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Abstract
In this paper, we introduce a new method to visually represent sequence structure in data. Like other methods for visualizing
temporal or ordinal data, the representation directly maps absolute time or relative ordering of events from left to right hori-
zontally. Unlike other methods, it also accumulates subsequences of events into streams that oscillate up and down vertically.
By interactively adjusting the number of steps between vertical reversals, one can rapidly switch perspectives to show variation
in event densities over time (one step), overall patterns of event accumulation (all steps), or short-range patterns of event accu-
mulation (in between). In between, the representation reverses stream direction every N steps, accentuating variations in event
accumulation while at the same time preserving visual continuity. We present a user study that compares the stream represen-
tation to Dotplots. The study validates the readability of the representation for effective visualization of sequence information
in text data. It also shows how pairing stream and Dotplot views outperforms both of them individually for some analysis tasks.

1. Introduction

A variety of time-centric visualization techniques exist to help peo-
ple explore and analyze the dynamics and evolution of systems by
looking at time as points, intervals, or cycles. In most techniques,
visual representation of time focuses primarily on the quantitative
characteristics of measurements made with clocks and calendars.
Only a few focus on the ordinal character of time, in which the pri-
mary concern is seeing the ordering of events. Many natural, social,
and built systems exhibit complex event dynamics. The exploration
and analysis of such systems often involves identifying, character-
izing, describing, and explaining patterns in sequences of events.

In this paper, we describe a new visual representation for explor-
ing and analyzing patterns in ordinal data. Unlike most prior visual-
izations of temporal or ordinal data, the representation uses vertical
space to show accumulation of events monotonically, in addition to
the usual mapping of events from left to right horizontally. Succes-
sive events take vertical steps in a sequence that oscillates up and
down, preserving visual continuity. This combination of vertical
oscillation and horizontal flow spreads out variations in event ac-
cumulation in 2-D, revealing patterns of event occurrences within a
stream—or between multiple interwoven substreams, if events are
partitioned into sub-sequences by category. The number of steps
between vertical reversals can be adjusted interactively, letting one
view streams as event accumulations, oscillations, or densities.

In this paper, we describe one design of the visual representa-
tion that combines arc diagrams [Wat02] with simple accumula-
tion plots made up of cubic curve segments. We use an example
with text from a historic speech to illustrate how sequence informa-
tion can be effectively visualized using the new representation (Fig-
ure 1). To evaluate the design, we conducted a controlled user study

to compare it to a well-known representation of sequence data, the
Dotplot [CH93]. For the Dotplot we used a common variation con-
sisting of parallel rows, each showing one category/substream of
events from left to right. Although Dotplots have lower visual load,
we found that oscillations reveal essential information about event
patterns, resulting in higher performance on some analytic tasks.

2. Related work

Methods of visually representing time and events build on knowl-
edge of how people perceive and reason about temporal structures
and relationships [Fre92, All83, ZT01]. The particular importance
of instants and intervals means that visualizations of ordinal data
should clearly depict both individual items and their relative loca-
tions in an ordering. Although oscillating streams are visually con-
tinuous, their cubic curve endpoints mark individual item locations
within the overall ordering, which is preserved horizontally.

The topological relationships of events and intervals are well-
studied in visualization [Tom06,VJC09,DK10,AMST11], both for
concrete data items, such as words [CH93], and for more abstract
data items, such as co-occurrences of concepts in text [ASW12],
and temporal summaries of patient events [WPS∗09]. Horizon
graphs nest time within time, focusing on temporal variation
in meteorological data such as temperatures and wind direc-
tions [SMY∗05]. Numerous visualizations of time with category
attributes involve filtering and aggregation [ZCPB11, ADG11,
DWS∗12], links between views [ZCCB13], queries to drill down
into orderings [GS14], stacking of event streams [HHWN02,
Wat05], summarization of words into categories represented in
text corpora [SWL∗10], grouping of related events that are verti-
cally merged/split [CLT∗11, CLWW14], or incrementally organiz-
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Figure 1: (A) Oscillations (N=8) showing word recurrences in
Martin Luther King, Jr.’s “I Have a Dream.” Words related to race,
inclusiveness, and the phrases “I have a dream” and “let freedom
ring” are highlighted in (thematically intentional) rainbow colors.
Several words have been phase-shifted to reveal the regular ca-
dence of recurrences of the two phrases. Additional shifts reveal
the parallel use of inclusiveness words. Whereas “negro” is used
almost exclusively at the beginning, “white” appears in seeming
transitions between three major phases of the speech, and “to-
gether” and “freedom” appear prominently toward the end, re-
flecting parallels between the speech’s progressive theme and its
construction. (B) Density (N=1) shows rhythmic repetition of the
phrase “let freedom ring.” Orange streams show how several com-
mon words (“of”, “from”) parallel the phrase in multiple sentences
in a row. (C) Accumulation (N=24) with phase-shifting shows lay-
ers of non-stop words that occur many times in the speech. The
presence of so many steep streams shows how localized repetition
of words is a prominent characteristic of his oration style. Repeti-
tion also clusters strongly at the speech’s start, middle, and end.

ing/refining/compressing a layout [THM15]. Multiple views are of-
ten used to visualize time [WFR∗07, ZJGK10, KBK11]. The oscil-
lating stream representation is most similar in visual form and pur-
pose to the graphical timetables discussed by Tufte [Tuf90,Tuf97].

3. Visual representation

The visual representation focuses on the ordering of items in a
data set. It represents primarily the relative positions of items in se-
quence. If given discrete time data, it does position events precisely
along the horizontal, but generally de-emphasizes the quantitative
(metric) character of individual event times. In the vertical dimen-
sion, the representation can be seen as a descendant of Wattenberg’s
Arc Diagrams [Wat02]. An arc diagram connects two related points
along a line using a half-circle. A horizontal sequence of points can
be linked together by drawing a series of circles connecting succes-
sive pairs. The half-circles in arc diagrams can be drawn upward,
downward, or both. For instance, ThreadArcs [Ker03] show mes-
sages in an email thread in time order, alternating between upward
and downward arcs to more clearly show how replies propagate.

In oscillating streams, curves are repeated in series in the same
way as arcs; see Figure 2. When a set of curves is copied and shifted

to the top of the original set, flows naturally emerge as a visual side
effect. Flowing is a consequence of the vertical continuity that re-
sults when the ending point of one curve has the same horizontal
position in an ordering as the starting point of a later curve (Fig-
ure 2A). This quality can be exploited to visualize sequences in
data by chaining together the items in each sequence using a curve
for each successive pair.

To reverse the oscillation at the top and bottom of the view,
arcs provide a convenient and elegant way to avoid abrupt re-
versals of direction in the visual flow (Fig 2B). Upward arcs
turn upward-flowing streams downward. Downward arcs turn
downward-flowing streams upward. The result is a layout in which
a pair of arc diagrams sandwich multiple tiers of streams that
“flow” upward and downward. Each stream’s succession of seg-
ments provides a richly detailed shape that supports identification,
tracing, and comparison of sequences and the details of their inter-
nal structure at different scales.

The number of steps N between reversals affects the overall ap-
pearance of flows. With one tier (N=1), streams oscillate up and
down to create a waveform appearance (e.g., Figure 1B). With
enough tiers to draw all streams without reversal, streams take
on the monotonically increasing appearance of accumulation plots
(e.g., Figure 1C). In between, streams flow back and forth for a
number of cycles determined by their lengths. The number of steps
can be interactively adjusted from 1 to the maximum stream length.
Individual streams can also be phase-shifted to start at a step from 0
to the current number of steps. These interactions are used to align
streams and reduce overlap, allowing one to more readily identify
and compare streams at particular points in the overall ordering.

The visual representation is designed to be a general-purpose
technique for visualizing ordinal information from virtually any
data source. Consider the orderings of related objects within some
larger collection of objects. As a data structure, the set of sequences
in that collection is represented as a list of (identity,ordinal) pairs.
Each item in the list positions an object in some ordered set of
things that share a common identity: ordinals in the list are global
and can be sparse, objects that are in multiple sequences can take
on multiple identities, and a given ordinal can appear with the same
identity multiple times to represent multiple objects that have the
same position in a sequence. These characteristics allow represen-

A B

Figure 2: Stream layout. (A) Curve segments have the same start-
ing point P0 as arcs, but displace the ending point P3 vertically.
Control points P1 and P2, displaced halfway vertically, define a cu-
bic Bézier curve. (B) Grid layout of flowing streams. For each se-
quence, curve segments flow up and down tiers, capped by arcs in
the topmost and bottommost tiers. Sequences with irregular sepa-
ration of items (gray) contain elongated segments and larger arcs.
Marks (red arrows) can be overlaid at points connecting curves
and arcs to indicate the start, end, and flow direction of a stream.
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tation of discrete 1-D quantitative data as well as ordinal data that
lacks any underlying quantitative interpretation.

More concretely, the input is simply a table of string identifiers
and integer positions. We refer to these data values as sequence
keys and slots. A succession algorithm maps the two-column input
table into a four-column output table that contains the information
needed to visually encode segments in the oscillating layout. This
algorithm captures information about the piecewise relationships
between successive pairs of slots in a sequence defined by a key.
The head is the start slot, the tail is the end slot, and the rank is the
relative position of the item in the sequence identified by key. From
left to right, segment position increases strictly monotonically. Hor-
izontal position is calculated by normalizing head and tail values
over all segments: xhead = (head− rankmin)/(rankmax− rankmin)
and xtail = (tail− rankmin)/(rankmax− rankmin).

From bottom to top to bottom, segment position increases mono-
tonically in cyclic fashion. Vertical position is calculated using inte-
ger modulus arithmetic: tier = (rank+shi f t+ phase)%(2k+2), in
which k is the number of non-arc steps in the stack, ranging from
one to the length of the longest sequence minus one. Each band
is allocated a fixed height large enough to reasonably depict the
launch curvature of even very large arcs under most circumstances.
The curve steps are allocated about four times that height in total,
regardless of the number of steps. This ratio of 1:4:1 for the arcs-
curves-arcs “sandwich” appears to strikes a good balance between
level of detail and amount of screen space for most of the data sets
we have tried it on, including the one used in the user study.

4. User study

The central role of ordering and sequence in text makes it a prime
candidate for application of the oscillating representation. Martin
Luther King, Jr.’s 1963 “I Have a Dream” is an extraordinary exam-
ple of inspiring, effective public rhetoric. We performed simple to-
kenization of a transcription of the speech [mlk] to create a data set
for visualization, using token as sequence key and token number as
sequence slot. Figure 1 shows an example of using the visualization
to analyze how sequencing of words and phrases provide rhetorical
structure and help convey meaning. Figure 1B shows an example
of changing the number of steps to take a closer look at ordering
relationships between substreams for the words in the phrase “let
freedom ring.” Several substreams appear as phase-shifted wave-
forms that indicate verbal parallelism at the sentence level as well.
Figure 1C shows how streams of words can be visualized as accu-
mulations using a large number of steps, in this case also grouping
related sets of words into distinct layers using phase-shifting.

A controlled user study validates the effectiveness of our ap-
proach considering different design elements compared to Dot-
plots [CH93]. The study was conducted over several days with 30
participants (12 females and 18 males) who were undergraduate
or graduate students with little to no prior experience with visu-
alization tools. Including a 10-minute training period and set-up,
it took approximately 50 minutes for each individual to complete
assigned tasks. Participants were divided into three groups. Each
group was assigned to one of three visualization configurations. In-
dividuals performed the same tasks on their assigned configuration.

The Flow group (F) performed tasks using only the stream visual
representation. The Dotplot group (D) performed tasks using only
our Dotplot variant. The Flow-Dot group (FD) performed the tasks
using both visual representations together. (See Figure 3.)

The stream visualization allows the number of steps to be inter-
actively adjusted. We turned off this feature to keep the number of
steps constant for all participants; for each task, we set up the visu-
alization to use a pre-determined number of steps. (We determined
the number for each task in a pretest process with three participants.
We asked them to adjust the number of steps to identify sequences,
count repeated phrases, and interpret ordering correctly.) Streams
were labeled with their respective words. We highlighted individ-
ual sequences and kept the colors the same for a given task for all
participants. Sequences in the Dotplot were also labeled and used
the same color coding for dots, to provide a consistent color scheme
for the same words across all three participant groups.

To define representative user tasks (Fig 3), we identified major
questions raised when visually analyzing speech text, each asso-
ciated with our user study goals. We identified three main tasks:
(1) counting, to identify the number of occurrences of a repeating
event such as a word or sequence; (2) relation-seeking, to identify
a phrase or sequence of a particular structure; and (3) ordering,
to characterize the relative ordering of phrases or words. <Since
The sentences and sequences are different in complexities, each of
the tasks were divided into complicated and simple. The harder a
phrase is to find, the more complicated the task is. For example,
finding the phrase “let freedom ring”, repeated 10 times in the text,
is much easier to find than “lives on a lonely island”, used only once
in the text. Some phrases are also inherently easier to distinguish
than others. The tasks and their level of difficulties were assessed
through a question and answer session with three participants, and
put into groups prior to the actual test.>

Task targets were to find phrases or counting of word/phrase oc-
currences, while task constraints were to consider the whole data
set or a subset. On the premise that the oscillating representation is
designed specifically to help people find and study complex order-
ing patterns, the target was identification of information about se-
quences, then comparison of them to discern the broader structure
of data. This order is critical for correct interpretation of the data
structure and to understand temporal flow relationships [GS14].

4.1. Quantitative evaluation

Given ground truth, we computed the errors on given answers for
each task. For tasks that required the individual to estimate a num-
ber (i.e., number of repeated occurrences), the error is computed as
e =

|ntrue−nanswer|
ntrue

, in which ntrue is the estimated ground truth and
nanswer is the reported answer. For the ranking tasks (i.e., identifi-
cation of sequences), we estimated the number of swaps required to
get from the reported answer to the ground truth. The error is com-
puted by the number of necessary swaps for the reported answer
divided by the number of necessary swaps for the worst answer.
For example, if (s1,s2,s3) is the correct ranking and (s3,s1,s2) the
reported answer, one needs to first swap s3 with s1 and then with s2
to get from the reported answer to the correct one. Hence, the num-
ber of swaps is two. For the given example, the number of swaps for
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Figure 3: (A) Counting task: “freedom” red, 13; “negro” green,
8; “American” blue, 3; “nation” teal, 4; “dream” pink, 11. (B)
Phrase identification task: “let freedom ring” with “let” Red →
“freedom” black → “ring” yellow. “Freedom” and “ring” are
flowing together all along the text. (C) Counting task results. There
are pairwise significant differences. The winner is the FD config-
uration (single asterisk). Second is the F configuration (two aster-
isks), with significant difference compared to the D configuration.
(D) Relation-seeking task results. There is a significant difference
between FD and D. Although the error for F is higher than D, the
statistical test showed the error for FD is much less than D. (Both
bar charts show mean error and standard error from the mean.)

the worst answer (s3,s2,s1) would be 3 and the error would be 2
3 .

We first tested the distribution of the error values against normality
using a Shapiro-Wilk test. In case of non-normal distribution, we
applied an independent non-parametric Kruskal-Wallis test and the
Mann-Whitney U tests for post-hoc analyses. We highlight some of
the important results below.

Figure 3C summarizes the comparative analysis of the counting
(identification of repeated occurrences) task for the three visualiza-
tion configurations. A post-hoc Mann Whitney U test showed that
the error in the F group was statistically higher than in the FD group
(U = 1072.000, p = 0.013). In addition, the error in the D group
was significantly higher than in the F group (U = 972.500, p =
0.014). Therefore, the oscillating representation performs better
than Dotplots on the task to identify repeat occurrences.

Similarly, Figure 3D summarizes the comparative analysis of
the relation-seeking task for the three visualization configurations.
There was a statistically significant difference in the errors cal-
culated from the ground truth among different layouts (χ2(2) =
23.086897, p = 0.000010), with a mean rank of 57.52 for the F
group, 40.98 for the D group, and 38.00 for the FD group. Ac-
cording to the Mann-Whitney U test, the error in the F group
was significantly higher than in the FD group (U = 255.000, p =
0.000062). However, the test reveals a statistically significant dif-
ference between the D group and the FD group (U = 255.000, p =
0.001). The statistical comparisons in terms of complexities for
two groups, simple versus complicated showed, for more compli-
cated tasks a significant difference among mean errors calculated

from the ground truth in different layouts (χ2(2) = 17.623535, p =
0.000149) with a mean rank of 23.15 for the F group, 12.35 for the
D group, and 11.00 for the FD group. The post-hoc analysis showed
that the error in the FD group was statistically significantly less
than in the F group (U = 10.000, p = 0.001). Considering whole
tasks (count, relation-seeking, and ordering), there is also statisti-
cally significant higher error in the D group compared to the FD
group (U = 3142.500, p = 0.000005). However, looking at errors,
the Mann Whitney test reveal no significant difference between
groups D and F (U = 3972.500, p = 0.768703). Taken together,
these results reveal that the individuals who fulfilled the tasks in FD
group using both layouts were performing statistically significantly
better when individuals performed only on the oscillating represen-
tation, and the complexity of tasks didn’t influence the performance
of the FD group. Therefore, including the oscillating representation
in a Dotplots configuration can help to increase task performance.

4.2. Qualitative observations

We observed that determining an optimum number of steps for the
oscillating representation was not an easy task. For the real test,
the average of steps was calculated through a pretest, and preset
before each task via a hidden interface seen only by the examiners.
In practical use, adjustment of the number of steps is a frequent
part of task performance. Sparsely occurring words were especially
hard to discover because of occlusion effects. In particular, words
that only occur once are invisible if marks are not turned on. It was
also hard to track words across long horizontal spans, likely due
to reduced visual curvature in curve segments, even with labels on
(floating in the middle of long, squat curves). Turning on marks to
help reveal the head and tail positions of segments would also be
useful in those cases. In cases of many occurrences of a word across
a short horizontal span, the labels can interfere due to overlap.

Nevertheless, according to the participants in the FD group,
the oscillating representation helped them build understanding of
higher levels of text structure, such as frequencies of word occur-
rence, structure which was not as obvious in the Dotplot. This may
be why task error for this group was statistically lower than for
the other groups. Most participants could correctly identify the oc-
currence of a phrase once the first word of the phrase was identi-
fied. Some participants devised alternative means, such as a phys-
ical vertical ruler laid on the screen, to help perform the counting
task. This helped them reach more accurate counts more quickly,
suggesting the need for a grid overlay or similar feature as a virtual
counting aid. Overall, the oscillation representation had a longer
learning curve, but as participants became increasingly familiar
with the layout, they were able to perform tasks more accurately.

5. Conclusion

Oscillating accumulations effectively utilize the vertical dimension
to visualize event sequences in ordinal data. An increased capabil-
ity to examine sequences from different perspectives can facilitate
identification and characterization of ordinal phenomena, which are
essential steps in bridging the foraging and sensemaking processes
of visual data analysis. We believe that our technique can be gen-
eralized and be used for other application areas including historical
records and sports schedules that will be examined in the future.
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