
EuroVis Workshop on Visual Analytics (2024)
M. El-Assady and H.-J. Schulz (Editors)

Transient Visual Analytics

Hans-Jörg Schulz1 and Chris Weaver2

1Department of Computer Science, Aarhus University, Denmark
2School of Computer Science, University of Oklahoma, USA

Abstract
Visual Analytics often utilizes progression as a means to overcome the challenges presented by large amounts of data or ex-
tensive computations. In Progressive Visual Analytics (PVA), data gets chunked into smaller subsets, which are then processed
independently, and subsequently added to a visualization that completes over time. We introduce Transient Visual Analytics
(TVA), which complements this incremental addition of data with progressive removal of data as it becomes outdated, starts
to clutter the visualization, and generally distracts from the data that is currently relevant to visual analysis. Through com-
binations of various progressive addition and removal strategies, and supported by suitable analogies for the analyst and the
software engineer, TVA captures a variety of visual analysis scenarios and approaches that are not well captured by PVA alone.

CCS Concepts
• Human-centered computing → Visual Analytics; • Computing methodologies → Progressive computation;

1. Introduction

Progressive Visual Analytics (PVA) is a means of visualizing
and analyzing large datasets one data chunk at a time [ASSS18,
FFNE18, UAF∗23]. By breaking up the data into smaller chunks
that are easier to handle in terms of computation time and required
memory, PVA is a suitable means to overcome long-running com-
putational processes and memory limitations, so as to nevertheless
facilitate fluid visual-interactive data analysis. PVA is a formidable
way to funnel large amounts of input data into a visual analytics
pipeline that delivers output data to views for interactive explo-
ration even as the input data continues to arrive, the pipeline con-
tinues to process it, and/or the output data continues to accumulate.
The existing literature reports some convincing examples that PVA
indeed works well in practice, for example to query a large flight
database [FPDs12] or to view large genomic datasets [CKBE19].

Yet there is a caveat: The graphical space available in a view can
only accommodate a limited amount of data before it becomes visu-
ally cluttered. Similarly, the underlying data structure holding that
data in memory, such as a DOM tree for an SVG output, can only
grow so large before it becomes unwieldy for storage, transmission,
and/or computation. As a result, most progressive visualizations
use some form of data and/or visual aggregation—transforming it
into, e.g., bar graphs [PRJ∗23] or binned scatter plots [BEF17]. The
aggregation can be tuned to show more or less detail while remain-
ing within desired memory or screen space bounds, for example by
adjusting bin size. The price of this strategy is that analysis tasks
requiring access to the individual, disaggregated data items can no
longer be performed. Such tasks are common and include detecting
outliers in quantitative data, identifying critical nodes (i.e., articula-

tion points) in network data, and discovering rare patterns or peaks
in time series. In addition, foundational techniques commonly used
in interactive visual analyses, such as linking & brushing between
multiple coordinated views, become cumbersome to realize, as the
individual data items are no longer present that would allow deter-
mining which parts of a chart to link with the corresponding parts
of another chart.

In response to this challenge, this paper proposes a form of PVA
that does not accumulate data without limits at the end of a progres-
sive visual analytics pipeline in some buffer, be it a data structure,
a view, or a combination of both. Instead, once a capacity thresh-
old is reached, the progressive process adding more and more new
data items is complemented by another progressive process that re-
moves data items—a regressive process so to speak. The dataflow
enacted by these two processes is shown in Figure 1. We call this
combination of incremental progression and decremental regres-

Progression

Regression

Figure 1: The general dataflow between backend and frontend in
Transient Visual Analytics. The progression of data added from the
database to the view is complemented by an inverse process, the
regression, that removes data from the view and “returns” them to
the database.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/eurova.20241108 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-9974-535X
https://orcid.org/0000-0002-6713-093X
https://doi.org/10.2312/eurova.20241108


2 of 6 Hans-Jörg Schulz & Chris Weaver / Transient Visual Analytics

sion Transient Visual Analytics (TVA) as data items “pass through”
the view but do not necessarily stay around indefinitely.

In this paper, we define the main idea of TVA (Sec. 2), look at
different strategies for progression and regression (Sec. 3), propose
analogies as possible mental models for TVA (Sec. 4 and Sec. 5),
and consider the combination of PVA and TVA (Sec. 6).

2. Transient Visual Analytics in a Nutshell

We define Transient Visual Analytics (TVA) as the combined
mechanism of (a) progressively adding data to a view for its inter-
active visual analysis and (b) progressively removing data from that
view—for example, if the view becomes overcrowded or the data
becomes stale. Removed data are “added back” to the database (or
marked within the database as no longer visible) so that they can
be added again later, should they once more become relevant to the
analysis. In accordance with PVA, we call the loading/adding pro-
cess progression, whereas we call the clearing/removing process
regression to better differentiate them as two opposite yet comple-
mentary modes of data flow.

Given a large enough dataset that does not fit the available screen
space or memory, the transient view of the data will thus always be
intermediate and never complete, as the data are removed at some
point to make space for other data. This is the most important dif-
ference between TVA and PVA: Whereas PVA aims to provide the
human analyst with a gradually maturing view that converges to-
wards the full view of all data over time, TVA aims to provide the
right portions of the data at the right times throughout an analysis.

In doing so, TVA acknowledges that real-world analysis work-
flows are constantly in flux and shifting from one hypothesis to the
next as new observations are made and insights are gained. To sup-
port this unpredictable nature of analyses in which different por-
tions of the data are relevant at different stages, TVA shifts with
the meandering analysis workflow by constantly adding data items
currently deemed relevant and removing irrelevant ones that clut-
ter the view without purpose or benefit at pertinent points in the
workflow. Although steerable PVA [WM04, CKBE19, HASS22] is
capable of adding relevant data with varying notions of relevance
over the course of an analysis, it is not able or even intended to
“garbage collect” data items after use. As a result, the view either
clogs up with individual data items or, in anticipation of this prob-
lem, is designed to show aggregates.

The TVA process is governed by three factors: (1) the progres-
sion strategy by which data items are added, (2) the regression strat-
egy by which data items are removed, and (3) the thresholding ap-
proach that determines when regression is triggered. These factors
can change mid-analysis to account for a shift in user interest, e.g.,
switching from one progression strategy to another.

Possible progression strategies include, for example, uniform
random sampling (e.g., for data to be shown in a scatter plot), re-
verse sequential order (e.g., for time series data starting with the
most recent time point and then going backward to provide his-
torical context), user-determined (e.g., through interactive steer-
ing [CKBE19, HASS22]), or something more involved like a cus-
tom sampling [HS24] or fetching data based on a degree-of-interest
function [HMPS23].

Possible regression strategies are, for example, first-in, first-out
(i.e., removal by age), user-determined (e.g., like the inverse to the
steering approaches mentioned above, where regions of the data
space that are furthest away from zoomed-in or selected regions get
removed first), or a degree-of-invisibility (e.g., data items that are
not visible due to overplotting by other data items). The regression
can also remove items based on data characteristics (e.g., low data
quality or high uncertainty). After all, if only a tiny sample of all
data can fit the screen space, we want this sample to contain the
least error-prone and most reliable data points to base subsequent
analytic and real-world decisions on.

Possible thresholds at which the regression is triggered can be,
for example, a limit of displayable items (i.e., a visual entity bud-
get [EF10]), a limit of allowable clutter or data density (e.g., as
captured by metrics such as those introduced by Bertini and San-
tucci [BS04] or Ellis and Dix [ED06]), or a time limit for how long
a data item can be actually or effectively out of view (e.g., off-
screen due to panning or at subpixel resolution due to zooming)
before it gets removed.

A complicating factor for thresholds in TVA is how oscillations
may occur around a threshold as the overall progression shifts back
and forth between progressive adding and regressive removal. To
smooth out these oscillations and reduce their influence on inter-
action and analysis, one can introduce a hysteresis in the form
of two thresholds: a limitmin below which the progression adds
more data items and a limitmax above which the regression removes
data items, with limitmax − limitmin > chunksize. More generally,
a threshold approach can apply start, pause, continue, and stop
thresholds to progressive adding and/or regressive removal, and do
so either independently or in concert.

3. Strategies for Progression and Regression

To unlock the full potential of TVA, it is important to note that the
strategy that determines the (current) irrelevance of a data item does
not necessarily have to be the inverse of the strategy that is used
to determine its (current) relevance. In essence, different strategies
for progression and regression can be combined to create a wide
variety of transient behaviors. To illustrate this point, we provide
four examples of such behaviors in the following list.

Sliding Window is a well-known transient pattern that combines
a linear progression of chunking and processing data in sequence
(e.g., temporal sequence) with a first-in, first-out regression strat-
egy that removes the “oldest” data items to make space for new data
items. The direction in which the window slides over the data can
be user-steerable, so that a pan to the left or to the right adds data
in that direction of the sequence and removes data items from the
respective other end of the window. While by itself such a sliding
window may not be notable, it is not far-fetched to imagine combin-
ing multiple sliding windows to create powerful progressive anal-
ysis setups like progressive ChronoLenses [ZCPB11]. One could
even create “smart” sliding windows in which one or both ends are
pinned or interactively snap to progression or regression threshold
crossing points in the data processing sequence.

Reactive Visualization is a progressive visualization that com-
bines a progression of levels of detail (e.g., hierarchical data be-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



Hans-Jörg Schulz & Chris Weaver / Transient Visual Analytics 3 of 6

ing linearized and chunked in breadth-first order) with a last-in,
first-out regression strategy that removes the “latest”—i.e., the
most detailed—data items first. Such a (Level-of-Detail) LoD-
based progression has already been suggested for Progressive
Treemaps [RH09] to output exactly the right amount of informa-
tion that the available drawing space can sensibly show, and then
stop the progression. By adding the regression to this procedure,
the progression can be temporarily halted once the drawing space is
sufficiently full. It can later be restarted to progressively add more
levels of detail whenever the user enlarges the view or to regres-
sively remove the previously added layers of detail whenever the
user shrinks the view down. Thus, the LoD of the displayed in-
formation will dynamically adapt to the available drawing space.
Another scenario in which this mechanism would be useful is a
progressive overview & detail visualization design in which two
views—a small minimap (the overview) and a larger cutout (the de-
tail view)—are both provisioned with data by the same progression,
but have different thresholds for how much data can be shown. The
threshold for each view could be yoked relative to the progression
and regression trigger thresholds for the data itself. A series of in-
termediate views showing multiple levels of detail could have fixed
or interactively adjustable thresholds that are distributed between
the thresholds of the overview and detail views.

Local Dampening is a combination of a random uniform pro-
gression and a regression that removes data items from very dense
regions in the view. Together, they can be used to address a stand-
ing problem in PVA: Certain regions of the view (e.g., a scatter plot)
may fill up and stabilize sooner than other regions—yet there is no
means to halt the progression locally in the stable regions while
keeping it running in the others. If a user decides to halt/terminate
the progression, it is always globally for the whole view, in which
some regions may still be very vaguely developed while others are
already overly dense with no more visible changes occurring. By
adding the regression, we can keep the progression running while
keeping the overly dense regions “in check” by removing data items
from them if needed. This way, view regions that take longer to
develop into clear patterns have the opportunity to do so without
regions already exhibiting a pattern starting to deteriorate again
due to increased overplotting. To indicate the regionally different
sampling rates, these rates can, for example, be color-coded in the
background.

Transient Snapshots capture moments of analytic interest as a
visualization progresses and regresses. Which moments to snapshot
can be triggered by onsets, offsets, or transitions between progres-
sion and regression strategies, when crossing thresholds of interest
chosen by the analyst, or at regular or irregular wall clock offsets
relative to other triggers. Particularly useful are snapshots that be-
have as fully interactive copies of the visualization at the captured
points of progression. Taken in series, such snapshots can serve to
record and present the visual analytic provenance [GS06,RESC16]
of progression and regression, show the history of convergence
from detail to overview, and support coordinated interaction such
as parallel navigation and selection. They can even be subject to
progression and regression themselves in a multiple view layout
that adds them to one end and removes them from the other end as
the “window of transience” catches up to, passes, and leaves behind
snapshot trigger points. In ways like this, visualization designs can

utilize TVA at the level of entire views and layouts as well as at the
level of individual and aggregated data items within views.

4. Frontend Analogy: Spraying

Working with any form of PVA can be overwhelming, as in addi-
tion to handling the data analysis itself, the user now also has to
handle (parameterize, steer, or branch) the process of how the data
are incrementally loaded and computed. With TVA now adding yet
another progressive process to be managed—the regression—data
analysis might become even more daunting to the end user. To over-
come this hurdle, we suggest the use of an intuitive analogy that
provides a mental model for the progressive processes running “un-
der the hood” and that makes their results foreseeable and the effect
of adjusting them predictable.

When talking to nontechnical visualization users about the
mechanism of transient visualization, we found the analogy of
“spraying data items onto a canvas” quite fitting and understand-
able. In this analogy, the progression is described as spraying data
onto the visualization in the same way as a garden hose sprays wa-
ter onto a clear vertical surface. The surface becomes more visible
where the spray lands on it. The more drops that land at a spot,
the more they accumulate there. When enough drops have accumu-
lated, the excess water runs down the surface, so that again only
some drops remain. If the garden hose is directed somewhere else,
over time the sprayed region dries up. After a while only the clear
surface remains. This analogy to TVA is illustrated in Figure 2.

Figure 2: In the analogy of “spraying data onto the visualization”,
the spray from the garden hose signifies the progression of adding
data items to the view, while the runoff stands for the regression of
removing excess data from the view.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 6 Hans-Jörg Schulz & Chris Weaver / Transient Visual Analytics

The analogy immediately makes clear what to expect from the
progressive data stream and how it will behave. Opening the valve
(i.e., increasing the chunk size or throughput of the progression)
will produce and add more data items/water droplets over time.
Setting the nozzle of the garden hose to mist will produce a uni-
form random addition of more data items/droplets at a wide range
– possibly to the entire visualization at once. However, setting it
to jet will produce a very targeted stream that adds data/water to
a small region of the visualization; for example, in an attempt to
finish the progression in that area sooner. Thanks to the regression,
excess water/data runs off, so that the small area cannot drown in
water/data and get completely overplotted. A practical use case of
this “jet” setting would be to point it at a suspected outlier to in-
crease the progressive sampling around that outlier and then ob-
serve if it remains a singleton or not—that is, to test if it is a true
outlier or whether it is just an artifact of the progression not having
progressed far enough.

Along the lines of spray rendering [PS93], which has been used
in early incremental visualizations [PA94], it is likewise quite in-
tuitive to consider the utility for TVA of “additives” in the wa-
ter stream, much like the smart particles used in spray render-
ing. These could be used, for example, to add derived data par-
ticles to represent cluster centroids, imputed data, or extrapo-
lated/forecasted data that do not exist in the dataset itself.

Depending on the setting of the described scenario, other mecha-
nisms can be emulated. For example, the sprayed liquid may not be
described as water but as a sticky glue-like substance that does not
run off the surface but accumulates instead. This plausibly captures
an effect like Visual Sedimentation [HVF13]. Likewise, the clear
surface that is being sprayed may not be described as vertical but as
horizontal, so that the water does not run off but pools around spots
that receive more data items/water than others. This could serve as
a sound model for something akin to jitter (e.g., [Cle93, TGC03])
that randomly displaces densely plotted data items to nearby loca-
tions, or Scatterplots with circular pixel placement [JHM∗13] in
which data items are not overplotted but instead displaced outward
to the next available free pixel, effectively creating something like
a “splotch” or “puddle” around dense local areas.

5. Backend Analogy: Caching

PVA/TVA is not only a challenge for the end user to manage the
additional layer of progression while performing an analysis of the
incoming stream of data chunks. It is also a challenge for the en-
gineer who has to develop the TVA system. Mapping the concept
of TVA—what it is and what it does—to a well-known existing
mechanism can again help to lower the hurdles of realizing TVA.

In our own ongoing work to build a software framework for
TVA, we found it helpful to think of it in analogy to a “read-through
caching mechanism”. In this analogy, the progression would insert
data items into the cache (i.e., the view) when these are needed,
e.g., when they should become visible as the user may have panned
the view and they are no longer off-screen. The regression would
then be the eviction mechanism that removes data items from the
cache/view to make space for new data items.

In this analogy, we can even have multiple cache levels – for

example, a larger cache that represents the data structures in mem-
ory combined with a smaller cache that contains only those data
items from the larger cache that are currently visible. Layering the
caches like this is useful for making view navigation smoother, as
not every little pan and zoom operation will require fetching new
data from the database, but can be fulfilled with data still available
in the next-level cache. At the same time, when the trajectory of
a panning operation is known, data lying in that direction can be
prefetched from the database [AW12].

Note that a layered architecture like this is almost a natural
extension of existing non-progressive layers in the visualization
pipeline. Whether it is layers of filters as introduced by Tominski
et al. [TAS09, Sec. 5.3], or layers of zoom levels as used in Stacked
Zooming [JE13], it is already commonplace in visualizations to uti-
lize layering in which subsequent layers contain fewer data items
that can thus be displayed at higher levels of detail. Extending these
layers with a “cache-like” functionality that retains and removes
data according to different strategies builds onto an existing con-
ceptual understanding of the VA system, instead of asking the de-
veloper to rethink and overwrite their current “mental map”.

6. Combining PVA and TVA

Having criticized that PVA only supports analytic tasks on data ag-
gregates, TVA seems to go from one extreme to the other. What
is really needed is a well-balanced combination of the two mech-
anisms: running PVA in areas of low interest to create crude ag-
gregates that support overview tasks, provide orientation, and aid
navigation; while at the same time running TVA in areas of high
interest to create detailed per-data item mappings that support di-
rect and indirect look-ups, comparisons, and details on demand.

Figure 3 shows an example of such a combination as gener-
ated by an early prototype of our TVA software framework that
we are currently developing. The shown progressive visualization
is geared to support finding outliers, i.e., one of the tasks we men-
tioned in the introduction for which PVA is not well suited. Sparse
regions are handled by TVA, with additional data items being added
individually. The moment a given density threshold is surpassed in
a particular region, all data items are removed, and the region is
handed over to a PVA process that shows aggregate counts through
color coding. This makes sense, as denser regions do not contain
outliers and thus regions become increasingly uninteresting as their
density increases.

The effect of this combination is that the cluster boundaries,
where the data density is low, are processed by TVA at the high-
est level of detail, while the center of each cluster is treated by PVA
and shown in compacted form, effectively freeing memory to keep
the regions of interest at a per-item resolution. As the view builds
up, empty regions become sparsely populated, sparse regions be-
come densely populated, the cluster boundaries move outward, and
the TVA regions follow—i.e., they shift with the analysis interest
as needed.

But it is not only the computational and memory efficiency of
this combined approach that is notable. The upcoming roadmap and
research agenda for Progressive Data Analysis explicitly calls for
“mechanisms for attention management” as an important research

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



Hans-Jörg Schulz & Chris Weaver / Transient Visual Analytics 5 of 6

Figure 3: A preview of a combination of PVA and TVA. This ex-
ample uses PVA to aggregate data in areas of lesser interest (here
in the cluster centers) and TVA to placing individual data items in
areas of high interest (here at the cluster boundaries). This allows
searching for outliers in the sparse regions of the plot even as these
regions shift over time with additional data coming in. (To play the
animation, use a stand-alone PDF viewer like Adobe Acrobat.)

challenge [FFS24, chapter 5.5]. We believe that the combination
of PVA and TVA, as illustrated in Figure 3, is a viable candidate
for providing such a mechanism, as it directs the analyst’s attention
to the visually salient parts that are (currently) controlled by TVA,
while the PVA-controlled parts provide the necessary context.

7. Conclusion

For now, transient VA is a concept proposed to alleviate some of
the inherent challenges of incremental PVA. As outlined in the pre-
vious section, we do not see TVA as a “competitor” to PVA, but as
a complementary mechanism that can handle some analysis scenar-
ios that are not a good fit for PVA, and vice versa. While TVA still
needs to be further developed—both in theory and practice—we
believe it to be the combination of PVA and TVA that will provide
a next-generation visual analytics approach for very large data.

Acknowledgments

The authors are grateful to Remco Chang and Marius Hogräfer who
gave valuable input to the idea of Transient Visual Analytics along
the way. Special thanks go to Stephan Ohl for providing screen-
shots from our early TVA software framework for the animation in
Figure 3, as well as to Maja Dybboe for her artistic rendition of
TVA in Figure 2. Work on this project was funded in part by the

Independent Research Fund Denmark (DFF) through project Arti-
Plex, grant no. 3105-00117B.

References
[ASSS18] ANGELINI M., SANTUCCI G., SCHUMANN H., SCHULZ

H.-J.: A review and characterization of progressive visual ana-
lytics. Informatics 5, 3 (2018), 31:1–31:27. doi:10.3390/
informatics5030031. 1

[AW12] AHMED Z., WEAVER C.: An adaptive parameter space-filling
algorithm for highly interactive cluster exploration. In Proceedings of the
IEEE Conference on Visual Analytics Science and Technology (VAST)
(Seattle, WA, October 2012), Ward M., Santucci G., (Eds.), pp. 13–22.
doi:10.1109/VAST.2012.6400493. 4

[BEF17] BADAM S. K., ELMQVIST N., FEKETE J.-D.: Steering the
craft: UI elements and visualizations for supporting progressive visual
analytics. Computer Graphics Forum 36, 3 (2017), 491–502. doi:
10.1111/cgf.13205. 1

[BS04] BERTINI E., SANTUCCI G.: Quality metrics for 2D scatterplot
graphics: Automatically reducing visual clutter. In Proceedings of the
International Symposium on Smart Graphics (2004), Springer, pp. 77–
89. doi:10.1007/978-3-540-24678-7_8. 2

[CKBE19] CUI Z., KANCHERLA J., BRAVO H. C., ELMQVIST N.:
Sherpa: Leveraging user attention for computational steering in visual
analytics. In Proceedings of the Symposium on Visualization in Data Sci-
ence (2019), IEEE, pp. 48–57. doi:10.1109/VDS48975.2019.
8973384. 1, 2

[Cle93] CLEVELAND W. S.: Visualizing Data. Hobart Press, Summit,
NJ, 1993. 4

[ED06] ELLIS G., DIX A.: The plot, the clutter, the sampling and its
lens: occlusion measures for automatic clutter reduction. In Proceedings
of the Working Conference on Advanced Visual Interfaces (2006), ACM,
pp. 266–269. doi:10.1145/1133265.1133318. 2

[EF10] ELMQVIST N., FEKETE J.-D.: Hierarchical aggregation for in-
formation visualization: Overview, techniques, and design guidelines.
IEEE Transactions on Visualization and Computer Graphics 16, 3
(2010), 439–454. doi:10.1109/TVCG.2009.84. 2

[FFNE18] FEKETE J.-D., FISHER D., NANDI A., (EDS.) M. S.: Pro-
gressive data analysis and visualization. Dagstuhl Reports 8, 10 (2018),
1–40. doi:10.4230/DagRep.8.10.1. 1

[FFS24] FEKETE J.-D., FISHER D., SEDLMAIR M. (Eds.): Progressive
Data Analysis: Roadmap and Research Agenda. Eurographics, 2024. to
appear. 4

[FPDs12] FISHER D., POPOV I., DRUCKER S., SCHRAEFEL M.: Trust
me, I’m partially right: incremental visualization lets analysts explore
large datasets faster. In Proc. of the SIGCHI Conference on Human
Factors in Computing Systems (2012), ACM, pp. 1673–1682. doi:
10.1145/2207676.2208294. 1

[GS06] GROTH D. P., STREEFKERK K.: Provenance and annotation for
visual exploration systems. IEEE Transactions on Visualization and
Computer Graphics 12, 6 (Nov. 2006), 1500–1510. doi:10.1109/
TVCG.2006.101. 3

[HASS22] HOGRÄFER M., ANGELINI M., SANTUCCI G., SCHULZ H.-
J.: Steering-by-example for progressive visual analytics. ACM Trans-
actions on Intelligent Systems and Technology 13, 6 (2022), 96:1–96:26.
doi:10.1145/3531229. 2

[HMPS23] HOGRÄFER M., MORITZ D., PERER A., SCHULZ H.-J.:
Combining degree of interest functions and progressive visualization.
In Short Paper Proceedings of the IEEE Conference on Visualization
& Visual Analytics (2023), IEEE, pp. 251–255. doi:10.1109/
VIS54172.2023.00059. 2

[HS24] HOGRÄFER M., SCHULZ H.-J.: Tailorable sampling for progres-
sive visual analytics. IEEE Transactions on Visualization and Computer
Graphics (2024), 1–13. to appear. doi:10.1109/TVCG.2023.
3278084. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

http://dx.doi.org/10.3390/informatics5030031
http://dx.doi.org/10.3390/informatics5030031
http://dx.doi.org/10.1109/VAST.2012.6400493
http://dx.doi.org/10.1111/cgf.13205
http://dx.doi.org/10.1111/cgf.13205
http://dx.doi.org/10.1007/978-3-540-24678-7_8
http://dx.doi.org/10.1109/VDS48975.2019.8973384
http://dx.doi.org/10.1109/VDS48975.2019.8973384
http://dx.doi.org/10.1145/1133265.1133318
http://dx.doi.org/10.1109/TVCG.2009.84
http://dx.doi.org/10.4230/DagRep.8.10.1
http://dx.doi.org/10.1145/2207676.2208294
http://dx.doi.org/10.1145/2207676.2208294
http://dx.doi.org/10.1109/TVCG.2006.101
http://dx.doi.org/10.1109/TVCG.2006.101
http://dx.doi.org/10.1145/3531229
http://dx.doi.org/10.1109/VIS54172.2023.00059
http://dx.doi.org/10.1109/VIS54172.2023.00059
http://dx.doi.org/10.1109/TVCG.2023.3278084
http://dx.doi.org/10.1109/TVCG.2023.3278084


6 of 6 Hans-Jörg Schulz & Chris Weaver / Transient Visual Analytics

[HVF13] HURON S., VUILLEMOT R., FEKETE J.-D.: Visual sedimen-
tation. IEEE Transactions on Visualization and Computer Graphics 19,
12 (2013), 2446–2455. doi:10.1109/TVCG.2013.227. 4

[JE13] JAVED W., ELMQVIST N.: Stack zooming for multifocus in-
teraction in skewed-aspect visual spaces. IEEE Transactions on Vi-
sualization and Computer Graphics 19, 8 (2013), 1362–1374. doi:
10.1109/TVCG.2012.323. 4

[JHM∗13] JANETZKO H., HAO M. C., MITTELSTÄDT S., DAYAL U.,
KEIM D.: Enhancing scatter plots using ellipsoid pixel placement and
shading. In Proceedings of the 46th Hawaii International Conference
on System Sciences (2013), IEEE, pp. 1522–1531. doi:10.1109/
HICSS.2013.197. 4

[PA94] PANG A., ALPER N.: Mix&match: a construction kit for visu-
alization. In Proceedings of Visualization (1994), IEEE, pp. 302–309.
doi:10.1109/VISUAL.1994.346305. 4

[PRJ∗23] PATIL A., RICHER G., JERMAINE C., MORITZ D., FEKETE
J.-D.: Studying early decision making with progressive bar charts. IEEE
Transactions on Visualization and Computer Graphics 29, 1 (2023),
407–417. doi:10.1109/TVCG.2022.3209426. 1

[PS93] PANG A., SMITH K.: Spray rendering: Visualization using smart
particles. In Proceedings of Visualization (1993), IEEE, pp. 283–290.
doi:10.1109/VISUAL.1993.398880. 4

[RESC16] RAGAN E. D., ENDERT A., SANYAL J., CHEN J.: Char-
acterizing provenance in visualization and data analysis: An organiza-
tional framework of provenance types and purposes. IEEE Transactions
on Visualization and Computer Graphics 22, 1 (January 2016), 31–40.
doi:10.1109/TVCG.2015.2467551. 3

[RH09] ROSENBAUM R., HAMANN B.: Progressive presentation of
large hierarchies using Treemaps. In Proceedings of the International
Symposium on Visual Computing (2009), Springer, pp. 71–80. doi:
10.1007/978-3-642-10520-3_7. 3

[TAS09] TOMINSKI C., ABELLO J., SCHUMANN H.: CGV—an inter-
active graph visualization system. Computers & Graphics 33, 6 (2009),
660–678. doi:10.1016/j.cag.2009.06.002. 4

[TGC03] TRUTSCHL M., GRINSTEIN G., CVEK U.: Intelligently resolv-
ing point occlusion. In Proceedings of the IEEE Symposium on Informa-
tion Visualization (InfoVis) (Seattle, WA, October 2003), IEEE, pp. 131–
136. doi:10.1109/INFVIS.2003.1249018. 4

[UAF∗23] ULMER A., ANGELINI M., FEKETE J.-D., KOHLHAMMER
J., MAY T.: A survey on progressive visualization. IEEE Transactions
on Visualization and Computer Graphics (2023), 1–18. to appear. doi:
10.1109/TVCG.2023.3346641. 1

[WM04] WILLIAMS M., MUNZNER T.: Steerable, progressive multidi-
mensional scaling. In Proceedings of the IEEE Symposium on Informa-
tion Visualization (2004), IEEE, pp. 57–64. doi:10.1109/INFVIS.
2004.60. 2

[ZCPB11] ZHAO J., CHEVALIER F., PIETRIGA E., BALAKRISHNAN R.:
Exploratory analysis of time-series with ChronoLenses. IEEE Trans-
actions on Visualization and Computer Graphics 17, 12 (2011), 2422–
2431. doi:10.1109/TVCG.2011.195. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

http://dx.doi.org/10.1109/TVCG.2013.227
http://dx.doi.org/10.1109/TVCG.2012.323
http://dx.doi.org/10.1109/TVCG.2012.323
http://dx.doi.org/10.1109/HICSS.2013.197
http://dx.doi.org/10.1109/HICSS.2013.197
http://dx.doi.org/10.1109/VISUAL.1994.346305
http://dx.doi.org/10.1109/TVCG.2022.3209426
http://dx.doi.org/10.1109/VISUAL.1993.398880
http://dx.doi.org/10.1109/TVCG.2015.2467551
http://dx.doi.org/10.1007/978-3-642-10520-3_7
http://dx.doi.org/10.1007/978-3-642-10520-3_7
http://dx.doi.org/10.1016/j.cag.2009.06.002
http://dx.doi.org/10.1109/INFVIS.2003.1249018
http://dx.doi.org/10.1109/TVCG.2023.3346641
http://dx.doi.org/10.1109/TVCG.2023.3346641
http://dx.doi.org/10.1109/INFVIS.2004.60
http://dx.doi.org/10.1109/INFVIS.2004.60
http://dx.doi.org/10.1109/TVCG.2011.195

	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


