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Figure 1: Overview of the proposed visual analytics framework that fosters trust into healthcare machine learning. Circles correspond to
stages from the original framework. Rounded rectangles introduce the roles of domain experts along the process. Dotted arrows represent
knowledge transfer, continuous arrows reference transfer of information, while violet wide arrows indicate flow of trust. Our focus lies specif-
ically on the interprofessional gap, in which the VA expert acts as a facilitator for the multidisciplinary team (top violet arrows).

Abstract
Integration of machine learning (ML) systems into healthcare settings creates novel opportunities, including pattern recognition
in heterogeneous medical datasets, clinical decision support as well as processes automation to save time, advance the quality of
care, reduce costs and relieve healthcare staff. Challenges include opaque digital systems, curbed autonomy as well as require-
ments on communication, interaction and human-machine decision-making. Obstacles involve the interprofessional gap between
data scientists and healthcare professionals (HCPs) during model development as well as the lack of trust into ML models. Visual
Analytics (VA) enables versatile interactions between users and ML models via adaptable visualizations and has been success-
fully deployed to improve accuracy, identify bias and increase trust. However, specifically supporting HCPs to gain trust into
ML models through VA systems is not sufficiently explored. We propose an extended visual data exploration framework towards
trustworthy ML in the healthcare domain for multidisciplinary teams of data scientists, VA experts and HCPs. Additionally, we
apply our framework to three real-world use cases for policy development, plausibility testing and model optimization.
CCS Concepts
• Applied computing → Health care information systems; • Computing methodologies → Machine learning;
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1. Introduction
Machine learning (ML) applications in the healthcare domain are
spreading steadily and ever quicker. Due to increasing patient
counts, amount of data, as well as number and pace of decisions be-
ing made, both the needs and benefits of applying ML techniques are
greater than ever. There are distinct opportunities for ML to reduce
healthcare costs, decrease disease burden and increase positive out-
comes for patients, as well as satisfaction of both patients and staff.
Machine learning is therefore an important part of in the ongoing
digital transformation of many healthcare systems worldwide.

While many applications for ML in healthcare have been pro-
posed, only few have been successfully deployed in real-world clin-
ical settings. Two main obstacles are the interprofessional gap be-
tween data scientists and healthcare professionals during model de-
velopment as well as the lack of trust into machine learning mod-
els [OSV21]. These gaps lead to disruptions in communication and
decision-making. Visual Analytics (VA) methods enable versatile
interactions between users and machine learning models. They have
been successfully deployed to improve accuracy, identify bias and
increase trust [BABB∗21]. Central to this task is the conjunction of
the users mental models (e.g. pre-existing, tacit or process knowl-
edge) with the model’s characteristics and outputs [ALA∗18]. How-
ever, specifically supporting healthcare professionals with trustwor-
thy machine learning models through Visual Analytics systems is
not sufficiently explored [OSV21].

We can distill the described problem setting into the following
research question and sub-questions for guidance, to which we will
refer to in the remainder of this work:
𝐐: How can visual analytics support healthcare professionals and

data scientists to build trust in ML models for decision support?
𝐒𝐐𝟏: How can we build trust during complex decision-making?
𝐒𝐐𝟐: How can we build trust into models based on complex data?
𝐒𝐐𝟑: How can we build trust into complex models?
Within the intersection of trustworthy ML and healthcare, our

contributions are three-fold: (1) We identify a research gap through
a survey of existing visual data analysis frameworks (Tab. 1), (2)
propose an extended framework towards visual data exploration that
can act as a guideline to design clinical VA systems (𝐐, Fig. 1), and
(3) show the rationale of the proposed framework by contextual-
izing three VA tools each addressing real-world settings spanning
different healthcare areas, users and contexts (𝐒𝐐𝟏−𝐒𝐐𝟑).

2. Related Work
2.1. Trust in Visual Analytics
Trust is a fundamental factor in how users engage with Visual Ana-
lytics systems. It can be differentiated into cognitive vs. affective
trust [ESB∗23], where both categories exhibit multiple trust an-
tecedents relating to either the data or the visualization part of a
given system. Domain experts can have high trust even in novel vi-
sual analytics systems provided they are intuitive, transparent and
flexible enough to let users switch easily between analysis tasks
[DLW∗17]. Consequently, some studies try to measure trust as in-
tegral aspects of visualizations [PFCB23]. Others describe a con-
tinuous scale from distrust to trust, with a limit of forgivability and
a cooperation threshold in between [HS20].

Figure 2: Visual Data Exploration Loop consisting of data, models,
visualisation and knowledge connected by their respective relation-
ships upon which our framework builds [KMSZ09].

Visual analytics systems can have a trust advantage in this re-
spect over other information-based mediums especially for complex
analytical reasoning tasks. For example, trust into models can be
increased by visualizing their specific uncertainties [PLP∗22], de-
scribing the provenance of the training datasets [RESC16], exter-
nalizing trust [EAA∗23], or visually comparing test samples with
examples from the train set during inference [LJHW23].

2.2. Visual Data Exploration Loop and its Extensions

Presence of the above mentioned and other trust-building measures
and tools in Visual Analytics systems is well aligned with core chal-
lenges of analytical reasoning [TC05], in particular when facing am-
biguous or even conflicting data. Adequately supporting timely, de-
fensible and understandable assessments and subsequent decision
making in these settings requires, explicitly or implicitly, the con-
solidation of structures inside data with user’s tacit knowledge.

The Visual Data Exploration Loop [KMSZ09] proposes a high-
level conceptual model of a system supporting these requirements,
containing four stages Data, Visualisation, Models and Knowledge,
with transitions between them (cf. Fig. 2). While widely recognized,
Keim’s model did not capture trust explicitly.

We searched the scientific database Google Scholar for publica-
tions citing the original framework as well as describing themselves
as extensions or are evidently based on Keim’s framework since its
publication and identified 17 publications, that meet this criteria;
twelve of them related to at least one of our topics of interest. (cf.
Tab. 1). Certain works emphasize the human-computer interaction
regarding cognitive aspects [BL21], and objectives and actions of
users [RAW∗16]. Specific parts of the analytical process are like-
wise addressed in detail, including data preprocessing [MLPM21],
model behavior on high-dimensional tasks [PvSE∗22], model build-
ing [ALA∗18] or model specifications [SCK20]. Most closely re-
lated to our work are approaches focused on human-centered ma-
chine learning [SSZ∗17], knowledge discovery [SGGB13] and
knowledge generation [SSS∗14] as well as uncertainty, awareness
and trust [SSK∗16]. A singular framework to address both trust-
worthy machine learning as well as the specific challenges of multi-
disciplinary decision-making in healthcare is notably missing.
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Source Year Area Trust XAI ML Teams
[BAF∗13] 2013 model selection in time series analysis □ □ ■ □
[SGGB13] 2013 knowledge discovery □ □ ■ □
[SSS∗14] 2014 knowledge generation ◪ □ □ ◪
[SSK∗16] 2016 uncertainty, awareness and trust ■ □ ◪ □
[SSZ∗17] 2017 human-centered machine learning ◪ ■ ■ ◪
[ALA∗18] 2018 model building ◪ □ ◪ □
[SSB∗19] 2019 gameful design concepts □ □ □ ■
[SKKC19] 2019 Visual Analytics assisted ML □ □ ■ □
[SCK20] 2020 model specifications ■ ■ ■ □
[MLPM21] 2021 data preprocessing and profiling ■ □ ■ □
[PvSE∗22] 2022 model behavior on high-dimensional tasks □ ■ ■ □
[GCMH23] 2023 longitudinal clinical studies □ □ ■ □

Table 1: Extensions to Keim’s Visual Data Exploration Loop with their specific areas and whether they address the visual analytics aspects
in full (■), partly (◪) or not at all (□). XAI: Explainable Artificial Intelligence, ML: Machine Learning, Teams: Multi-disciplinary teams.

3. Framework

We exhibit our framework by introducing relevant stakeholders and
their relationships as well as describing identified combined re-
quirements with respect to the overall flow of trust between these
stakeholders.

3.1. Stakeholders

Our framework makes an addition to the originally proposed frame-
work in terms of stakeholders. We augment the visual data explo-
ration loop with three protagonist groups present in most use cases
(cf. Fig. 1):

1 Data Scientist: Experts in data handling, pre-processing,
selection, training and evaluation of machine learning models are
tasked to probe the data to explore relevant patterns and develop
a mathematical description of them. Data scientists almost always
start out without explicit knowledge about the dataset’s prove-
nience, including data collection process, quality control gates or
original intended cause. This complicates data pre-processing such
as cleaning, imputation or transformation. Still, these steps are fun-
damental to the trust process of data scientists and lay the foundation
for model architecture selection and evaluation processes. Along
the way, these AI model builders execute multiple explicit and im-
plicit sanity-checks [BSN∗23]. Data Scientists can be assisted in
their analysis by means of datasheets for datasets, which contains
information about motivation and process of data collection, com-
position, preprocessing, distribution and maintenance [GMV∗18].

2 Visual Analytics expert: The design and development of a
visual analytics system calls for specialists with knowledge about
data visualization, user experience, human perception as well as in-
teraction. The task of the VA expert lies in the creation of single or
multiple visual interfaces containing a layout of views showcasing
aspects of the data or results derived from it. This can be achieved
through interactive elements such as responsive graphs or other vi-
sual elements. It is necessary, that the VA expert understands the
nuanced relationships between the input data and the end-user’s
decision-process and can support the identification of patterns using
off-the-shelf or custom visual analytics tools.

3 Healthcare professional: Medical practitioners are the end
users in most scenarios of the decision support system, so the sys-
tem’s design needs to cater to them and their workflows. This stake-
holder group can include clinicians such as nursing staff, doctors,
surgeons or assistants. Their primary focus lies on optimal patient
treatment under the constraint of limited resources. These resources
could be time, medical supplies, availability of medical devices or
access to medication. When dealing with machine learning systems,
their most significant need is confirmation of their experience and
present appraisal, as well as linking of knowledge from multiple
sources [BSN∗23].

3.2. Requirements

VA systems in healthcare need to adequately address the differ-
ences in task focii, prior knowledge, and preferences of these
three principal stakeholder groups. Reflection of previous works
[ASR∗22, AF22, AFG23] allows to identify a set of combined re-
quirements for trustworthy VA in the healthcare domain. They were
gathered during structured interviews and workshops with HCPs.
These can be divided into accessibility, complexity reduction and
technical requirements. Sec. 4 reviews how these general require-
ments are addressed within the context of specific use cases.
Accessibility

𝐑𝟏: Use of widely familiar visualizations that are accessible both to
data scientists and healthcare professionals

𝐑𝟐: Use of suitable terms and definitions for both domain experts
and model developers

𝐑𝟑: User guidance to assist them through the analysis process, and
to provide recommendations, explanations, or insights, based
on the user’s goals, preferences, or behavior

Complexity Reduction

𝐑𝟒: Linked multiple view interface integrating all task-related as-
pects according to the information seeking mantra [Shn96]

𝐑𝟓: Data reduction due to excessive number of features to focus on
the most relevant aspects [Shn96]

𝐑𝟔: Reducing complexity of employed model architecture
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Security & Scalability

𝐑𝟕: Computation and visualization is done locally to reduce risks
when working with privacy-sensitive data from patients

𝐑𝟖: Scalable visualizations for up to millions of data points that cir-
cumvent overplotting

𝐑𝟗: Fast results for near-real-time analysis to prevent slowdown of
medical processes

Although other domains exhibit similar combinations of sensi-
tive data and high risk decisions, healthcare is somewhat special due
to (1) the complexity of stakeholders (HCPs, patients) with differ-
ent backgrounds and intricate relationships, (2) the heterogeneous
datasets covering both medical and non-medical information as well
as that (3) trustworthiness of employed ML models is not simply
nice-to-have but often required by law. We are ready to describe the
flow of trust between the stakeholders of our framework.

3.3. Flow of Trust

We describe the information flow between these groups of stake-
holders in detail to identify necessary routes of trust and argue for
a systematic approach of trust building along the visual data explo-
ration loop (cf. Fig. 1): As trust aspects regarding data, ML model
and VA system have already been adequately studied (Fig. 1, bot-
tom row of violet arrows), our focus lies specifically on the inter-
professional gap, in which the VA expert acts as a facilitator for the
multidisciplinary team related to cognitive trust (cf. [ESB∗23]).

1 → 2 (𝐅𝐓12): The data scientist should communicate es-
sential aspects of the data handling and modeling phase to the VA
expert. This process starts with a detailed data understanding. Sig-
nificant facets relevant to subsequent tasks include data transforma-
tions, the selection process of the model architecture, the coverage
of probed hyperparameter combinations, quality metrics, uncertain-
ties of the trained model as well as how edge cases are handled.
This communication can be supported by the usage of model cards,
containing relevant information about intended use, metrics, evalu-
ation, training, ethical considerations and caveats [MWZ∗18].

2 → 3 (𝐅𝐓23): Visual Analytics experts need to explicitly
convey their course of action to end-users, i.e. healthcare profes-
sionals. In doing so, they should address the aspects of interaction
with the visualizations, limitations of chosen views, as well as char-
acteristics of the complexity reduction employed. While face-to-
face tutorials should be preferred, user guides or visual guidance
elements can support the training curve as well.

3 → 2 (𝐅𝐓32): HCPs such as physicians, nurses or public
health experts carry substantial experience and knowledge about
their individual profession and associated workflows. Regarding
any decision support system put into practice, their main task is to
differentiate between signal and noise within the system’s results,
i.e., to put identified patterns into clinical context and reflect mis-
matches between data analysis and reality back to VA experts.

2 → 1 (𝐅𝐓21): Experts for visual analytics on the one hand
are required to procure the data analysis steps in general, whether
data visualization principles are concerned. This includes the com-
pliance with effectiveness, appropriateness, and expressiveness to
prevent overplotting and other user obstacles. On the other hand,

they need to mediate feedback from end users, in our case health-
care professionals, back to the data scientists.

4. Use Cases
In this section we review three previous works that each primar-
ily address one of the three research questions 𝐒𝐐𝟏−𝐒𝐐𝟑, respec-
tively. In doing so, each outlines a case-specific instantiation of the
proposed flow of trust framework, in particular, which flows and
requirements 𝐑𝟏−𝐑𝟗 are most relevant and thus chiefly informed
design decisions of the VA systems presented in each paper.

4.1. Visual Analytics for Machine Learning-based Healthcare
Policy Development (𝐒𝐐𝟏) [ASR∗22]

A major challenge for departments of public health (DPHs) in deal-
ing with the COVID-19 pandemic has been tracing contacts in ex-
ponentially growing SARS-CoV-2 infection clusters. Prevention of
further disease spread requires a comprehensive registration of in-
dividuals to clusters. Due to the high number of infections with un-
known origin, the healthcare analysts need to identify connected
cases and clusters through accumulated epidemiological knowledge
and the infection metadata in their database (𝑅4). [ASR∗22] con-
tributes a VA framework to identify, assess and visualize clusters in
contact tracing networks (𝑅1). It calculates and visualizes possible
missing infection routes inside the network and supports the analy-
sis of time-dependent events that led to the spread of the virus (𝑅9).
An essential aspect is the display of model uncertainties (𝐹𝑇12) and
detailed legends for visual elements (𝐹𝑇23). Additionally, it demon-
strates how graph-based machine learning methods can be used to
find missing links between infection clusters and thus support the
mission to get a comprehensive view on infection events (𝑅3). The
addition of a visualization component displaying the spatial extent
of the infection chains further improves traceability (𝑅8). The de-
sign of the system and the underlying data transformations mimic
the traditional epidemiological analysis approaches (𝐹𝑇32,𝐹𝑇21).
The proposed system has been developed as a responsive web-app
(𝑅7) and positively evaluated in collaboration with DPHs.

4.2. Visual Analytics for Plausibility Testing in Healthcare
Machine Learning (𝐒𝐐𝟐) [AF22]

Deteriorating conditions in hospital patients are a major factor in
clinical patient mortality. Currently, timely detection is based on
clinical experience, expertise, and attention. However, healthcare
trends towards larger patient cohorts, more data, and the desire for
better and more personalized care are pushing the existing, simple
scoring systems to their limits. Data-driven approaches can extract
decision rules from available medical coding data, which offer good
interpretability and thus are key for successful adoption in prac-
tice (𝑅9). The proposed visual analytics system supports health-
care professionals in inspecting and enhancing such rule-based clas-
sifiers (𝑅1,𝑅2,𝑅6) by visualizing similarities and differences be-
tween rules (𝑅5), as well as contextualizing their feature distribution
within hierarchical code structures (𝑅4). It further provides means
to modify rules to match existing medical knowledge (𝑅3). The sys-
tem was developed iteratively in close collaboration with medical
professionals i.e., with an emphasis on the flow of trust between the
VA expert and the healthcare professional (𝐹𝑇23,𝐹𝑇32).
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4.3. Visual Analytics for Transformer Model Optimization in
Healthcare (𝐒𝐐𝟑) [AFG23]

Detecting deteriorating conditions early allows for medical inter-
vention in hospital patients. As patient data often comes in the form
of structured temporal data, many approaches rely on Large Lan-
guage Models such as BERT. Interpreting these models poses a sig-
nificant challenge, making trust difficult to establish. This work cre-
ated a visual analytics system for examining, comparing, and elu-
cidating pre-trained transformer models used in clinical outcome
prediction tasks with the overarching goal of facilitating trust build-
ing. The use case is developed on the basis of a large hospital patient
dataset and prediction tasks for acute kidney injury and heart failure.
A detailed dataset exploration module is integrated to facilitate trust
into the training data (𝐹𝑇12). The system comprises well-known
visualization types such as histograms, line or sankey charts (𝑅1),
detailed labeling and legends (𝑅2) as well as guidance through the
analysis process via a suggested examination cycle and preference
options (𝑅3, 𝐹𝑇23). A filtered and linked two-part view is employed
at a suitable point to reduce complexity and focus the user’s atten-
tion (𝑅4,𝑅5). This view utilizes a medical code hierarchy suitable
to the clinical use case (𝐹𝑇32). While the multi-task transformer
model architecture itself is of high complexity, the system supports
model exploration by visualizing pre-training strategies and train-
ing loss convergence (𝑅6). The tool is engineered as a lightweight
locally-deployable web-application with quick responses to user in-
puts (𝑅7−𝑅9). Discussion with HCPs confirms that such a system
can lead to a faster decision process and improved modeling results.

5. Discussion

We recapitulate how our framework can guide the design and devel-
opment of a trustworthy visual analytics system in healthcare ML.

Challenges and requirements along the visual data exploration
loop can be divided into computer-centered and human-centered.
On the computer side, healthcare professionals need to deal with
larger patient cohorts and more diverse data as well as the need for
higher personalization, taking into account a wide variety of infor-
mation about an individual. On the human side, there is the need
for understanding and trust when ML models are used by humans
which is even being demanded by law. Increased trust facilitates reg-
ulatory approvals and reduces the burden of decisions. The interdis-
ciplinary nature of the problem adds complexity as VA experts often
act as intermediaries between data scientists and healthcare profes-
sionals. Our survey reveals a gap in the literature, which is missing a
comprehensive framework, that adequately tackles the dual require-
ments of trustworthy machine learning and the unique complexities
of multi-disciplinary decision-making in healthcare (cf. Tab. 1).

Trust during complex decision-making can be approached via re-
tracing the current workflow to pinpoint moments in time for lever-
aging visual analytics and ML assistance (𝐒𝐐𝟏). These junctures
may include instances where decision-making is predominantly re-
liant on intuition and experience, despite the presence of data that
may not be readily utilizable in its current format. In order to estab-
lish credibility in models derived from intricate datasets (𝐒𝐐𝟐), it is
imperative to reduce complexity, prioritize salient factors, and in-
corporate domain-specific terminology pertinent to the task at hand.

As healthcare data is often heterogenous, of varying quality and
show only a small part of reality, both ML models and VA systems
are forced to adapt appropriately. This means to highlight limita-
tions, counteract biases as well as enable versatile interactions. We
can facilitate trust into complex models (𝐒𝐐𝟑), by making models
both explainable and explorable for the end user. The former can
be achieved either through interpretable models as well as through
post-hoc explanations of entire models or individual predictions.
The latter can be achieved through baseline comparisons and the vi-
sualization of model architecture, uncertainty, and robustness. We
must add that the loop can contain additional connections not high-
lighted here, including a direct exchange between HCPs and Data
Scientists as well as data analysis done by the VA expert.

Regarding our main research question (𝐐) we argue that data,
models and visualization must not be considered individually, but
as part of the real-world process including users, conditions and
dependencies. VA systems need to cater to both data scientists as
well as healthcare professionals. This interdisciplinary team need to
create a common vocabulary to discuss the intricacies of clinical use
cases. Experts in VA should realize their special intermediate role
between those two groups and prepare visual elements accordingly.

Our framework is motivated by numerous projects with hospitals,
public health offices and medical practices. Nevertheless, healthcare
contains far more protagonists such as outpatient care, pharmacies
and insurances with highly-specific processes, data pools and use
cases. We would like to integrate their perspective and extend our
VA framework in the future. Additionally, our framework is limited
by considering models as fixed artifacts, which can be probed for
interpretability by the user. Current developments with generative
AI indicate that AI soon will be able to act as an agent itself and
explain/self-explore its inputs, outputs and mode of operation.

6. Conclusion and Future Work
In this work, we presented an extension to the visual data explo-
ration loop towards trustworthy machine learning in the healthcare
domain. Our main contributions comprise the identification of a re-
search gap through an in-depth survey, the introduction of stake-
holders into the framework as well as illuminating the flow of trust
along the trust-related transitions between them. The elements of
the framework can be used as guiding principles for the develop-
ment of visual healthcare analytics systems. We referenced three
real-world use cases from different healthcare areas, in which vi-
sual analytics actively supported trust building into complex ma-
chine learning models, as confirmed by healthcare professionals.

For future work, we plan to integrate trust quality gates into
our framework to further develop the process-related perspective.
These quality gates arise along the visual data exploration loop and
should be addressed through interactive visual elements. Examples
include the visual communication of systematic model weaknesses,
assumptions made during the visualization process and the detec-
tion of concept or model drift. Additionally, we would like to dis-
cuss optimal points in the visual data exploration process to fuse the
user’s individual pre-existing knowledge and expertise. The stake-
holders hold different experiences and use different vocabulary. The
challenge is to create a common body of knowledge as a basis for
joint decision-making in high stakes situations.
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