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Abstract

Computing power outpaces 1/0 bandwidth in modern high performance computers, which leads to temporal sparsity in flow
simulation data. Experiments show that Lagrangian flow representations (where pathlines are retrieved from short-time flow
maps using interpolation and concatenation) outperform their Eulerian counterparts in advection tasks under these circum-

stances.

Inspired by these results, we present the theoretical estimate of the Lagrangian error for individual pathlines, depending on the
choice of temporal as well as spatial resolution. In-situ, this measure can be used to steer the output resolution and post-hoc, it
can be used to visualize the uncertainty of the pathlines. To validate our theoretical bounds, we evaluate the measured and the

estimated error for several example flow fields.

Categories and Subject Descriptors (according to ACM CCS): Visualization [Human-centered computing]: Visualization applica-

tion domains—Scientific visualization

1. Introduction

In hydrodynamics, two specifications of a flow field are typically
used. The Eulerian specification describes the flow passing through
a given spatial domain, which is usually stored by means of the
velocity field. The Lagrangian specification describes a specific
fluid parcel that travels through space. The usual way of storing
a flow field in its Lagrangian specification is by means of its flow
map that describes how a flow parcel at (xo,%) € R¢ x R moves to
Fi (x0) € RY in the time interval [fo,].

In theory, both representations are equivalent because the trajec-
tories can be derived from the vectors through integration and the
vectors from the trajectories through differentiation. But in prac-
tice, they differ because the data is given at discrete positions and
times only and the integration or differentiation have to be approx-
imated numerically.

Flow data is often the result of a hydrodynamics simulation run
on a high performance supercomputer with many small time steps.
In modern HPC architecture, the computational capacity exceeds
the I/O bandwidth [CPA*10], which is why only few time steps of
the simulation are stored to disk for post-hoc analysis. Under this
temporal sparsity, the Lagrangian representation has proven less
prone to error for the post-hoc construction of pathlines [ACG™14].

In this paper, we present a method to calculate an upper bound
for the error of individual pathlines that are constructed by sequen-
tial interpolation of short-time flow maps.

The paper is organized as follows: In Section 2, we will provide

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

a short overview of related work. We present the theoretical defini-
tion of our error estimate in Section 3 and describe our experiments
in Section 4, before we conclude our findings in Section 5.

2. Related Work

Lagrangian methods have been long used for efficient particle
tracer computation [BKHJO1], the calculation of Lagrangian Co-
herent Structures, [HY00, Hal02], or to incorporate flow maps into
the Eulerian representation of a flow field [SS06,SGSMO08,JEH02].

They are particularly useful because the majority of current state-
of-the-art flow visualization techniques utilize advection [LHD*04,
LHZP07, STWS08, MLP*09, PPF* 11, BCP*12] and the particle
paths are explicitly given in the Lagrangian flow representations.

Hlawatsch et al. employ a hierarchical scheme to construct
longer integral lines from previously computed partial solutions
[HSW11]. Chandler et al. [COJ15] construct visualizations of
smoothed particle hydrodynamics (SPH) applications [Mon05].
Agranovsky et al. show empirically that the Lagrangian method is
more accurate than Eulerian advection methods [ACG*14] and Bu-
jack and Joy [BJ15] extend their idea. They give the first theoretical
estimate of the overall error of these kinds of Lagrangian flow field
representations.

In this paper, we refine their findings to derive a local error for
each pathline, which can be used for the visualization of the un-
certainty of the method as well as for the in-situ adjustment of the
resolution chosen for storage.
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3. Theoretical Error Estimate

In this section, we will derive a regional error estimate for the La-
grangian flow representation using the method of concatenating in-
terpolations of sectional flow maps. Bujack and Joy [BJ15] have
shown that this method is a special kind of numerical one-step
integration method and have given an overall error estimate. The
overall measure is not sufficient for our means, because we want to
show the error of the method for each reconstructed pathline indi-
vidually.

In our application, we use multi-linear interpolation [HH12] in
the spatial domain R? to estimate the endpoints of the arbitrarily
seeded pathlines within each of the stored time slices. In order to
keep the notation short, we will perform the calculations assum-
ing the one-dimensional case. The error will be a two- or three-
dimensional vector for 2D or 3D flows and each component will
behave like the one-dimensional case.

Trajectories are constructed from the Lagrangian flow repre-
sentation by interpolating sequential flow maps. The sequence
x(t),...,x(ta) of exact pathline points is approximated by the se-
quence Xy, ..., Xn With xo = x(fp). Each point x; is obtained by in-
terpolating the flow map F,jL , at the previous point x; 1

We will first show how this construction method can be viewed

as a on-step integration method before we describe the error mea-
sure.

3.1. One-step Integration Method

In numerics of ordinary differential equations [Sch02, GH10], for a
given initial value problem

x/(t) :f(t7x(l))7 X0 :x(t0)> (D

a one-step integration method produces a sequence of points
X0, ---,Xn by the rule

xj=8(xj—1) =xj_1+hA(tj—1,xj—1,f,h), @

where S is the rule to advance from one step to the next and A is
the increment function. It can be seen that patching together the
interpolated trajectories is a special kind of numerical one-step in-
tegration method with increment function

A(tj—1,xj—1, f,h) =LcFi,_, (xj—1) 3)
from using the Taylor expansion [GL10] with respect to time

Taylor ti
L, () L @ 0
:x+hthth71(x)7

where the dot represents the temporal derivative with respect to the
end time and # € [tj_1,1;].

3.2. Local Truncation Error

The local truncation error T; for a step j and an exact position
x(tj—1) is defined by

Tj(x(tj—1)) = x(tj) = S(x(tj—1))] )

and describes the error that the one-step method makes advancing
one step. For our method, the local truncation error is the error that
we make within each of the stored time slices when we interpo-
late the endpoints of the spanning trajectories in space to gener-
ate trajectories starting at arbitrary spatial locations. It coincides
with the linear interpolation error [HH12] of a point in the interval
X € [xp,x1], which follows from the Taylor series

1 1
(%) =ILFy_ () — B (%))

Taylor | G (6)
< S —x)(x—x) max [(F)7(C)l.
2 €€ [xo.x1]
3.3. Global Truncation Error
The global truncation error ¢; up to the step j is defined by
ej(xo) == [x(t;) —x;. @)

The notation e, (xp) was chosen to stress that it is valid for the se-
quence X, ..., X, that starts at xq. It suffices

ej(x0) Lixe) — x|
)—

<J(rj) = S(x(tj—1)) |+ 1S(x(tj=1)) — x}]

St (x(t-1)) + S(xltj-1)) — x5

Dj(x(tj1)) +8(x(0j-1) = Sx5-1)] )
D (x(tj-1)) + [x(tj—1) + hA(tj—1,x(tj—1), £, )

—xj_1 —hA(tj—1,xj—1,f,h)|
)
=T(x(tj-1)) +ej

+h|A(t]—17 (t]—l) f7 ) (t]—17x]—17f h)l

At this point in numerics of ordinary differential equations, the
overall maximal error is derived by using the globally maximal 1;
and the global Lipschitz constant L. But for our application, we do
not need this very coarse approximation, but one tailored towards
the specific integration sequence xy, ..., Xx,. That means we look for
an estimate that holds for one pathline. We get it from not looking
at the maximal possible errors of the whole domain, but at the max-
imal possible errors for the area around our point in the sequence
x;j—1 that is big enough to contain the true value x(¢;_1 ). Therefore,
we make use of the regional Lipschitz constant L(x;_ ) sufficing

Vx,y € [xj_1 —ej_1,xj—1 +ej_1]:

©
|A(tj—1,x, f,h) = A(tj—1,y, f,h)| < L(xj—1)lx =y,

as well as the regional value T;(x;_) that bounds 7;(x(t;_) from
above
Ti(xj_q):= max Tj(x)
S XEj—1—ej—1.xj—1tej—1] ! (10)
without depending on the true value x(f;_;). Note that this value
depends on the global truncation error e;_ (xp) calculated thus far.

In contrast to (5), it can therefore not be calculated from only look-
ing at one time step. That way, we get the global truncation error
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for the pathline starting at xq
)
ej(x) <tj(x(tj—1)) +ej—1
+h|A(tjfl7x(tj71)7f7h) _A(tjflaxj717f7h)|
9),(10) an
Tj(xj—1)+ej1+hL(xj1)|x(tj—1) —xj_1]
-
=Tj(xj—1) +ej_1+hL(xj—1)ej—1
:‘Ej(xj,l) +€j,1(1 +hL(xJ',1)).

This is the main theoretical result of this paper.

3.4. Error Within the Sections

So far, we have calculated the error of the sequence x,...,xs. To
get the error of the whole pathline, we have to also evaluate it at ar-
bitrary time between the stored time steps ¢;. To approximate these
values, we interpolate linearly with respect to time L; between the
one-step points x; | and x; . Due to the uncertainty of the one-
step points, the additional approximation error for arbitrary times
t € [tj_1,t;] is then given by

Sj()Co,l) ::|LlFtt,'71(xj71) _Ei—] (xjfl)‘

! !
< max ‘LtFlj—l (x) - E_,‘-] (x)|
XExj_1—ej_1.xj—1tej—1]
Taylor 12
< max a2
XE[Xjfl—ej',]AXjfl#»ej',l]

1 .0

—(t—tj—1)(tj—t) max |F,_ (x)|.

2=t =) e 1E ()
It is added to the error (11) to approximate the absolute error of the
Lagrangian representation

aj(xo,t) :=ej(xo) +5;(x0,). 13)

4. Experimental Results

Multiple data sets were chosen to evaluate the theoretical error
measures presented in this paper. We used a Runge-Kutta integra-
tion scheme to compute sets of consecutive flow maps in the high
in-situ resolution for each scenario and stored their endpoints on a
regular grid, as explained in [ACG*14]. Then, a number of path-
lines were randomly seeded in the domain of the data sets. One
set of pathlines was generated through consecutive interpolation of
the stored flow maps for each interval. In addition, a set of ground
truth pathlines was obtained by applying the Runge-Kutta integra-
tion method to the original flow field in its high resolution. From
these two sets of pathlines, the actual reconstruction errors were
calculated for each seed point as the Euclidean distance between
the integrated and the interpolated position. Applying our error es-
timate to the reconstructed pathlines from integration allowed us
to directly compare the actual errors to the theoretically predicted
erTors.

Double Gyre One of the data sets used for the evaluation of
the theoretical error measure in this paper is the well known dou-
ble gyre. It is a time-varying, two-dimensional vector field with a
closed boundary. We use the analytical definition from [SLMOS].
Example pathlines can be found in Figure 1. The global truncation
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Figure 1: Double gyre. Left: A reconstructed pathline is shown
with the estimated global truncation error e from (11) represented
by rectangles. Right: Five reconstructed pathlines are represented
as tubes with a radius equal to the absolute estimated error a from
(13), which also determines the color. On both sides, the corre-
sponding correct pathlines are plotted in black.

Figure 2: As in Figure 1, the estimated absolute error (13) is rep-
resented by the thickness and color of the tubes. Left: 1000 path-
lines in the ABC data set reconstructed from 16 flow map intervals.
Right: Several pathlines in the convection flow field with 32 inter-
vals.

error (11) plotted to densely spread seedpoints all over the domain
for the 8-th time interval of 16 can be seen in Figure 4.

ABC The Arnold Beltrami Childress (ABC) vector field, as de-
fined in [HalO1], is a time-varying, three-dimensional vector field
that features periodic boundary conditions. Figure 2 shows a set of
1000 pathlines that were obtained from 16 consecutive flow map
intervals.

Convection The convection dataset stems from a simulation of
a two-dimensional flow around a small, heated cylinder. As heat is
transferred from the cylinder, the surrounding air begins to rise.
Figure 1 shows a selection of pathlines. The distribution of the
global truncation error over the domain for the 12-th time interval
of 16 can be found in Figure 5.

4.1. Evaluation

The behavior of the average and the maximal estimated as well as
measured global truncation errors (11) for the different data sets
can be found in Figure 3. It shows the errors for 100,000 randomly
seeded pathlines as they progress through 16 time intervals. As
theoretically predicted, the error increases exponentially over time,
which is why we depict the results using a logarithmic scale. Our
theoretical error estimate is constructed to bound the actual error
from above, which can be well perceived in the charts. Since in ap-
plications, errors from consecutive time steps are likely to cancel
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Figure 3: Averages and maxima of estimated and measured error
over time: double gyre (top left), convection (top right), ABC (bot-
tom).

Figure 4: Double gyre: Estimation and measurement of the local
truncation error T (top row) and of the global truncation error e
(bottom row).

each other out, the real error is usually smaller than the estimated
one. This difference increases with time.

The relationship between measured and estimated errors be-
comes clearer in Figure 4. Estimated errors (left column) and mea-
sured errors (right column) clearly exhibit the same features, which
shows that the estimate does not only provide an upper bound, but
also correlates with the measured error.

This can also be seen in the two supplemental videos, which
show how the error estimates T and e and the actual errors evolve
over time.

4.2. Visualization

In a d-dimensional flow field, the truncation errors are d-
dimensional vectors. The global truncation error (11) at the end-
points of the sections per component mapped to a rectangle can
be found in Figure 1. The real positions of the pathline can not be
located outside the rectangles. It shows how the global truncation
error increases exponentially over time.

Figure 5: Convection: Estimation and measurement of the local
truncation error T (left pair) and of the global truncation error e
(right pair).

In order to also visualize the error between the stored time steps,
we decided to encode the Euclidean norm of the absolute error vec-
tor (13) in the radius and color of a tube that is centered around
the reconstructed pathline. This representation of the pathlines as
tubes resembles the uncertainty visualization method UFLOW as
presented by Lodha et al. [LPSW96]. The tubes have a very intu-
itive interpretation, because the actual pathline has to lie inside of
it. For long advection times, the radii of the tubes may become very
large, which can cause visual clutter. This is why we offer to only
encode the error in the color and draw a line instead of a tube to get
a more sparse representation of the reliability of the reconstructed
pathlines. Figure 1 shows five pathlines in the double gyre data set
that were reconstructed using a set of 16 consecutive flow map in-
tervals. The image shows well how the error does not only increase
over time, but also grows between each two consecutive stored time
intervals to become smaller as we reach the next stored position.

5. Conclusion

In this paper, we have presented a method to estimate the error of
individual pathlines that are reconstructed from sets of flow maps
using interpolation and concatenation. We have compared the the-
oretical estimate to the actual errors for pathlines in a number of
example flow data sets. The results show that using our method, a
reasonably accurate upper bound of the reconstruction error can be
computed. Further, our experiments have confirmed that the error
estimates correlate with the actual errors and reveal similar fea-
tures. We therefore believe that the error measure may become use-
ful to control refinement in multi-resolution settings or lossy com-
pression.

In the future, we will examine how this error estimate can be
used in-situ to steer the accuracy of simulation output data.
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