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Abstract
Dimensionality Reduction (DR) methods have become essential tools for the data analysis toolbox. Typically, DR methods
combine features of a multi-variate dataset to produce dimensions in a reduced space, preserving some data properties, usually
pairwise distances or local neighborhoods. Preserving such properties makes DR methods attractive, but it is also one of their
weaknesses. When calculating the embedded dimensions, through usually non-linear strategies, the original feature values are
lost and not explicitly represented in the spatialization of the produced layouts, making it challenging to verify the features’
contribution to the attained representations. Some strategies have been proposed to tackle this issue, such as coloring the DR
layout or generating explanations. Still, they are post-processes, so specific features (values) are not guaranteed to be preserved
or represented. This paper proposes DimenFix, a novel meta-DR strategy that explicitly preserves the values of a particular
feature or external data (e.g., class, time, or ranking) in one of the embedded dimensions. DimenFix works with virtually any
gradient-descent DR method and, in our results, has shown to be capable of representing features without heavily impacting
distance or neighborhood preservation, allowing for creating hybrid layouts joining characteristics of scatter plots and DR
methods.

CCS Concepts
• Mathematics of computing → Dimensionality reduction; • Computing methodologies → Visual analytics;

1. Introduction

Demand for visualizing and interpreting high-dimensional datasets
has rapidly increased in recent years. One of the most popular
strategies to interpret such datasets is projecting them to a lower
dimensional space (usually 2D or 3D) while reproducing the re-
lationship between pairs of instances in the data. This process is
usually called Dimensionality Reduction (DR) and can be catego-
rized into local and global methods [EMK∗21,NA19]. While global
methods (such as Multidimensional Scaling (MDS) [Tor52]) seek
to preserve pairwise distance relationships, local ones (such as t-
Distributed Stochastic Neighbor Embedding (t-SNE) [VdMH08])
focus on neighborhood preservation.

Common to most DR techniques is that the embedded dimen-
sions are defined as combinations of the input data features. Con-
sequently, understanding how feature values contribute to the pro-
duced layouts can be challenging since the positions of the pro-
jected data instances are typically influenced by all input features,
in some cases, through non-linear combinations. Some strategies
have been devised to allow for such interpretation. Features can
be mapped to axes (lines) in the produced layouts to represent
the influence of each feature [CMN∗16]. Color can represent the
values of a feature or external data (e.g., a class) [SSJ∗22]. Or

more advanced approaches can also be employed, for instance, con-
trastive [MJEG21] or feature importance [MJE21,TZv∗21,TTT23]
analyses to identify the features contributions for groups of in-
stances. Although effective methods to interpret a DR layout, they
are post-processes strategies, so they cannot guarantee that spe-
cific features (values) are preserved and ordered in the final layout.
Therefore, the properties of usual scatter plots are not presented,
and the interpretation of the produced x and y embedded axes (for
a 2D layout) have no clear connection with the input features.

This paper proposes DimenFix, a novel meta-dimensionality re-
duction strategy that addresses this limitation by explicitly preserv-
ing the values of a particular feature or external data (e.g., class,
time, or ranking) in one of the embedded axes. In this process, Di-
menFix maps such feature or external data into one of the embed-
ded axes and controls the degree of freedom the embedded points’
positions can change in that axis. In this paper, we discuss how
to adapt Force Scheme [TMN03] to employ the DimenFix strat-
egy, but it can be used in combination with virtually any gradient-
descent method, such as t-SNE. Our experiments show that Dimen-
Fix can represent features in the final layout without heavily im-
pacting distance or neighborhood preservation quality, even when
external data, such as class, is used as the fixed axis. The code for
DimenFix can be found on GitHub [LCP22].
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2. Related Work

In the current literature, many different Dimensionality Reduc-
tion (DR) techniques are presented, each focusing on different as-
pects of the data to be preserved in the produced visual representa-
tion. A common taxonomy classifies the techniques into local and
global [EMK∗21, NA19]. While global methods, such as Multi-
dimensional Scaling (MDS) [Tor52], Force Scheme [TMN03], or
Part-Linear Multidimensional Projection (PLMP) [PSN10], look
to preserve the overall pairwise distance between data instances,
local techniques, such as t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [VdMH08], Uniform Manifold Approximation
and Projection (UMAP) [MHM18], and Least Square Projection
(LSP) [PNML08], seek to preserve local neighborhoods.

Common to these techniques is the fact that they work by com-
bining all the input m-dimensional data features to compose the
final 2D layout. Different strategies have been suggested to allow
for the interpretation of a DR layout, considering the contribution
of input features. Mapping the input features to axes in the DR lay-
out has been suggested [CMN∗16], in which small axes represent
small feature contributions, and the axis direction indicates how
the related feature varies in the layout. Color is also used, where
the data instances (or points in 2D) are colored using the values
of a feature or class to map additional information [SSJ∗22]. Re-
cently, some more advanced strategies have been suggested to de-
scribe the importance of the features for DR layouts using Shapley
values [MJE21], by contrastive analysis [MJEG21], or by detecting
the most important features to describe groups [TZv∗21, TTT23].
Although effective methods to interpret a DR layout, they are post-
processes, so defining the input features’ contribution to the lay-
out’s spatialization is still challenging. What is visible is bounded
by the DR method, which can be near zero [CMN∗16]. Neither are
there guarantees that ordered values of a feature will follow an or-
der in the final layout, making the interpretation of ordered features
or external information, such as time or ranking (ordered categori-
cal value), very hard or even possible to execute.

Our approach, DimenFix, focuses on solving this issue, allowing
for the order of a feature or any external information to be repre-
sented in the final layout while still retaining the original distances
and local neighborhoods of the m-dimensional space as much as
possible in the produced layout.

3. Methodology

In general lines, DimenFix is a strategy that modifies any
gradient-descent-like method, such as t-SNE [VdMH08], Force
Scheme [TMN03] and UMAP [MHM18], to allow for the preserva-
tion of a given feature or external ordered information by mapping
it to one of the 2D layout axes. In this section, we adapt the Force
Scheme method and propose two modes for DimenFix: the Strictly
Fixed Mode (Section 3.1), which does not allow a 2D point to move
along the fixed axis (the feature values are completely preserved),
and the Moving-In-Range Mode (Section 3.2) which allows a 2D
point to move within a limited user-defined range.

3.1. Strictly Fixed Mode

Typically, any gradient-descent-like DR method is free to update
the values of all n embedded dimensions in the optimization steps.

DimenFix change this by allowing only (n − 1) dimensions to
change. Before starting the gradient-descent-like process, one of
the input features (or external information) is selected to be mapped
to one of the embedding space coordinates. During each iteration of
the gradient-descent process, the loss is calculated using all embed-
ded dimensions, including the fixed feature. However, the move-
ment allowed for the fixed dimension is bounded, so the amount of
changes on one of the axes is explicitly controlled. Note that Di-
menFix does not add a feature as another dimension to a (n− 1)
projection but instead takes the fixed feature into account during
the gradient-descent process, which influences all free embedding
coordinates.

As mentioned, DimenFix concept can be used with any gradient-
descent-like technique. In this paper, we discuss how to adapt the
Force Scheme [TMN03] technique and present results based on
that. In more formal terms, let x = (x1, . . . ,xm),xi ∈ R,1 ≤ i ≤ m
be a m-dimensional data instance, where X = {xi},1 ≤ i ≤ N de-
notes the input dataset and x j = (x j

1, . . .x
j
N) the jth feature of X .

Also, let y = (y1, . . . ,xn),yi ∈ R,1 ≤ i ≤ n be the mapping of x to
the n-dimensional embedding space, with Y = {yi},1 ≤ i ≤ N the
final embedding. In this paper, we adapt the original Force Scheme
to optimize

N

∑
i

N

∑
j

(
δ(xi,x j)−d(yi,y j)

)2 (1)

where δ(., .) and d(., .) are distance functions on the original and
embedded spaces, respectively.

In the optimization process, the initial embedding configuration
is set so that the fixed dimension receives the user-selected feature,
and the others are randomly defined. Without loss of generality, let
x j be the original feature we aim to preserve and that we fix the first
dimension of Y . In this initialization, we set y1

i = x j
i ,1 ≤ i ≤ N and

yk
i = β,1 ≤ i ≤ N,2 ≤ k ≤ n where β is a random number in [0,1]

– to ensure the projection’s stability before starting the gradient-
descent process we suggest normalizing each dataset feature be-
tween [0,1]. After that, the gradient-descent process updates the
(n−1) (last) free dimensions. Algorithm 1 describes this process.

3.2. Moving-In-Range Mode

Different points can sometimes share the same value on the fixed
axis. For example, when the assigned feature is a categorical ordi-
nal value. In those cases, the user may allow these points to move
slightly in the fixed coordinate, avoiding them overlapping (too
much) on the same embedded coordinates. To meet this need, we
propose another mode to DimenFix, the Moving-In-Range Mode.
Under this mode, the values on the fixed axis can be changed within
a range, considering two different strategies.

3.2.1. Uniform Moving-In-Range mode

In the Uniform Moving-In-Range mode, we allow the fixed embed-
ding dimension to move freely within a predefined range during the
gradient-decent process. In simple terms, let [−α,+α] be the mov-
ing range. On every optimization iteration, we calculate if the dif-
ference between the original value and the value after an iteration is
within such a range. The update is executed in all dimensions if the
coordinates of the fixed dimension are within the range; otherwise,
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Algorithm 1: Force scheme adapted to apply DimenFix.
Data: X : original dataset
x j: original feature to be preserved
∆: learning rate
max: maximum number of iterations
Result: Y : final embedding

1 Set y1
i = x j

i ,y
k
i = β,1 ≤ i ≤ N,2 ≤ k ≤ n where β is a

random number in [0,1]
2 while it < max do
3 for xr ∈ X do
4 for xs ̸= xr ∈ X do
5 v⃗ = ys − yr

6 ys =
(δ(xr ,xs)−d(yr ,ys))×|δ(xr ,xs)−d(yr ,ys)|

∆
× v⃗

⃗||v||
7 y1

s = x j
s

8 it = it +1
9 end

10 end
11 end

it is only executed on the free dimensions, and the fixed dimension
is forced to be within the range. Without loss of generality, let x j
be the original feature we aim to preserve and that we fix the first
dimension of Y . Also, let y1 be the new calculated values for the
fixed embedded dimension. The values y1

s ,1 ≤ s ≤ N are updated
to

y1
s =


x j

s −α y1
s < x j

s −α

x j
s +α y1

s > x j
s +α

y1
s otherwise,

(2)

at every iteration of the gradient-descent process, replacing the as-
signment executed on line 7 of Algorithm 1.

3.2.2. Gaussian Moving-In-Range mode

The Uniform Moving-In-Range mode allows moving a point on
the fixed axis within a certain range. However, the hard threshold
may cause the movement of the points in the fixed dimension to
be inconsistent when compared to the other dimensions. If the user
wants better results, the Gaussian Moving-In-Range mode allows
points to go beyond the range threshold using a Gaussian function.
Under this mode, we use a Gaussian to weigh the moving force.
The farther the point is from its original position (the feature we
are willing to preserve), the harder it is to move. As a result, some
points may slightly move out of the pre-defined range, resulting in
a more consistent movement.

Let x be the difference between the original and current position
of the fixed dimension, that is, x = x j − y1, where x j is the original
feature we aim to preserve, and we fix the first dimension of Y .
Since when x = 0, the moving force should be maximum (equal
to 1), the mean in the Gaussian should be µ = 0, and the Gaussian
weighing function can be defined as

f (x) = 1
σ
√

2π
exp

(
− x2

2σ2

)
, (3)

so that f (x) defines a fraction of the actual moving distance along
the fixed axis.

To calculate σ, consider a user-defined confidence interval
0 <CI < 1 and moving range [−α,+α]. First, we use the z-score
table to find the z-score (z) where (1−CI)/2 is the area on the left side
of the significant interval. This z-score refers to how far a value is
from the mean in a standard normal distribution, and we use it as
a reference to change the shape of the Gaussian function. With z,
the interval spread α, and the condition µ = 0, we use the z-score
equation (z = (x− µ)/σ) to calculate σ

σ = α

z (4)

Knowing that when x = 0, f (x) = 1, we can adapt f (x) to weight
how much the distance calculated by the base method (see Algo-
rithm 1) should be used to move a point, resulting in

MR = 1
1

σ
√

2π
exp(0)

= σ
√

2π (5)

Using Eq. 5 and Eq. 3, and considering that y1 is the newly cal-
culated values for the fixed dimension, we can finally define the
actual moving distance ds for the point s in each iteration as

ds = σ
√

2π
1

σ
√

2π
exp

(
− (x j

s−y1
s )

2

2σ2

)
= exp

(
− (x j

s−y1
s )

2

2σ2

)
(6)

where x j is the feature to be preserved, and the sign of (x j
s − y1

s )
defines the direction of the movement so that

y1
s = x j

s +(sign(x j
s − y1

s )×ds) (7)

replaces the assignment executed on line 7 of Algorithm 1.

4. Results

In this section, we discuss DimenFix results using the Force
Scheme as the base technique (as discussed in the paper). We an-
alyze DimenFix qualitatively and quantitatively, comparing it to
other techniques. We use four benchmark datasets from [MK24]:
Iris (4 dimensions, 150 instances), Wine (13 dimensions, 178 in-
stances), Breast Cancer (30 dimensions, 569 instances), and Seg-
mentation (19 dimensions, 2,310 instances).

In our first test, we compare the original Force Scheme and Di-
menFix layouts in Figure 1. The first two columns present Force
Scheme layouts, and the third, fourth, and fifth columns Dimen-
Fix layouts. To generate such layouts, we randomly pick up one
of the features of the original data to execute DimenFix (the fea-
ture values are mapped to the y-axis) – sepal width for Iris, non-
flavanoid_phenols for Wine, worst texture for Breast Cancer, and
region-centroid-row for Segmentation – and to color the second
and fifth columns (the brighter the color, the larger the value) of
projections. By analyzing the Force Scheme projections on the sec-
ond column, it is possible to notice that in most, the selected fea-
ture does not smoothly vary from small to large values on the x or
y axis. The values are mixed without much of a clear tendency. On
the Iris projection, there is some tendency inside the two visible
big groups, but interestingly, the tendencies are inverted. On the
left-side group, small values are on the top, while on the right-side
group, they are on the bottom. So, no global overall tendency can
be observed. The Wine projection is the only globally preserving
some ordering observed on the original feature. But even in this
case, there is no smooth tendency, and the values are mixed in the
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Uniform mode

DimenFix (-0.1, 0.1)
Gaussian mode
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Figure 1: Force Scheme and DimenFix projections. When particular features are mapped to color, it is possible to see that they do not
smoothly vary on the Force Scheme layouts (from small to large values). Hence, reasoning about feature values and point positions is
challenging. On DimenFix projections, this can be attained by fixing such features in one of the projection axes.

middle of the layout. For the Breast Cancer and the Segmentation
datasets, no tendency can be observed; small and large values are
mixed, so when analyzing these layouts, not much could be said
about the importance of such features to the final layout or infer the
values of such features based on points positions.

The third column (DimenFix (0,0) Uniform mode) of Figure 1
presents DimenFix results using the Uniform Moving-in-Range
mode (see Section 3.1). For the Wine and Breast Cancer, the re-
sults are consistent regarding class separation, similar to the origi-
nal Force Scheme (first column). Only a few points of the orange
class on the Wine dataset are out of place (regarding the class) –
from the analytical point of view, this is indeed not bad since it
is possible to verify what are the instances for which the selected
feature has an impact in making them not separable from the in-
stances of other classes. We can observe an interesting pattern for
the Iris and Segmentation datasets. Different from the Wine and
Breast Cancer, where the selected features cover a range of differ-
ent values, in the Iris and Segmentation, many instances have the
same values and they are defined in regular intervals (almost dis-
crete), resulting in a “line” pattern. DimenFix can be executed using
the Gaussian Moving-in-Range mode to address this issue, allow-
ing the points to move inside a small interval. The fourth column
presents the results (DimenFix (-0.1,0.1)). The “line” pattern disap-
pears, and the overlap among instances with the same feature value
is substantially reduced. Although the exact feature values are lost,
the y-axis does not reflect the original value anymore, the feature
tendency is maintained from small to large values (fifth column),
allowing for the interpretation of the resulting layouts considering
the fixed feature.

Another potential application for DimenFix is when the feature

to fix is not part of the dataset features, such as a class. DimenFix
results varying the moving intervals for the benchmark datasets are
shown in Figure 2. Starting from a zero interval in the second col-
umn (similar to the Uniform Move-in-Range mode), the intervals
increase in the remaining projection columns. As expected, when
the interval is zero, the instances of the same class are overlapped
in a “line” pattern, equally spaced between the classes. This is sim-
ilar to applying a uni-dimensional Force Scheme to set one of the
projection axes, with the other being the class values. In this figure,
the first column presents the results of this uni-dimensional plus
class projection strategy for illustration. The real benefit of Dimen-
Fix emerges when the moving intervals increase. Even for a small
interval of [−0.2,0.2], it is already possible to see the instances of
the same class occupying the spaces between the classes in the lay-
out, increasing its overall quality (this is also quantitatively true,
as we will show later). However, the classes overlap more as this
interval increases. For instance, for the Iris dataset in the interval
[−0.9,0.9], the vertical separation between classes does not exist.
The classes are separated because the data allows that, not because
of DimenFix. This also happens up to an extent to the other datasets,
especially for the Segmentation where most of the classes mix in
the center of the layout. Still, they are better separated than the
original layout of Figure 1.

Lastly, a quantitative analysis is performed measuring the pair-
wise distance preservation using Kruskal’s stress [Kru64] and
the neighborhood preservation using thrusthworthiness [VPN∗10].
Boxplots summarizing multiple executions of the original Force
Scheme (Original), DimenFix fixing the features (DF/feature) or
classes (DF/class), and projections executing the Force scheme to
1D and using either the features (FS/feature) or classes (FS/class)
to set the second dimension are shown in Figure 3. As expected, the
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Figure 2: DimenFix varying the moving interval and 1D Force Scheme projections fixing the class in the y-axis. DimenFix allows the points
to occupy the space between the classes in the y-axis, resulting in better projections.

original Force Scheme attained the best results for stress and trust-
worthiness since two dimensions are fully used to approximate the
original distances (and neighborhoods). Nevertheless, the results
of fixing features are not much worse for both DimenFix and 1D
Force Scheme, indicating that the resulting layouts are somewhat
comparable to the ones generated by the original technique regard-
ing distance and neighborhood preservations. However, when fix-
ing the class, the preservation decreases, especially the pairwise
distance (stress). This is expected given the classes’ discrete nature
and the non-ordinal relationship between the classes in any of these
datasets (class 1 is not larger than class 0). Nevertheless, notice
that DimenFix results are always better than the 1D Force Scheme
strategy, and especially when fixing the class, they are much better,
indicating that taking the fixed feature/class into consideration in
the optimization process (varying in a range or not) result in more
precise projections that can convey relationships between features
or classes and the point positions. Something not usually possible
using the original Force Scheme.

5. Conclusion and Future Work

This paper presented a novel meta-Dimensionality Reduction (DR)
strategy, DimenFix, built upon any gradient-descent-based DR
method. Unlike normal DR methods, DimenFix allows users to fix
a dataset feature/class (or any external data, e.g., time) to an axis in
the projection layout without affecting (too much) its quality so that
the projection spatialization reflects the fixed values. With this hy-
brid strategy joining DR and scatter plot capabilities, different goals
can be achieved, for instance, (a) better preserving a particular fea-
ture of the dataset while simultaneously reducing the dimensional-
ity and (b) understanding the data distribution with respect to a spe-
cific feature specified by the user. Despite the promising results, an
in-depth analysis of DimenFix results, a better approach to defining

Figure 3: Comparing DimenFix different modes with the Original
Force Scheme and 1D Force Scheme strategy DimenFix allows for
feature values preservation without heavily degrading the quality
of the attained layouts.

its hyperparameters, such as the moving range ([−α,+α]), a math-
grounded strategy to compute the coordinates of the instances on
the fixed dimension when unordered external data (e.g., class) is
used (in our results, the order is arbitrary), and its application to
other DR methods, such as t-SNE and UMAP, are necessary and
left as future work.
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