streamlines, and then determine the voxels in-
tersected by ζ . Each voxel v is intersected by a set of streamlines.
We associate with v the first five streamlines (ordered by genera-
tion) that intersect v. To calculate the final value φ(p), first take the
streamlines associated with vp and calculate the local box counting
ratio of each streamline at p. Record the median value of these ra-
tios and denote the streamline generating this median value as pζ .
Finally, average the value at each point with the values of the 26
neighboring points. The resulting values form the streamline com-
plexity grid.

5. Visualization Methods

Once constructed, the streamline complexity grid can be used in
visualization techniques. We describe the different techniques that
are possible with the streamline complexity grid.

5.1. Streamline filtering by value

To remove streamlines in the flow field and to reduce clutter, the
user can filter streamlines by their measured complexity values.
The user is able to choose two values, a and b where a< b, and only
display streamlines from voxels with a complexity between the
chosen values. The streamline pζ will be displayed if a≤ φ(p)≤ b.
By choosing values near 1, streamlines with a low box counting ra-
tio and smooth flow will be displayed. By choosing values above
1.4, streamlines will begin to be filtered and the more complex re-
gions of the flow field are highlighted.

5.2. Local complexity maximums

A significant amount of clutter in the streamline display will remain
if additional filtering methods are not considered. Several stream-
lines in the visualization will be visually similar or provide redun-
dant information. In addition to using a threshold, we can choose
voxels whose complexity values are local maxima and render a rep-
resentative streamline for each such voxel. Local maximum filter-
ing will show streamline pζ at point p only if for each q, where q is
one of the 8 neighbors of p, φ(p) > φ(q). This method allows for
single streamline representatives to be shown for each feature or
region rather than several, cluttered streamlines. Filtering by com-
plexity value is shown in Figure 2.
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(a) (b) (c)

Figure 2: Example of the streamline filtering techniques. (a) The
cluttered view of all 5000 streamlines generated. (b) 110 stream-
lines displayed after filtering. (c) Streamlines filtered by local max-
imums to show 8 streamlines. Changing this threshold towards the
higher complexity values takes approximately 80 ms to update the
streamlines shown and then redraw the image.

(a) (b)

Figure 3: Example visualizations using the colored plane. (a) The
plane indicating the regions of high complexity. (b) The high com-
plexity lines near the defined plane. Changing a coordinate of the
plane takes approximately 250 ms to update the streamlines shown
and to redraw the image.

5.3. Complexity plane

A colored plane can be used to allow the user to visualize the scalar
complexity grid, φ , directly. A color gradient from blue to white
to red is able to be defined and mapped to values in the range 0
to 3, for each of the possible box counting ratios. Low scalar val-
ues will be displayed as blue colors, while high scalar values will
be displayed as red colors. A plane is then defined on the scalar
complexity grid and each point on the plane is colored from this
defined color gradient. The user is able to control the plane through
the scalar complexity grid to identify regions of varying complex-
ity in the grid. Once regions of interest are identified through the
colored plane, the user can display streamlines near that region to
understand its behavior. The user is able to view different ratios of
both high complexity and low complexity streamlines seeded from
the plane. An example of the plane visualization is shown in Figure
3.

5.4. Isosurfaces:

An isosurface {x | φ(x) = σ} can be used to highlight regions of
the flow field with a high complexity. This isosurface will enclose
the regions of streamlines with a box counting ratio higher than
the σ value and provide a simple way to identify regions of a de-
fined complexity. At particularly high σ values, the isosurface will

(a) (b)

Figure 4: Example visualizations with isosurfaces. (b) An isosur-
face of φ enclosing high complexity regions. (b) An isosurface of
φg enclosing regions of high complexity change.

enclose complex features of the flow field that the user may have
otherwise missed.

5.5. Streamline gradient magnitudes:

The gradient magnitudes of the streamline complexity grid can be
calculated to create a new gradient magnitude scalar grid φg. The
scalar φg(x) is given by ‖∇φ(x)‖. Another isosurface can be used
to visualize the function φg and to identify regions of high change
of complexity. Vortices in the flow field tend to have high com-
plexity values recorded near their centers, with values quickly de-
creasing towards their boundaries. When a high isovalue is cho-
sen for the gradient magnitude isosurface, the isosurface will often
highlight these isolated regions of turbulence or turbulent regions
that quickly become smooth. Examples of isosurfaces of the scalar
complexity values and gradient magnitudes are shown in Figure 4.

6. Results

The algorithm was implemented in C++ using The Visualization
Toolkit (VTK) across two separate programs. The first program
generates the streamline complexity information and the second
program allows real-time interaction with the data set.

6.1. Synthetic data sets

We used synthetic data sets with known regions of high complexity
to verify the correctness of our algorithm. In the synthetic data sets
generated and used, we were successfully able to capture the high
complexity regions. Such a data set is shown in examples in Section
5.

6.2. Natural data sets

The algorithm was also used to extract the high complexity regions
from natural data sets. We mainly used the Solar Plume data set
(courtesy of NCAR) and the Hurricane Isabel data set, which was
the data set in the 2005 IEEE Visualization contest.

The Solar Plume data set is a 126×126×512 vector field. This
data set has many different regions of varying flow complexity.
Central regions of the flow tend to be more laminar with vortices
near the boundaries of the data set.
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(a) Solar Plume filtered (b) Solar Plume with plane

Figure 5: Example of how filtering increases the visibility of flow
field features in the Solar Plume data set. (a) The set of streamlines
filtered by complexity measurements from an original data set. (b)
The plane allows the viewer to see the different regions of high and
low complexity.

A filtering of the streamlines produced by considering the com-
plexity measurements given by our algorithm along with isosur-
faces is displayed in Figure 5.a. The streamlines are also colored
by complexity, with the red streamlines being the most complex
and often contain vortices and green streamlines being less com-
plex. The aqua isosurface in this rendering is set to a value near 1.2
to highlight the complex regions of the flow field. Additionally, the
purple isosurface is the gradient isosurfaces and highlights regions
around vortices that have a high change in complexity. A plane with
nearby streamlines is shown in Figure 5.b. The colored plane high-
lights the vortices near the boundaries of the data set. Rather than
manually attempting to identify which regions of the flow field ex-
hibit specific types of behavior, this visualization allows the viewer
to identify these regions quickly.

This Solar Plume data set had a λ parameter of 1.5 and a w pa-
rameter of 8. It contains 21,000 streamlines and took approximately
184 seconds to generate. The viewer program takes approximately
17 seconds to preprocess the data set and display an initial visual-
ization.

We found similar results with the Hurricane Isabel data set. Our
algorithm was able to successfully identify regions of high com-
plexity and provided a simple way for viewers to find vortices.

6.3. Dependence on parameters

The parameters that have the most significant effect on the output
streamline complexity grid are the length of the grid edges, 2λ ,

and the size of the window used in the local box counting ratio
calculations, w.

As the λ parameter decreases, we are able to obtain a much
higher resolution streamline complexity grid and identify finer fea-
tures of the flow field. However, this increase in resolution creates
a significant increase in running time and storage space. This is due
to the significant increases in streamlines needed to be generated
and the number of box intersections needed to be calculated. We
typically try to choose a λ parameter so that the streamline com-
plexity grid matches the resolution of the flow field.

The w parameter has an influence on the accuracy of the box
counting ratio calculations and the size of the features captured. On
the one hand, we would like to use a large window to decrease the
effects of the fixed grid alignment and to create a more stable mea-
surement. On the other hand, a high w parameter may cause the box
counting ratio measurements to include multiple features along the
streamlines and distort measurements. We choose a w parameter
so that the local box counting measurements only consider the fea-
ture size present in the data. In our data sets, the w parameter was
typically set to 6 or 8.

Although these parameters affect the individual values of stream-
line complexities, we find that there is a parameter range in which
we are able to generate streamline complexity grids with similar re-
gions of high complexity. To show this, we generated data sets with
varying parameters and found that the highest complexity regions
stayed consistent from data set to data set.

6.4. Limitations

The most significant limitation encountered using the box counting
ratio to measure streamline complexity was the alignment artifacts
due to small sample sizes. When approximating the fractal dimen-
sion we should have very large sample sizes. However, our sample
size is limited because λ cannot be set too small and w cannot be
set too large. This limited sample size can occasionally cause issues
in which the lines complexities are not properly estimated.

Additionally, the box counting ratio is not actually measuring
properties of turbulence or vortices. While the box counting ratio is
often able to identify regions that contain this space-filling behav-
ior, we cannot be certain that all vortices or turbulent regions are
truly captured by this measurement.

7. Conclusion

In this paper we proposed a method of filtering streamlines and
identifying complex regions of the flow field. We described a
method of quantifying flow field complexity by measuring the box
counting ratio of streamlines seeded from the flow field. Using this
box counting ratio, we are able to make a streamline complexity
grid that has scalar values that represent the complexities of differ-
ent regions. The streamline complexity grid along with the stream-
line box counting ratios allow for many visualization techniques
such as filtering by local maximums and isosurfaces to allow the
viewer to identify interesting parts of complex flow fields.
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