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Abstract
Feature ideation is a crucial early step in the feature extraction process, where new features are extracted from raw data. For
phenomena existing in time series data, this often includes the ideation of statistical parameters, representations of trends and
periodicity, or other geometrical and shape-based characteristics. The strengths of automatic feature ideation methods are their
generalizability, applicability, and robustness across cases, whereas human-based feature ideation is most useful in uncharted
real-world applications, where incorporating domain knowledge is key. Naturally, both types of methods have proven their right
to exist. The motivation for this work is our observation that for time series data, surprisingly few human-based feature ideation
approaches exist. In this work, we discuss requirements for human-based feature ideation for VA applications and outline a set
of characteristics to assess the goodness of feature sets. Ultimately, we present the results of a comparative study of human-
based and automated feature ideation methods, for time series data in a real-world Industry 4.0 setting. One of our results and
discussion items is a call to arms for more human-based feature ideation approaches.

1. Introduction

Feature extraction is an important step in many data-driven analy-
sis workflows. While research domains like information retrieval,
data mining, and machine learning have extensively studied auto-
matic methods for feature extraction, pioneer visual analytics (VA)
approaches have proven the usefulness of human-in-the-loop fea-
ture extraction. The feature extraction process can be structured
into four steps [CMKK22], which is useful to subdivide challenges,
Figure 1 shows a formalization.

Feature ideation refers to extracting new features from (raw) in-
put data. These features can be combined in the feature generation
step, to form more precise representations. Feature transformation
describes changes made to existing features. Finally, feature selec-
tion leads to a representative subset of features for further usage.
Example VA approaches include FeatureEnVi [CMKK22] for fea-
ture generation, transformation, and selection, SomFlow [SKB∗18]
for feature transformation, as well as INFUSE [KPB14] and Fea-
tureExplorer [ZKM∗19] for feature selection.

We concentrate on a spot that is comparatively blind in VA re-
search: the study of feature ideation (FI) for time series data (TS).
Similarly as for most data types, features for TS are compact and
faithful representations of the raw data.

Automatic methods for FI widely exist in many research fields
and for many data types. The strengths of automatic FI methods
are their generalizability, applicability, and robustness across do-
mains, e.g., assessed through empirical evaluations and benchmark
tests on descriptors [KK03], or downstream techniques [BLB∗17]

Figure 1: Typical inputs and outputs of the four steps in feature ex-
traction [CMKK22] workflows. We focus on the FI for time series.

like clustering and classification. Also, automatic methods can effi-
ciently operate on large datasets, work in a data-driven way, and can
be included in data science workflows easily due to the availability
of programming libraries. Major downsides of automatic methods
are their varying applicability for different data characteristics, i.e.,
the method choice is a non-trivial problem for data scientists with-
out domain knowledge at hand [Ber15].

Human-based FI is most useful when a real-world applica-
tion requires features that shall include domain knowledge, re-
flect human mental models, consider special semantics, or cannot
be ideated with standard automatic time series descriptors easily.
Along the lines of human-based VA principles, domain experts can
define individual features in an online process, while directly inter-
acting with the raw data through visual interfaces. Example VA ap-
proaches directly supporting the ideation of individual features for
text data include Flock [CB15] for the interactive FI from written
text and FeatureInsight [BAL∗15] for interactive visual FI for text
classification. For TS data, related interactive preprocessing and
analysis approaches can help to ideate feature sets through the in-
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teractive descriptor definition [BRG∗12], or statistical FI [ZCB11],
even if individual features cannot be ideated through direct TS in-
teraction. Interactive TS querying [HS04] and filtering [AS94] ap-
proaches enable experts to interact with TS directly, but trigger op-
erations to reduce the number of data objects, rather than to ideate
features. Finally, interactive segmentation and labeling approaches
enable users to directly engage with TS [BBB∗18], even if FI tasks
are not supported. In essence, VA approaches for FI through direct
TS interaction are scarce. A possible downside of human-based FI
is the risk of overfitting [WWH19] for a particular task and data
subset [Ber15], and thus a lack of generalizability.

The research question that motivates our work is whether meth-
ods for the human-based FI for TS data would be useful and worth
studying. As such, the study by Wu et al. [WWH19] is related, aim-
ing at assessing the benefit of human-based feature selection for
interactive machine learning. We study FI by comparing a human-
based approach supported by VA with automatic methods borrowed
from data mining, information retrieval, and machine learning. We
start with a definition of requirements for human-based FI methods
for TS, and the assessment of the applicability of state-of-the-art
VA techniques. Next, we discuss a set of qualitative and quantita-
tive characteristics of feature sets for TS data, used for operational-
ization purposes in our study of FI methods. Ultimately, we study
the human-based FI for TS data with a state-of-the-art VA tool ap-
plied on a real-world case and compare results from human-based
FI with results from automatic methods.

In summary, our contributions are:

• the assessment of the state-of-the-art in VA with respect to dif-
ferent requirements on human-entered FI,

• the characterization of FI methods and resulting feature sets for
TS data along the lines of seven criteria,

• the comparative study of two human-based FI with six automatic
methods for TS data based on areal-world case, and

• the discussion of and reflection on study results, implications of
human-based FI, and a call for action for future VA approaches.

The running example used in this work is representative of in-
dustrial cases where machine runs are recorded with sensors, e.g.,
for predictive maintenance scenarios. Here, experts need to extract
features to identify systematic changes in machine runs early, such
as steeper progressions, shorter cycles, or varying areas under the
curve in high-load situations.

2. Requirements for Human-Based Feature Ideation

Automated FI reduce human input in the process to defining input
data and parameters. In turn, in human-based FI, experts can lever-
age their domain knowledge and ideate individual features manu-
ally, by directly using the raw data. To support human-based FI on
TS data, VA applications need to fulfill certain requirements. We
specifically concentrate on VA applications to reach out to domain
experts, without the need to use programming tools for analysis.

Support for Time Series Data As a main requirement, VA ap-
plications need to be able to load and process TS data. Cur-
rent commercial business analytics tools all support loading CSV
files, and most of them also provide support for database connec-
tions [BSS∗18]. VA applications need to work with the specifics of
TS data (e.g., tabular structure, temporal component).

Time Series Data Preparation Data preparation helps to make
TS more usable and useful, and differs considerably from ap-
proaches for other data types such as tabular data. TS data prepa-
ration includes strategies for alignment (Figure 3), normaliza-
tion [BRG∗12], or segmentation [BBB∗18]. Specific concentra-
tion on TS-specific requirements is necessary for VA applica-
tions [PTMB09], which is in contrast to many business analytics
tools with a rather broad range of data types.

Visual Representation of Raw Time Series Data A prerequisite
for FI is the ability of tools to represent raw TS data visually, as a
basis for the FI. Quality issues of raw data may impede this chal-
lenge [Ber15], as data may not have been preprocessed yet, requir-
ing a certain degree of robustness for dirty TS data. One limitation
of current commercial business analytics tools is the size of datasets
that can be loaded [BSS∗18].

Generalizable Feature Ideation on Multiples Tools should be
able to highlight patterns in the TS data, i.e., non-singular and non-
randomly occurring phenomena. Patterns are particularly worth to
be considered for FI, as they are representative of subsets of the data
that can be generalized. While many commercial tools do not pro-
vide means for FI [BSS∗18], inspiration can be drawn from VA ap-
proaches showing aligned and bundled (superimposed) TS [HS04],
or utilizing visual clustering to reveal patterns in ts [SKB∗18].

Interactive Feature Ideation In contrast to automatic general-
purpose methods for FI, most useful human-based features di-
rectly result from data inspection and interactive feature defini-
tion. Strong motivation comes from interactive TS sketching and
brushing techniques that let users directly interact with TS data,
including dynamic queries [AS94], timebox widgets [HS04], an-
gular queries [HS04], and free-form sketching [BDF∗15], even if
designed for search and filtering operations, rather than for FI.

Formalization of User Interactions Building upon the principles
of explicit feedback [FWR∗17] and semantic interaction [EFN12],
user interactions applied to TS should be interpreted appropriately
and be transformed into formal specifications. Specifications of fea-
tures ensure their re-usability in upcoming workflow steps, includ-
ing feature engineering.

3. Characterization of Time Series Feature Sets

FI methods typically rely on assumptions about the underlying
data, to reveal specific aspects of TS, such as value statistics, tem-
poral aggregations, or shape descriptions. Following the No-Free-
Lunch Theorem [WM97], we argue that also no best FI method
exists. In this section, we outline important measures that help to
reveal main characteristics of feature sets for TS. Beyond tradi-
tional metrics used for extensive performance studies of automatic
FI methods, the scope of our characterization of FI is broader: Our
goal is to also take ideation challenges, the discriminativeness of
features, and human-based aspects into account. We will make use
of the characterization in our study on human-based and automatic
FI methods in Section 4. Overall, we describe seven characteristics
that allow a more systematic identification of commonalities and
differences across feature sets:

1. Parameter Sensitivity: Most FI methods require at least one
parameter, and typically parameter values strongly influence the
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FI performance and accuracy [BAL∗15]. The ideation param-
eterization characteristic defines the complexity of the parame-
terization task (i.e., how many parameters) of the FI method.

2. Computational Scalability: The computation of the features
varies in performance for different methods to be used [OFC21].
The computational scalability characteristic defines the time
needed to compute ideated features for the underlying TS data.

3. Redundancy: Highly correlated features influence the qual-
ity of the accuracy of ongoing analysis steps like classifica-
tion [TL11]. The feature redundancy characteristic defines the
strength of the correlation between features.

4. Size: Depending on the method used, features are defined
by vectors or mathematical constructs of different complex-
ity [JSLH22]. The size characteristic defines the number of di-
mensions of the resulting feature vector.

5. Retrieval Performance: Features can be used for querying data
and content-based retrieval [SCG09]. With the retrieval perfor-
mance characteristic, we take the quality of features for search
and retrieval tasks into account.

6. Classification Performance: Features strongly influence the
outcome of supervised machine learning tasks like classifica-
tion [Mwa16]. The classification performance characteristic as-
sesses the usefulness of feature sets for classification tasks.

7. Self-Explainability: Explainability of features is important to
users [ZvZCH22] since they need to understand the outcomes of
the subsequent analysis processes (e.g., classification). The self-
explainability characteristic defines the degree to which features
are semantically interpretable [BZSA18].

4. Comparative Study of Feature Ideation Methods

We conducted a study to compare differences between features
derived from automated FI methods and features derived from
human-based ideation supported by VA.

4.1. Study Design

Feature ideation from TS is a common problem in Industry 4.0 ap-
plications, where digitization fostered the installation of different
sensors in the industrial production process [CSA22]. Analyzing
these sensor data is seen as a critical challenge to understand pro-
duction processes better and detect possible opportunities for im-
provements. VA techniques are seen as an important key factor for
understanding Industry 4.0 data, and we extend this notion for the
ideation of features. We, therefore, based our study on a real-world
use-case from the domain of Industry 4.0.

Data The TS data we use to demonstrate our analysis pipeline
stems from a production process of fireproof bricks. Along the pro-
duction line, bricks must pass through several stations, including
composition, pressing, and firing. We recorded 526 pressing pro-
cesses, producing three different types of stones in four different
factories. An illustration of the pressing processes can be seen in
Figure 2. A process is characterized by force building up (steep in-
crease at the beginning), a plateau (remaining at maximum pressure
for some time), and force dismantling (decrease). Every pressing
process takes a maximum of 140 seconds, with a quantization of
1Hz (140 time stamps per TS).

Expert Users For the study, we collaborated with process engi-
neers who want to understand their manufacturing processes better.
After an initial data analysis step, where we visualized the raw TS

data (Figure 2), the domain experts confirmed that engineers at dif-
ferent factories operate presses in different ways. Further, the do-
main experts were interested in the retrieval of similar procedures
and TS classification to predict the factory of brick production.

Figure 2: Pressing processes. 526 time series of an industrial
pressing processes are shown, with the x-axis encoding time (from
0 to 140 seconds passed) and the y-axis encoding force. TS are col-
ored according to the four factories they have been executed at.

4.2. Independent and Dependent Variables

Overall, we compared eight different FI methods, with a mix of
six automated and two human-based methods using a VA applica-
tion. The independent variables are 1) the ideator (automated vs.
human-based) and nested, 2) the ideation method. To study com-
monalities and differences between the FI methods, we employ the
characterization of TS feature sets as dependent variable.

Automatic Methods A short list of TS descriptor methods for FI
includes Piecewise Aggregate Approximation (PAA) [KCPM01],
Perceptual Important Points (PIP) [ZJGK10], Piecewise Linear
Approximation (PLA) [KCHP01], Discrete Wavelet Transform
(DTW) [Raf99], the Discrete Fourier Transform (DFT) [AFS93],
statistical methods [CBNKL18], or deep learning methods that
ideate features fully-automatically [NMK∗19] from TS data. We
decide for Raw Data (140 samples), PAA, (25 segments) PIP
(7 peaks), DFT, Statistics (mean, area under the curve, auto-
correlation), and Deep-learned features, for the study. All of them
are prominent representatives and available through libraries, while
offering a high variety in ideation strategies.

Human-Based Methods We provided domain experts with a VA
interface where they could create the features by themselves. We
asked two domain experts to independently extract important fea-
tures from the raw data using interactive visual methods. We used
the software tool Visplore as an exemplary VA application specifi-
cally dedicated to TS analysis, has already been used to derive key
performance indicators, and meets most requirements discussed in
Section 2. It is, e.g., possible to load and visualize raw TS data from
files or from a database, and apply data preparation. Different in-
teraction methods (selections, thresholds, angular queries) are pro-
vided to ideate features, Figure 3 shows two steps in the FI process.
Overall, domain experts ideated three (HUM3) and four HUM4
features from the data, representing two feature sets. The first two
features both domain experts selected can be described as the place
on the timeline where the TS reach the maximum. Domain experts
can use a window interaction (Figure 3, top) to define the interval
on the timeline. The third feature in HUM3 was a gradient cal-
culation at the beginning of the procedure (Figure 3, bottom). In
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Figure 3: Human-based FI, observed in the study. The VA tool Vis-
plore was used to visualize the raw data (A). Domain experts can
interactively define features for TS (B) using, e.g., area selections
(top) or angular queries (bottom). Ideated features are listed on the
left (C), also allowing for manipulation and parameterization.

HUM4, the domain expert also added an area selection to capture
the different shapes of the TS at the moment of force dismantling.

Operationalization of Feature Set Characteristics We evaluated
our feature set characteristics (cf. Section 3) in the following way:

1. Parameter Sensitivity is calculated as a combination of the
number and the sensitivity of the parameters on the out-
come (i.e., the necessity to try different parameterizations). For
human-based methods, we recorded mouse and keyboard inter-
actions and the need to iterate and refine features.

2. Computational Scalability evaluates the runtime of the algo-
rithms. We ran every FI method 1,000 times for the entire
dataset, to have a higher comparison precision. Human-based
methods were executed using the same procedure.

3. Redundancy was measured by computing the arithmetic mean
value of all the pairwise correlations between all features.

4. Size was defined by taking feature dimensionality into account.
5. Retrieval Performance was evaluated by computing the error

of k-nearest neighbors, with all TS. We set k to 5 for all test
cases and measured the similarity of the returned TS based on
the factory (origin) of the produced brick.

6. Classification Performance was measured with the F1 score
applied to a trained random forest classifier, with ground truth
labels representing the four factories (origins) of the TS.

7. Self-Explainability was measured based on a coding conducted
by the authors, on the agreement on semantic interpretability.

4.3. Result Analysis and Discussion

We evaluated all FI methods according to the seven characteristics
of feature sets (cf. Section 4.1), Table 1 provides a comparative

overview. We decided for a discretization of quantitative results to
a qualitative display, to a) have a common scheme for all seven
characteristics and b) provide more robust results, given that we
applied the study on a single fixed dataset only.

Comparison of Human-Based and Automatic Methods The
overall results show that human-based methods provide compara-
ble performance with automatic methods for most criteria, by the
price of human involvement. We identified possible drawbacks of
human-based FI for parameter sensibility. Interestingly, the partic-
ular strengths of human-based methods differ from the strengths
of automatic methods, opening the space for future studies on the
applicability of human-based methods for different settings.

Findings for Human-Based Methods A striking advantage of
human-based methods was the particularly low feature size (three
vs. four), with hardly any redundancy, significantly better than all
automatic methods. In addition, human-based FI carry a high de-
gree of self-explainability, as these features have been defined by
domain experts externalizing their knowledge. However, these FI
can offer a high degree of freedom in terms of parameterization.

Findings for Automatic Methods What stood out for the ana-
lyzed automated FI methods was their high heterogeneity, with
not a single pair of methods showing highly similar results. This
echoes the No-Free-Lunch Theorem [WM97], also for the FI in TS.
Obviously, choosing a meaningful automatic method for a given
dataset is a challenging task for data scientists, especially if only
little knowledge about the domain exists. More specifically, setting
parameters for automated methods (Parameter sensitivity) requires
careful tweaking for PAA and PIP, since here the number of seg-
ments (PAA) and peaks (PIP) influence the structure of the result-
ing features. Computational scalability reveals very low computa-
tion times for the majority of the methods between 0.46s (PAA)
and 2.45s (PIP). Redundancy is higher for raw data (0.71) and PAA
(0.72), and even worse for PIP (0.97). For PAA, PIP, and DFT,
the feature size depends on the selection of parameters. Here, PIP
shows the most compact feature representation. Retrieval perfor-
mance is high for the majority of methods (85.3% on average),
with PAA, PIP, and Deep features outperforming this average. Clas-
sification worked very well when using the raw data (97.5%) and
PAA (97.6%), followed by DFT, Statistics, and Deep features. Self-
explainability was considered to be reasonable for Raw Data and
PAA, but very low for DFT and Deep learned features.

4.4. Discussion

Generalization of Human-Based Study Results Our study was
based on a single dataset only. With our decision to present results
in a qualitative way, we already took this limitation into account.
Future work includes the extension of our study with other datasets
and users, to make more generalizable claims, possibly supported
with a more quantitative result interpretation.

Segmentation and Alignment We have studied a case with almost
perfectly segmented and aligned TS. Both experts stated that the
segmentation and alignment of TS to reveal patterns relevant for
FI often relies on expert knowledge and is not trivial to achieve. In
cases where phases in TS curves are often captured or pre-labeled
in the data, it is up to humans to find a meaningful specification, as
part of a more complex FI process.
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Raw Data PAA PIP DFT Statistics Deep HUM3 HUM4
automatic automatic automatic automatic automatic automatic human human

1. Parameter Sensitivity /∈ O O + + O – –
2. Computational Scalability /∈ + O + + O O O

3. Redundancy O O – + O + + +
4. Size – O + O O O + +
5. Retrieval Performance O + + O O + O +
6. Classification Performance + + O + + + O +
7. Self-Explainability + + O – O – + +

Table 1: Overview of study results as a crosscut between seven feature characteristics (cf. Section 3) and eight FI methods (cf. Section 4.1).
We show results in a qualitative strong (+) to average (O) to weak (–) scale. Striking findings are as follows: human-based FI were able
to compete with automatic methods for five characteristics. Also, the two human-based FI results are quite homogeneous, but dissimilar to
automatic methods, raising an interesting question: when to utilize the benefits of human-based FI? In contrast, the six automatic methods
show high result variety: none of the methods is particularly weak, but applicable for at least one characteristic instead.

Temporal Flexibility Our case indicated the need for warping
support, always when temporal phenomena can be of different
lengths, i.e., when bin-to-bin comparisons fail.The situation be-
comes worse if phenomena consist of several temporal observations
that may vary in duration and lengths of breaks. In cases where
temporal flexibility is key for effective FI, support through visual-
ization and interaction becomes more difficult.

Feature Hierarchies and Semantic Meaning Especially in busi-
ness cases and industrial settings, key performance indicators
(KPIs) play an important role, e.g., in predictive maintenance sit-
uations, similar to our case. An interesting observation is that the
relation between KPIs and features may be 1 : 1 for simplistic or
1 : n for more complex cases. The latter opens the space for feature
hierarchies and higher-level semantics of feature groups or KPIs.

Pre-Processing-Feature Ideation Ping-Pong Both experts stated
that data quality is most often a critical issue in their data sci-
ence processes. It is likely and imaginable that, observations made
through human-based FI, would lead to more informed decisions
with respect to pre-processing and vice versa, triggering an inter-
esting back-and-forth scenario.

Exploratory Feature Ideation In the study, we observed that both
experts had a very clear information need, and thus were able to for-
malize their knowledge through interaction effectively. In contrast,
an open point of discussion would be a more exploratory setting,
where experts require a means to identify patterns, experiment with
feature ideation in a back-and-forth manner, to finally arrive at an
ideation result. A conceptual workflow would include: Exploratory
FI, Informed FI, and Automatable FI.

Automatic Feature Ideation The related work, but also the feed-
back of the two domain experts clearly echo that not every real-
world case requires human-based FI. Given the cost of having the
human in the loop in this step, an interesting point for future work
may include support for deciding on whether the quality of auto-
matic FI is sufficient, or if the real-world case would considerably
benefit from a human-based FI component.

5. Conclusion

We presented a study on FI with automated and human-based meth-
ods. We started with discussing requirements for VA applications

on human-based FI and characterized feature sets based on seven
criteria. This characterization also served as the set of dependent
variables to compare ideated feature sets. Based on a use-case from
Industry 4.0, we extracted 526 TS and employed six automated and
two human-based FI. Our study shows that both human-based and
automatic FI methods have proven their right to exist. The strengths
of automatic methods lies in their generalizability, applicability,
and robustness across cases. The strength of human-based methods
lies in the creation of features with a low size but with a very high
self-explainability, by also leveraging domain knowledge. Human-
based FI led to equally good and, for more features, even better
results for retrieval and classification tasks for the studied case. In
conclusion, we see a clear call to action for conducting research on
VA techniques for FI, and for applying human-based FI in the wild.
We consider VA as a suitable method to support a close collabora-
tion between humans and automated algorithms. For future work,
we would like to work on novel VA tools which support interactive
feature ideation and compare the results to automatic methods.
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