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SurviVIS: Visual Analytics for Interactive Survival Analysis
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Figure 1: An overview of the main workflow on SurviVIS. The user can start by defining one or more cohorts. The Kaplan Meier analysis is
performed automatically and it guides the exploration of clinical data over successive time frames. Interaction on the different views allows
the user to redefine the cohorts and explore the survival rates.

Abstract
The increasing quantity of data in biomedical informatics is leading towards better patient profiling and personalized medicine.
Lab tests, medical images, and clinical data represent extraordinary sources for patient characterization. While retrospective
studies focus on finding correlations in this sheer volume of data, potential new biomarkers are difficult to identify. A common
approach is to observe patient mortality with respect to different clinical variables in what is called survival analysis.
Kaplan-Meier plots, also known as survival curves, are generally used to examine patient survival in retrospective and
prognostic studies. The plot is very intuitive and hence very popular in the medical domain to disclose evidence of poor or good
prognosis. However, the Kaplan-Meier plots are mostly static and the data exploration of the plotted cohorts can be performed
only with additional analysis. There is a need to make survival plots interactive and to integrate potential prognostic data that
may reveal correlations with disease progression. We introduce SurviVIS, a visual analytics approach for interactive survival
analysis and data integration on Kaplan-Meier plots. We demonstrate our work on a melanoma dataset and in the perspective
of a potential use case in precision imaging.

CCS Concepts
• Applications → Visual Analytics;

1. Introduction

The recent advances in biomedical informatics, software and algo-
rithmic power have provided clinicians and researchers with large
volumes of data that characterize individuals in great detail. Typi-
cally, individuals become patients when a certain event of interest
occurs. For instance, the onset of a disease or a first screening at
the hospital are common situations. After that, the clinical course

of the patient is accompanied by test results, image acquisitions and
follow-ups that provide insights on the disease and the treatment ef-
fects. The collection of such clinical information has turned to be
extremely valuable in observing the prognosis of groups of patients
(cohorts) that share similar characteristics. An intuitive way to es-
timate the disease risk is represented by the Kaplan-Meier (KM)
curve [RNP∗10]. The KM curve derives from the published meth-
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ods by Kaplan and Meier [KM58] and it is broadly used in the med-
ical field. Besides the large variety of quality in these plots [Bol03],
the KM curve remains easy to read and interpret. The typical use
of a KM curve is to estimate the mortality of cohorts with respect
to prognostic factors (e.g., tumor stage, overall survival, specific
pathological conditions, etc.). However, KM curves are only vi-
sualized and interpreted in a static way despite their potential to
describe disease progression over time in much more detail. In the
last years, many visual analytics approaches have showed that in-
teractive graphs of temporal data can help the user explore cohorts
and clinical information [LPK∗15,BSM∗15,WGP∗11]. In a similar
way, interactive KM curves can provide more information on pa-
tient mortality and lead to insights. These aspects make KM curves
an appealing visualization that may benefit visual analytics tools in
the medical domain.

In this paper, we propose a visual analytics approach for interac-
tive survival analysis by means of KM curves as the reference plot-
ting system. We conveyed our concept in SurviVIS, an approach
for exploration and analysis of survival data.

2. Background

Many visualization approaches for exploration of clinical records
and analysis of longitudinal data of patients have been presented
in the last years. Most of them focus on the construction of co-
horts by enabling interactive selection of specific clinical infor-
mation. CAVA [ZGP14] and COQUITO [Jos16] are some exam-
ples that successfully support the reasoning process of researchers.
In the last years, medical data has become even more complex
as it comes from many different sources and in vast quantities
[DZAD17, CG15]. For instance, cancer-research is an expanding
field where data comes from many medical imaging modalities,
algorithms, molecular and genomic tests. In this field, Bernard et
al. [BSM∗15] presented a visual-interactive system to support clin-
icians to investigate prostate cancer patients. Event data of the pa-
tients is explored together with a large amount of features in the
process of biomarker discovery. At the same time, advanced algo-
rithms are generating hundreds of features from medical images.
The increasing evolution of such algorithms initiated the field of
radiomics [LRVL∗12] and computational pathology [LFC∗16] that
promise to unveil new biomarkers and to lead towards better diag-
nosis and treatment. Nevertheless, getting insights from automati-
cally extracted features is becoming a hard task, and visual analyt-
ics can be valuable as shown by Klemm et al. [KOJL∗14]. In their
work, integration of automatically extracted image data and clinical
records in a visualization helped epidemiologists in hypothesis gen-
eration and validation. Yu et al. [YJY∗17] address the field of ra-
diomics with iVAR, an interactive visual analytics system for large-
scale medical image exploration. It supports statistical analysis in a
multi-view dashboard that empowers researchers with more means
to study patient prognosis. In the work of Lex et al. [LSS∗12], KM
plots are used to provide a static overview of the survival rates of
cancer subtypes. However, no interaction is provided.

Surprisingly, survival curves are often not available in these vi-
sual interactive dashboards despite their ordinary use in the clinical
domain. In our work, we present an approach to exploit the KM-
curves for characterization of patients and feature exploration.
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Figure 2: The typical workflow of a researcher on survival anal-
ysis. After defining one or more cohorts, the KM analysis is con-
ducted. Statistical methods are applied to extract insights from the
curve data points.

3. Data and Problem definition

On the basis of a literature review and the indication of the work
of Bollschweiler et al. [Bol03], we define the data involved and
the problem definition. The data used for survival analysis includes
retrospective datasets of large records of patients. Each patient must
be characterized by the following information:

• Serial time.
• Status at serial time (1=event of interest; 0= censored).
• Study group (e.g., Group A, B, etc.).

However, the definition of the group becomes complex in stud-
ies where many variables are available and the combination of
them may lead to many relevant subgroups. A typical workflow
for survival analysis involves the tasks depicted in Figure 1. The
researcher begins the study by defining one or more cohorts (Task
1). Usually, the first operation is to perform a KM analysis (Task
2) on the entire population to obtain an overall survival plot. In
overall survival curves, the event of interest is death from any
cause [RNP∗10]. The researcher can look at different types of curve
by selecting a different event of interest (e.g. disease onset, relapse).
For instance, Disease free survival curves are generated by consid-
ering the relapse as the event of interest [RNP∗10]. After generat-
ing the KM curves, researchers typically use conventional statisti-
cal methods such as the Log-rank test and the hazard ratio calcula-
tion between two curves [RNP∗10] (Task 3). These two methods
indicate whether or not there are differences in the survival rate of
two groups and which group has a more favorable survival rate.
Then, the researcher can decide to focus on one particular group
and to redefine the cohort (Task 4) according to specific clinical
variables (e.g. tumor stage, lab tests)

We list a set of problems to address when using KM curves:

P1 No data integration. The focus is typically on generating the
survival curve for the identified cohort. However, variation and
redefinition of the cohort by filtering variables is a manual task.

P2 Lack of interaction. Survival curves are used to generate evi-
dence in clinical papers, but standard libraries (e.g., [Cam19])
do not provide interaction.

P3 Poor consistency. As Bollschweiler [Bol03] states: "mistakes
and distortions frequently arise in the display and interpretation
of survival plots".

From these problems, we derived the requirements for a proto-
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type that leverages survival curves for interactive analysis of clini-
cal data.

4. SurviVIS

To design our approach, we collected the statements presented in
[Bol03]. The central part of SurviVIS is the KM plot (Fig. 5.4).
We use the fact that the chart is typically divided in time frames
given by the steepness of the curve to link the other views (Fig. 3).
We decide to use the time frames to provide more insights into the
distribution of the clinical variables in that specific time range.

SurviVIS consists of four main components (see Fig. 5). We pro-
vide the dataset information (Fig. 5.1) regarding the population of
the study such as the number of patients, death events and censored
cases. After data import, SurviVIS automatically computes the KM
plot on the basis of the data fields provided. Also, we indicate the
median survival in the dataset information.

Variable List. Variables are automatically classified as categor-
ical or numerical and shown in a list (Fig. 5.2) where small charts
shows the distribution of the data. We present them sorted by their
skewness. This type of statistics can lead the user to select the vari-
ables that may discern the population better (Task1). A selected
variable can be plotted on one of the three views of SurviVIS . A
click on the first circle (Fig. 4) plots the data on the 1D-variable
view. A click on the KM rectangle will show the data overlaid on
the KM curve. The last circle respectively will combine the variable
with another selected variable in the bottom view (Fig. 5.5).

Kaplan-Meier Plot. We preserve the main elements of stan-
dard survival curves to perform Task 2. The cumulative probability
of surviving a given time is shown on the Y-axis. The x-axis is
divided in serial times that are also used as guides for the other vi-
sualizations of the tool (Fig. 6). Users can select a maximum of five
serial times to generate the time windows. More windows may lead
to confusion and cluttered view. A vertical bar in the KM plot en-
ables the user to split the curve into two halves. This helps the user
to redefine the cohort, resulting in an automatic update of the rest
of the views that display corresponding data just for the two halves.
The distribution of a selected variable can be plotted in dedicated
box-plots directly on the KM plot area. Each time frame includes
a box-plot (see Fig. 5.4) with the data distribution of the subcohort
in that range.

SurviVIS

Upload

Variable
List

1D variable view

Kaplan-Meier Plot

2+ variable view

Figure 3: An overview of our system. A csv file can be imported
in SurviVIS by defining the main variables needed to create the
KM Plot. The curve is then automatically generated. By selecting
the variables in the left side bar, the 1D variable view and the 2+
variable view are shown. The three views are linked with dedicated
interaction.
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Figure 4: The variable list presents patient data discriminated as
categorical and numerical. A small chart displays the data distri-
bution. Variables can be sorted by their skewness. A click on the
circles or the KM label enables the user to plot the data in the cor-
responding view of SurviVIS.

1D-variable view. The 1D-variable view (Fig. 5.3) represents
the data distribution of numerical or categorical data divided by the
corresponding time frames of the KM Plot. The user can choose
to visualize the data of the patients for which an event occurred
(death/recurrence) or not (alive). An example in cancer research
would see the user to assess the distribution of the tumor stage for
the sub-cohorts of patients in time frames of one year (Fig.6). For
early death, high tumor stage categories should be predominant.

2+ variable view. This view (Fig. 5.5) is dedicated to the data
exploration and allows the user to explore multiple variables with
respect to the time frames given by the survival plot. As the previ-
ous plot, it provides insights for cohort redefinition (Task 4) . By
selecting two numeric variables from the variable list the user is
automatically provided with a succession of scatterplots below the
KM Plot. By selecting an additional categorical variable, the user
is given with an enriched version of the 2+ variable view.

5. Use case: Malignant Melanoma data

To demonstrate the usefulness of SurviVIS, we use a publicly avail-
able dataset from [ABGK93] on 205 Malignant Melanoma patients.
Each patient had their tumor removed by surgery. Among the mea-
surements taken were the thickness of the tumor and whether it
was ulcerated or not. These information were shown to indicate an
increased chance of death from melanoma [BBSC∗14].

The overall survival of the population is shown with an orange
line in the central part of SurviVIS (Fig. 5). By clicking on the co-
hort splitting option for the ulcer variable in the variable list, two
subgroups are generated: patients with ulcerated tumor and without
(Task 1). The KM curve (Task 2) for the first group shows a more
favourable survival rate than for the second group (Hazard Ratio =
1.89) (Task 3). The user can investigate the thickness of the tumor.
The measurements are visualized as boxplots (Fig. 5) integrated in
the KM curve. Contrary to the hypothesis that high thickness values
could be associated with lower prognosis, the researcher can ob-
serve the data in the successive time frames and notice that thicker
tumors seem to be present for long survivals. The user can then
select two numerical variables (age and tumor thickness) that are
plotted on the scatterplots. By adding the information on the ulcer
status, the user observes that ulcerated tumors are actually charac-
terized by lower values in tumor thickness after four years. Hence,
the user decides to look at the time range between 4 and 6 years.
The provided interactions on the scatterplot allow the user to zoom
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Figure 5: The interface of SurviVIS with the main components and data from the Malignant Melanoma dataset. The researcher is interested
in the thickness of the tumor. On the left sidebar, an overview of the dataset (1) and a list of variables (2) are shown. The thickness variable
distribution is shown for the patients of each time window (3) of the main KM plot (4). Two additional curves (orange and blue) are generated
by selecting two groups of patients in the scatterplot (5).

to the data points of the specific time frame of the overall survival
curve. The user selects a specific group of patients ((Task 4).) to re-
strict the variable range to the size of vertices of the rectangle (Fig.
6). These last steps would have required several manual iterations
in standard survival analysis. This kind of exploration can trigger
hypothesis generation and new observation for further analysis and
better patient stratification.

6. Generic use case

A generic use case for SurviVIS is represented by the field of pre-
cision imaging in medical research [FTG16]. In the specific, ra-
diomics [LRVL∗12] and computational pathology [LFC∗16] are

Figure 6: A scenario of pathology image based features: The 2+
view can be used to inspect the survival rate with respect to quan-
titative image-based features (e.g. mitotic counts and tumor cells
area) and the tumor grading. Similarly, other untapped prognostic
factors could be explored in an interactive way.

two fields of research that generate large quantity of image-
based features and opportunities for research. Many studies already
demonstrated the relevance of computing morphological and ar-
chitectural features for biomarker discovery [DZAD17]. The com-
mon approach is to explore and analyze automatically extracted
features with respect to patient mortality, disease progression or
classification [VPvDV14, FTG16, GKH16]. Because of the large
quantity of features, exploration may be complex and tedious
[LFC∗16,KI18,TP18] that could be eased with visual analytics. For
instance, in pathology we can imagine to explore the information
derived from image analysis on the mean area of the tumor cells
and the mitotic count (indicator of tumor proliferation [VPvDV14])
over successive time frames (Fig. 6). Subgroups of patients could
be identified and investigated with respect to other clinical variables
(e.g. molecular tests). In light of this, we aim at facilitating the cur-
rent workflow and at obtaining new insights by using SurviVIS.

7. Conclusion

In this paper, we presented a first approach to make use of KM
curves for interactive survival analysis and clinical data explo-
ration. SurviVIS combines several charts arranged with the time
frames of the KM plot. We designed a general interactive approach
to explore numerical and categorical variables in multiple ways.
We illustrated a use case where the user explores a malignant
melanoma dataset to investigate standard diagnostic and prognos-
tic factors. More options to redefine the cohorts, filtering the data
and to track data provenance can quickly increase the experience
on SurviVIS.
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