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Abstract
A key component in using Progressive Visual Analytics (PVA) is to be able to gauge the quality of intermediate analysis out-
comes. This is necessary in order to decide whether a current partial outcome is already good enough to cut a long-running
computation short and to proceed. To aid in this process, we propose ten fundamental quality indicators that can be computed
and displayed to gain a better understanding of the progress of the progression and of the stability and certainty of an inter-
mediate outcome. We further highlight the use of these fundamental indicators to derive other quality indicators, and we show
how to apply the indicators in two use cases.

CCS Concepts
• Human-centered computing → Visual analytics; • Computing methodologies → Progressive computation;

1. Introduction

In times of large data volumes and sophisticated long-running com-
putational analyses, Progressive Visual Analytics (PVA) is rapidly
becoming the new data analysis approach of choice. Unlike most
existing analysis approaches, PVA does not compute the whole
dataset at once, but either processes large data volumes in chunks
or long-running computations in steps [ASSS18]. This way, inter-
mediate outcomes† can be shown to the analyst while the computa-
tion is still running. Unlike stream processing, progressive compu-
tations are bounded – i.e., a final outcome will be obtained at some
point. Until then, a good-enough intermediate outcome can be used
instead of the final one to inform early decisions or to jump start
subsequent analysis steps. Yet this requires the analysts to gauge
when to stop the running computation based on only those data and
iterations they saw so far. The challenge they face is how to assess
the quality of an intermediate PVA outcome in relation to a still
unknown final one?

Data quality has long been an active field of research in visual-
ization [JF17, BAOL12] and visual analytics [LAW∗18, SSK∗16].
Typically, these notions relate to flawed input data – e.g., miss-
ing values, duplicate entries, or uncertain measurements. Whereas
the quality of visualizations usually aims to measure the perceptual
goodness (or badness) of the view – e.g., the amount of overplotting
or the number of edge crossings [BBK∗18].

† Note that we use the term outcome whenever a statement holds for both,
numerical results from a progressive computation and views generated by a
progressive visualization. Otherwise, we clearly denote the respective out-
come as a result or as a view.

In PVA however, the idea of quality is a slightly different one, as
any lack thereof is typically thought as having been introduced by
the progression itself and the fact that it conveys only an incomplete
subset of the whole data – i.e., the longer one waits, the more data
or iterations could be processed, and the higher the quality of the
outcome. This leads to a very process-oriented notion of quality
that aims to appraise an intermediate outcome with respect to the
running progression.

To better judge outcomes, the literature recognizes the im-
portance of communicating information about the running pro-
cess [VCR16]. For progressive processes, mainly progress and the
uncertainty estimations are used [MPG∗14, BEF17, TKBH17]. In
other cases, the complementary notions of fluctuation [TKBH17]
and stability [FFK14, vLAA∗13] are taken into account as well.

Only recently have these individual approaches been discussed
and put into the general context of a “stack” that bundles these
individual quality aspects and gives first informal definitions for
them [FFNE18]. This work forms the outset of this paper, in which
we further explore the idea of providing a more nuanced perspec-
tive on quality in PVA by making the following contributions:

• differentiating between quality of the input, of the numerical re-
sult, and of the generated view;
• differentiating between absolute quality and relative quality;
• enumerating the fundamental quality indicators resulting from

those differentiations; and
• introducing the notion of composite quality indicators.

We further illustrate the use of some of the introduced quality indi-
cators in two use cases.
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Figure 1: A prototypical result of a progressive computation and its
principal quality properties: its certainty (e.g., given as confidence
interval), its stability (e.g., given as a convergence measure), and its
progress (e.g., given as the percentage of data already processed).

2. Quality Indicators in PVA

Along the lines of the mentioned stack of quality mea-
sures [FFNE18], this section discerns between three fundamental
notions of quality in PVA: the progress of the progressive process,
the stability of this process, and the certainty of this process’ out-
comes. A visual overview of the traits of the progression that these
three quality indicators describe and how they relate to each other
can be seen in Figure 1. Based on them, we now further differenti-
ate between the domain in which the quality is measured, as well as
whether this measurement is an absolute or a relative one. We then
detail their use as building blocks for composite quality indicators.

2.1. Quality Indicators for Different Domains

PVA incorporates by design progressive computational analysis
and progressive visualization. In its simplest form, the PVA pro-
cess takes some data as input, computes a numerical result, which
is then visualized resulting in a view – only then to start with the
next increment of data or with the next iteration of the computation.
This results in three entities for which we can measure quality:

The input data, in cases where it is already progressively provided
– e.g., when data samples are progressively funneled into the PVA
pipeline. Not only can we measure basic properties like progress
directly on the input data (e.g., how much data out of all data has al-
ready been processed), but also characteristics of the data sampling
(e.g., whether it is truthful to a known or assumed distribution).

The results of the computation that are progressively improved by
taking more data into account, or refined by more and more iter-
ations. For them, we could measure their stability by quantifying
the changes they undergo from one intermediate result to the next.
Another option to establish a notion of result stability is to have
two PVA processes run in parallel, which work on different data
samples and whose convergence or divergence can be measured.

The view being refined by the progressive visualization that gen-
erates an increasingly complete view by incorporating more and
more computational results, or that iteratively refines the view. For
the view, we can likewise determine stability, as for example the
underlying computation results may still be further refining, but not
lead to any more visible changes.

2.2. Absolute and Relative Quality Indicators

Depending on whether we aim to assess the quality of an inter-
mediate outcome in relation to the anticipated final outcome, or in
relation to prior outcomes, we further discern between:

Absolute quality indicators quantifying the quality with respect to
a known or estimated final, and thus best possible and most accurate
outcome. This notion captures how much of the final outcome has
already been achieved – for example, in terms of data processed or
in terms of error still inherent in the intermediate outcome.

Relative quality indicators quantifying the quality with respect to
a prior state. These measures capture if an outcome has improved
or not as compared to a prior state, and by how much it has done
so. If improvement cannot be discerned, at least change (for better
or worse) can be detected and gauged.

2.3. Fundamental Quality Indicators

Applying the above distinctions between input, result, and view as
well as between absolute and relative indicators, we can establish
ten fundamental notions of PVA quality, which are listed in Table 1.

2.3.1. Progress Indicators

Progress is defined as the amount of advancement achieved by the
progression at a point in time – e.g., the number of data items al-
ready processed, the number of iterations already completed, or
simply the time elapsed. While its usefulness for gauging the qual-
ity of an intermediate outcome is limited [FFNE18], the average
user is certainly more versed in interpreting progress bars than er-
ror bars, which may be why progress is frequently indicated in PVA
systems. We discern mainly between absolute and relative progress.

Absolute progress APi ∈ [0 . . .1] at outcome i can be computed as
the proportion APi = doneWorki/totalNeededWork. In many cases
(estimated) information about the totalNeededWork is available:
For iterative processes, we can utilize known average or worst case
complexities for estimating a needed overall number of iterations.
Similar estimates are available for many other iterative algorithms
– e.g., k-means [AMR11]. For the incremental processing of data
chunks, we can use the data size to estimate the needed work. More-
over, it is possible to define AP in terms of all domains:

• APinputi = processedDatai/sizeO f Data.
• APresulti = sizeO f Resulti/expectedResultSize. This is what we

call the Computational Yield, which is for example the current
number of search results as compared to an estimate – e.g.,
searching for primes in a set of numbers or for motifs in a graph.
• APviewi = renderedElementsi/numberO f Elements. Using

Tufte’s concept of ink to denote non-background pixels [Tuf01],
we can measure the progress of background pixels turned into
foreground pixels – e.g., in scatterplots – while disregarding any
overplotting of pixels already colored.

Relative progress RP is available as soon as at least two consecu-
tive progression steps i−1, i are available. It is computed by means
of the absolute progress indicators: RPxi = APxi −APxi−1 , in range
[0 . . .1], with x ∈ {input,result,view}. Note that depending on the
used computation and visualization, a large RPinput does not neces-
sarily produce a large RSresult , which in turn does not necessarily
lead to a large RSview.

c© 2019 The Author(s)
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Type Domain Symbol Example

Absolute
Progress

Input APinput Processed Data Items, Completed Iterations

Result APresult Computational Yield – e.g., found search results

View APview Deposited Ink – e.g., colored pixels in a scatterplot

Relative
Progress

Input RPinput Processed Data per Iteration

Result RPresult Computational Yield per Iteration

View RPview Ink Deposited per Iteration

Relative
Stability

Input RSinput Change in Value Distribution between Data Chunks

Result RSresult Change in Numeric Output per Iteration

View RSview Change in Visual Output per Iteration

Absolute
Certainty Result AC Confidence Interval

Table 1: List of the ten proposed fundamental quality indicators.

2.3.2. Stability Indicators

Stability is defined as the amount of change, deviation, or fluctua-
tion the progression exhibits, as compared to a sequence of outputs
that monotonously converges. Since it captures a property of the
process of the progression, there exists no absolute stability for in-
dividual outcomes. Relative stability RS can be computed once at
least two progression steps i− 1, i are available and it can be de-
rived for input, result, and view as ∆i/statusi−1, i.e., the ratio be-
tween the variation at i by the status at i−1, ranging in [0 . . .+∞]:

• RSinputi , e.g., as the difference between the means of two con-
secutive inputs |Meani−Meani−1|/Meani−1;
• RSresulti between two partial results, e.g.,

1/Jaccard(resulti,resulti−1) of a PVA progressively com-
puting a set with specific properties;
• RSviewi , e.g., the ratio ∑ j |barHeight j,i −

barHeight j,i−1|/barHeighti−1 of the heights of the bars
of a barchart (see, e.g., [AS17]), or the ratio [dots in a scatterplot
that changed color] / [number of data elements].

2.3.3. Certainty Indicators

Certainty (which [FFNE18] calls quality) is defined as the amount
of error by which the actual, final result could still deviate from the
current result. In this case, only the absolute certainty AC makes
sense, i.e., the certainty associated with a current partial result. AC
is considered a measure of the computational result, but it is ac-
tually derived from the input – e.g., the closer the incoming data
matches the overall distribution of the dataset, the more certain are
the results computed from them. If statistical information about the
dataset as a whole is available, we can use it for expressing cer-
tainty, e.g., providing confidence intervals. If such information is
not available, we can investigate the data distribution properties
(e.g., through density estimation) considering the incoming data as
sampling without replacement or to infer other properties, e.g., es-
timating the maximum through frequentist or Bayesian inference.

2.4. Composite Quality Indicators

Fundamental quality indicators can be used as is in various scenar-
ios. For example, RPview can be a key indicator to decide whether to
present the user with a new outcome – i.e., it makes no sense to up-
date a view if the changes will be barely visible. Furthermore, these

indicators can be combined for forming substitutes for missing in-
dicators or for deriving entirely new indicators. In what follows, we
focus on some meaningful examples of such combinations.

2.4.1. Deriving Substitute Indicators

While some indicators may be readily available, it can be hard to
measure others. In the simplest case, one type of indicators can
simply stand in for another, providing a rough estimation – e.g.,
AC≈ AP. Yet it is also possible to bring multiple indicators into the
picture and to combine them through a linear combination: AC ≈
(α ∗AP+ β ∗RSresult + γ ∗RSview). It is worth noting that in this
case we have to normalize RS in the range [0 . . .1] (as an example,
we can compute the RSinputi as |Meani−Meani−1|/(Meani−1 +
Meani−1) that ranges in [0 . . .1]).

2.4.2. Deriving New Indicators

The fundamental indicators can also be used to derive entirely new
ones that carry extra meaning and help to discern quality aspects
that can only be found in these combinations.

Expressiveness means that the underlying data is truthfully rep-
resented in a visualization. This concept harkens back to Tufte’s
idea of a lie factor [Tuf86] and has been picked up as visual-data
correspondence [KS14] or preservation task [BBK∗18] in the lit-
erature. In PVA, expressiveness is equated to change proportional-
ity [ASSS18] – i.e., the observable visual change between two inter-
mediate views being proportional to the change between the under-
lying results: Exp = RPview/RPresult . A high Exp-value signals an
overemphasis of the changes between results in the view, whereas
a low Exp-value signals that the view downplays the changes.

Certainty variation captures the relationship between the change
in certainty of the current partial result and the computational
progress with respect to the previous one: ACvar = ∆AC/∆APinput ,
where APinput can be measured in data chunks or iterations.
An example of its application are results from progressive t-
SNE [PLvdM∗17], where each iteration brings quality improve-
ments, eventually decreasing when the algorithm gets stable.

Progression trustability expresses the overall trustability as a
(weighted) combination of Stability, Certainty, and Progress:
Trust = f (RS,AC,AP). An example of low progression trustability
is a progressive Treemap rendering [RH09], that exhibiting layout
changes even with high AP and AC values. This behavior can lead
the user to have less trust in the underlying partial results.

3. Use Case

Here we give two examples illustrating when and how the indica-
tors can be used to properly gauge quality. In both examples, we
assume that the data to be processed is fixed from the start.

3.1. Probability Mass Function Estimation

In our first example, we discuss the estimation of a probability
mass function (PMF), which represents a density distribution of a
discrete univariate attribute. The PMF can be used, e.g., for de-
termining distribution classes, multivariate correlation analysis, or

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



M. Angelini et al. / On Quality Indicators for Progressive Visual Analytics

Figure 2: This example illustrates the first use case. The his-
togram shows the distributions Inci and Incn of human body mea-
sures (shoulder width). The progress bars for stability and certainty
(green) map the indicator values to color saturation. The data sam-
ple is generated from two copies of the same data pool. The copy
that is loaded with the first chunks has been sorted, which intro-
duces a strong sampling bias, resulting in low stability and cer-
tainty. The second copy contains randomly ordered data, causing a
prompt increase of the indicators. (Note: To play the animation, a
standalone PDF viewer is required)

histogram visualizations (see Figure 2). The process runs incremen-
tally using n chunks of data, assuming m attribute values or bins. A
sample increment Inci aggregates the values of all chunks 1 . . . i.

Inci =
(
ci,1,ci,2, ...,ci,m

)
∈ Nm (1)

Useful quality indicators can now be described as follows.

Progress: A simple measure of last resort, AP := i/n.

Stability: Stability represents differences between one (possibly
more) consecutive increments Inci−1 and Inci. As the former can
be considered a sample drawn from the latter, we suggest using the
Chi-Square-Goodness-Of-Fit statistic.

Chi2 (Inci, Inci−1) =
m

∑
j=1

(
ci, j− ci−1, j

)2

ci, j
(2)

It accounts for the sample size and is very sensitive to sampling
biases. The stability metric is the p-value derived from the statistic.

Certainty: Measuring certainty requires the PMF of the entire data
Incn being known from the start. This is realistic, as a PMF is not
always the actual result of a process, but a proxy for its input. Con-
sider, for example, a progressive training of a classifier. A PMF can
be calculated for every training batch (=sample increment) and re-
mains meaningful even if the total distribution is known in advance.
The certainty reflects that the increment Inci is in fact a representa-
tive of the entire data, which in turn is a prerequisite for the validity
of the classifier. Again, we use the Chi-Square measure here. Cer-
tainty is measured as the p-value of Chi2 (Incn, Inci).

Note that the chosen metrics may not be the best choice in other
cases. For example, our stability metrics focus on the sample in-
crements, instead of the difference between two increments (i.e., a

chunk). If this stability of the difference is more important in sub-
sequent calculations, this needs to be considered accordingly.

3.2. k-Means

In our second example, we discuss the estimation of the quality
indicators of a k-Means clustering. In this case, the calculation is
run iteratively, with the entire dataset being available from the start.
In this example i : 1 . . .n denotes the number of the current iteration,
with n assumed to be a maximum number of iterations.

Progress: Similar to the first example, but counting iterations in-
stead of chunks, AP := i/n.

Stability: With iterative processes operating on fixed (i.e. ‘stable’)
data, stability is measured between iterations. Equivalent choices
are the cluster differences and the movement of the centroids.

Certainty: Here, we cannot assume that the optimal clustering re-
sult is known in advance. Even when the method has converged,
this is no indication that a globally optimal solution has been found.
Thus, certainty cannot be estimated from a reference solution. Yet
it is possible to estimate the maximum of an unknown set of num-
bers from a random sample of this set, as long as its distribution is
known – cf. German Tank Problem [RB47]. In our use case this ‘set
of numbers’ are all quality measures derived from the clustering re-
sults of all iterations. While many evaluations have been made with
optimal solutions, few, if any, studies analyze the quality distribu-
tion of intermediate solutions. As of yet, this approach remains to
be validated to complete the set of measures for iterative problems.

4. Conclusion

In this paper, we introduced two important differentiations on top
of the existing quality concepts in PVA: the distinction between ab-
solute and relative quality, as well as the distinction between quality
of input, result, and view. From those, we derived ten fundamental
quality indicators that can be combined into other meaningful indi-
cators. From our own experience of working with them in the use
cases, we can conclude the following:

• Results of high certainty can be used as final results, and the
computation can be halted early.
• Results of high stability can already be used for early visualiza-

tion and interactive exploration.
• Low quality values until the end signify a skewed sampling,

which is usually introduced by ordered data.

In particular the last case is a challenge, as many datasets come
with an inherent order (e.g., time-varying data) or the indexing
structures of the database keep and return the data in such order.
While the proposed quality indicators can already help to identify
these cases, it remains a question for future research on how to ef-
fectively counter these effects – in particular in those cases where
random shuffling is not applicable.
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