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Figure 1: Our visual-interactive tool provides an overview of the time series data space (top left). Two complementing views
allow for gaining an overview of the categorical attribute space (center and bottom). In a scatterplot view (top right) we link
the structures of the time series data (position information) and of the attribute space (similarity-preserving color mapping).

Abstract

In this paper, we present visual-interactive techniques for revealing relations between two co-existing multivariate
feature spaces. Such data is generated, for example, by sensor networks characterized by a set of (categorical)
attributes which continuously measure physical quantities over time. A challenging analysis task is the seeking
for interesting relations between the time-oriented data and the sensor attributes. Our approach uses visual-
interactive analysis to enable analysts to identify correlations between similar time series and similar attributes of
the data. It is based on a combination of machine-based encoding of this information in position and color and the
human ability to recognize cohesive structures and patterns. In our figures, we illustrate how analysts can identify
similarities and anomalies between time series and categorical attributes of metering devices and sensors.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User

Interfaces—User-centered design

1. Introduction

The complexity of today’s ever-increasing data sources is of-
ten assessed in terms of the size, the heterogeneity, or the
time-variation. In this work, we focus on the combination of
two different feature spaces, e.g., based on time series and
multivariate attributes. These types of multi-modal data oc-
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cur in a variety of application domains such as medical sci-
ence, manufacturing, and environmental services. Domain
experts are challenged with the question of how to gain in-
sight into these types of data in an effective and efficient
way. From a high-level perspective domain experts may be
interested in the following two questions:
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e Which subsets in the multivariate categorical space are re-
lated to a particular time series pattern?

e Which time series patterns are related to a particular sub-
set in the categorical attribute space?

We identify the following challenges for analysis systems
providing relation-seeking support for these types of data:
Firstly, an overview of the patterns of both individual fea-
ture spaces needs to be provided. Secondly, techniques for
the combined analysis of numerical and categorical feature
spaces are required. Thirdly, the user needs to be equipped
with information drill-down capability in order to focus on
specific patterns within the feature spaces. Finally, a map-
ping concept needs to be implemented allowing for seeking
relations in the two co-existing feature spaces.

We contribute a tool which tackles all challenges. On the
basis of dimension reduction techniques, our techniques rep-
resent the information of two numerical/categorical feature
spaces with the visual variables position and color. The vi-
sual variables allow for linking data objects across differ-
ent views. As a result, analysts are able to relate patterns of
one feature space with patterns of the other feature space.
We additionally support the relation-seeking task with an
interaction design allowing for the selection of meaningful
subsets. In different views provided in two figures, we illus-
trate the techniques in a use case including real-world data
of a customer, indicating both efficient and effective relation-
seeking support.

2. Related Work
2.1. Dimensionality Reduction

One of the key components of our approach is mapping high-
dimensional features spaces into the 2D screen space. Di-
mensionality reduction techniques are used to create low-
dimensional representations of high-dimensional data sets.
Based on optimization functions, the algorithms aim at pre-
serving the pairwise distances of data objects. Different dis-
tance measures can be used to assess the similarity of (high-
dimensional) data objects, see e.g., [BCKO08,LRB09] for sur-
veys on distance measures for numerical, categorical, and
binary data types. Methods such as the Principal Compo-
nent Analysis (PCA) and Multi-Dimensional Scaling (MDS)
are among the most prominent methods for the reduction
of dimensionality [Kru64]. More recently, non-deterministic
algorithms such as Stochastic Neighbor Embedding (SNE)
methods have been successfully used [HR02]. Joia et al.
compare the quality of different approaches with their own
projection technique (LAMP) [JPC*11].

2.2. Time Series Feature Extraction

One of our example feature spaces is based on time-oriented
data, a data type of specific complexity [AMST11]. Work-
flows for the extraction of time series feature vectors typi-
cally consist of a variety of different steps [DTS*08, Full],

see [BRG*12, BAF*13] for visual-interactive preprocess-
ing approaches. Typically, workflows include data cleaning
steps with respect to quality levels, specific tasks or user
needs [GGAM12]. The application of a time series descrip-
tor transforms the time series into a compact and yet repre-
sentative feature space [KKO3]. In this work, we apply the
Perceptual Important Points algorithm (PIP) to preserve the
shape of the time series, similar to the approach by Ziegler at
al. [ZJGK10]. We refer to the works of Andrienko and An-
drienko [AA06] and Aigner et al. [AMST11] for an overview
of various visual representations of time-oriented data.

2.3. Comparison and Relation-Seeking Approaches

With our technique, we focus on the analysis tasks of com-
paring patterns within feature spaces and seeking for rela-
tions in between feature spaces [AA06]. For relation and
comparison techniques, e.g., for multi-modal data, we re-
fer to the survey of Kehrer and Hauser [KH13]. Gleicher et
al. [GAW™* 11] review approaches facilitating the visual com-
parison of data. For time series data most similar is the work
by Steiger et al. where the output of a time series projec-
tion can be compared at a synoptic level [SBM*14]. How-
ever, while Steiger et al. relate the time series data to geo-
spatial network, our approach reveals relations between the
time series data content and an additional multivariate at-
tribute space. An approach where single metadata attributes
are related to the content of time series data is presented by
Bernard et al. [BRS™12]. The approach is inspiring with re-
spect to the mosaic metaphor revealing the distribution of
data elements. However, the technique does not allow for the
analysis of multiple attributes. Considering mixed data sets
relation seeking approaches are, e.g., Parallel Sets [KBHO06],
the contingency wheel [AAMG12], and a technique empha-
sizing mixed research data [BSW™ 14].

3. Data & Algorithms
3.1. Characterization of Supported Data Types

We focus on multi-modal data sets consisting of two separate
multivariate feature spaces. These spaces can either be com-
pletely of numerical or of categorical data type. The real-
world data in our use case is a collection of time series data
linked to a set of mixed data attributes. We apply binning
techniques to discretize continuous attributes of the mixed
data set. In this manner, we create a multivariate categori-
cal data set, each attribute containing a number of different
bins. Missing values in the categorical attributes are treated
as an additional bin. We use time series data since it is a rele-
vant representative, allowing for the extraction of multivari-
ate numerical features and for the visual representation of
both raw data and features. Our technique is independent of
specific workflows for the extraction of time series features.
The workflow carried out in our use case uses the Percep-
tual Important Points (PIP) algorithm [ZJGK10] as a shape-
preserving time series descriptor invariant to missing values.
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3.2. Mapping Multivariate Data into 2D Space

A variety of projection algorithms exist allowing for the cal-
culation of low-dimensional representations of feature sets.
We focus on the class of MDS projections that take pair-
wise object distances as an input. In this way, our mapping
supports data objects of both numerical and categorical data
type. The data type determines the class of distance mea-
sure. For the time series data resulting in a numerical feature
space, we use the Dynamic Time Warping (DTW) algorithm
as described by Salvador and Chan [SC07]. The DTW is a
flexible distance measure with respect to small distortions
and therefore well suited for the PIP features of our use case.

For the categorical data, we apply the Hamming distance
to identify the number of attributes that differ with respect to
the bin distribution. Equal bins of categorical attributes have
distance 0, different bins have distance 1. For ordinal (i.e.
ranked) attributes this distance measure is still discrete, but
more detailed (0, 1, 2, etc).

3.3. Linking The Results of Two 2D Projections

With our projection techniques, we receive two 2D repre-
sentations of the data set. Both representations preserve the
structure of an individual feature space. We now present the
functional support for our visual-interactive linking solution,
which is presented in Section 4.

Our solution is inspired by the results of an experiment
performed by Ware and Beatty [WB8S]. Its results indicate
that encoding information in color can be as powerful as the
positional encoding. Thus, we use the visual variables posi-
tion and color to encode the structural information of two in-
dividual feature spaces. The position information of the first
projection output is direcly mapped to the visual variable po-
sition. The position information of the second projection is
mapped onto a static 2D colormap. The 2D colormap trans-
forms the position information in the visual variable color. A
variety of 2D colormaps exists that faithfully represents ge-
ometric similarity in color similarity (called perceptual lin-
earity). The work of Bernard et al. gives an overview on dif-
ferent 2D colormaps and also provides task-based recom-
mendations [BSM*15] for the choice of 2D colormaps. We
chose the colormap by Teuling et al. since it provides both
a large amount of distinguishable colors and a particularly
good perceptual linearity [TSS11]. The result of the linking
step is a point plot, where the position and the color informa-
tion reveal the structure of two multivariate feature spaces.

4. Visualization & Interaction

We present the visualization and interaction design of our
analysis tool. On the basis of the data abstraction and the
functional support presented in Section 3, the tool provides
an overview of both feature spaces, drill-down capability,
and a linking concept across different views. Four views are
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depicted in Figure 1: the Macro View (top left), the Micro
View (top right), the Attribute Table (center), and the Bin Mo-
saic Plot (bottom).

4.1. Time Series: Micro View and Macro View

We start with an overview of the time series feature space.
The two projection views show the projected time series data
on different levels of abstraction, inspired by Tufte’s concept
of micro-macro views [Tuf90] [BVLBS09]. The Micro View
renders all elements with a scatterplot metaphor, while the
Macro View shows the results of a spatial aggregation of the
projected data by means of a glyph.

In the Micro View, every time series is represented with
a single colored dot. The position information of the data
elements stems from the time series projection. The color
information of the data elements is defined by the projection
of the categorical attributes (cf. Section 3.3). Both the posi-
tion and the color information of objects allows for the iden-
tification and the comparison of patterns. In addition, these
patterns enable analysts to seek for relations across both fea-
ture spaces. On demand, tooltip functionality allows for the
identification of both the time series and the attribute infor-
mation of individual objects.

The Macro View shows the information of the Micro View,
enhanced by an additional data abstraction layer. For that
purpose, we provide a data aggregation step which is visu-
ally represented as line charts on top of the scattered data.
Our implementation is based on the k-means clustering al-
gorithm for the aggregation of time series features. Since we
apply the algorithm for providing an overview of the time
series space, the number of k does not necessarily need to
comply with the number of ‘intrinsic’ data clusters of the
data set. It is rather important to visually represent the struc-
ture of the high-dimensional data space.

4.2. Attributes: Attribute Table and Bin Mosaic Plot

Two complementing views enable the analyst to access the
attribute space.

The Attribute Table (top) is composed of a table layout
where every attribute corresponds to a column and every bin
corresponds to a cell, respectively. Labels are used to (a) de-
pict attribute names, (b) bin names, and (c) the number of ob-
jects in every bin. The relative amount of selected elements
of a bin is represented by a gauge bar metaphor. The col-
ors of the gauge bars match the attribute projection coloring
presented in the Micro View. Sorting the segments by hue
allows for the comparison of cell elements and cells, respec-
tively. Technically speaking, these are stacked bar charts for
each attribute on a relative scale. In Figure 1, only a subset
of the data was selected, leading to partially filled bars.

The Bin Mosaic Plot complements the Attribute Table by
showing the distribution of the attribute feature space from
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Figure 2: The two Attribute Views: in the Attribute Table (top), six attributes are enumerated from left to right. Each bin has its
own cell representing a respective data subset. The Bin Mosaic Plot (bottom) plots the bins as projected in the colormap.

a different perspective. For that purpose, we utilize the po-
sition information of the attribute projection onto the color
map (cf. Section 3.3). A mosaic metaphor represents the data
distribution of the attribute projection, discretized to a 2D
grid. The static color map assigns colors to each of the mo-
saic tile. We use transparency value to indicate the absolute
number of data elements per block. As a result, the Bin Mo-
saic Plot complements the Attribute Table by showing the
absolute number of elements for each bin. For example, the
Bin Mosaic Plot highlights that the bins in ‘Attribute 2’ in
Figure 1 strongly differ in size. In addition, the 2D arrange-
ment of the Bin Mosaic Plot facilitates the comparison of
different color distributions of individual bins. For example,
the ‘Attribute 5 in Figure 1 consists of heterogeneous bin
distributions, indicated by varying mosaic tiles for each bin.

4.3. Interaction

We provide two directions of interaction for seeking rela-
tions in the two feature spaces: time- and attribute-based.

We start with time-based interaction: The user can select
an arbitrary group of time series elements in the Micro View
using a lasso selection tool. This can be done, for example,
to select groups that contain similarly colored points. As an
alternative, a time series aggregate can be selected in the
Macro View. Since the views are linked, the same elements
are also selected in the other views as well. Consequently,
the attribute views display the distribution of the bins of the
selected elements. In this way, the user is enabled to relate
a data subset of a particular time series content with the at-
tribute space. An interesting time-based interaction can be
seen in the use case illustrated in Figure 1. With the lasso
tool a set of proximate time series elements was selected
leading to complete different selected subsets in the bin visu-
alizations. As an example, in both Attribute 1 and Attribute 2
two bins are almost completely selected. This brings two in-
sights. Firstly, each of the attributes have a strong relation to
the time-based selection. Secondly, the two attributes seem

to be correlated, at least for the currently selected subset. In
contrast, Attribute 6 seems to be rather unaffected.

The second type of interaction is based on bins. Clicking
on a cell selects all corresponding data elements, all other
views are updated, reflecting the selection. All un-selected
elements are dimmed in the Micro View. With the selection
of a bin, the user is able to (a) identify and compare the distri-
butions of the data subset in the remaining attributes and (b)
identify the distribution of the data subset in the time series
projections. The latter also enables the user to detect patterns
or cohesive structures in the time series plot. In this manner,
the analyst can identify interesting relations between the at-
tribute space and time series space. The result of a bin selec-
tion is illustrated in Figure 2. In the corresponding use case,
it was possible to identify that the bin selection is highly
related to time series patterns at a certain area of the scatter-
plot. The Macro View (left) allows for an enhanced look-up
of the value distribution of the data elements at the center
of the projection. The selected bin is highly related to time
series patterns with a value domain fluctuating around zero.

5. Conclusion

We presented techniques allowing for revealing relations be-
tween two co-existing multivariate feature spaces for a set of
data elements. The techniques are presented in a Visual An-
alytics tool with an example time series data set with mixed
attributes. The tool allows for the analysis of both time se-
ries and multi-variate data. As a result, the analyst is enabled
to identify interesting relations between the two spaces. The
illustrated results show that the tool allows analysts to carry
out comparison and relation seeking tasks.

While the focus of this work is on the provided tech-
niques, we are using the tool in two case studies with real
users. We identify the need for more user parameters for
the feature extraction pipeline, the choice of the projec-
tion methods, and for the visual representation of the high-
dimensional features.
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