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Abstract
Uncertainty visualization research has a long history, with contributions from scientific, information, geo-graphic
and other visualization perspectives as well as from cognitive and HCI perspectives. But we still do not have
generally accepted strategies for leveraging visualization to cope with uncertainty. Here, I argue that taking a
visual analytics rather than visualization perspective can overcome this inertia. While uncertainty visualization
research has focused on visually signifying and interacting with data uncertainty, taking a visual analytics ap-
proach recognizes that the challenge is about much more than uncertain data. The larger challenge is to enable
reasoning under uncertainty (in all its forms). In this short paper, I sketch elements of what we know and outline
some key challenges for developing visual analytics methods and tools that enable users to cope with uncertainty
throughout the processes of sensemaking, decision-making, and action-taking.

Categories and Subject Descriptors (according to ACM CCS): H.1.2 Use/Machine Systemshuman information pro-
cessing; H.5.2 User Interfaces-Theory and methods/Graphical user interfaces (GUI)

1 Introduction

Within the visualization fields, uncertainty has generally
been treated as an attribute of data, with the research fo-
cus on developing methods to signify and interact with
data uncertainty, assess method communication effective-
ness and/or efficiency, and assess impacts of uncertainty vi-
sualization methods on interpretations and decisions. In pre-
vious papers, colleagues and I have reviewed this work, with
an emphasis on uncertainty related to geographical infor-
mation [KMRSed, KMS14, THM∗05, MRH∗05], thus I will
only summarize a few key outcomes of those reviews here.

As outlined in Kinkeldey [KMS14], three primary dis-
tinctions have been made in research to develop and assess
uncertainty visualization methods: (a) intrinsic/extrinsic sig-
nification: where signification of data and data uncertainty
are either integrated (e.g., bi-variate color) or visually dis-
tinct (e.g., glyphs depicting uncertainty on a heatmap depict-
ing data); (b) coincident/adjacent display: where both data
and data uncertainty are in the same versus different views;
and (c) static/dynamic: where unchanging visual significa-
tion contrasts with either/both data driven or user driven
changes (e.g., animated depiction of changing uncertainty
over time, user probing to focus attention on uncertainty for
selected features, or dynamic linking of views).

Lack of consistency in empirical research about effec-

tiveness of uncertainty visualization strategies makes stud-
ies difficult to compare and generalizations speculative
[KMS14]. In relation to the first distinction (a above), evi-
dence supports a contention that extrinsic signification that
is visually separable (e.g., texture for uncertainty superim-
posed on a color-coded heat map for data) enables users to
interpret both data and uncertainty depictions more accu-
rately than intrinsic signification (e.g., bi-variate color for
data + uncertainty) [Ret12, MBP98]. But, recent evidence
suggests that extrinsic signification supporting the ability to
interpret data and uncertainty independently can cause users
to ignore uncertainty entirely when faced with a decision-
making task [Ret12].

Results of empirical comparison of coincident and adja-
cent display (b above) has produced similar mixed results
[KMS14]. Adjacent display takes extrinsic signification to
the extreme, putting data and uncertainty in different views.
If the task is to interpret each independently, this simplifies
the perceptual task; on the other hand it makes it more likely
that uncertainty will be ignored when a complex task is car-
ried out. Success of coincident display will vary depending
on whether signification is extrinsic or intrinsic and will be
increasingly less successful as display complexity increases.

For the third distinction (c, which includes dynamism,
both via animation and interaction), there has been less em-
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pirical research and little evidence thus far that animated
display of uncertainty has advantages over static display.
Various authors have proposed interactive interfaces to sup-
port signification of uncertainty in ways that provide the
user with control of its prominence in the display (e.g.,
[HM96, Fis94, SZD∗10]) along with potential support for
adjacent display through dynamic linking. There has been
a surprising paucity of empirical research to assess such sys-
tems in spite of the long history of dynamic linking as a strat-
egy to support effective multi-view display [Rob05]; Sanyal,
et al [SZD∗10] do present results of a qualitative assessment
of a highly interactive system with multiple methods for de-
picting numerical weather predictions and their uncertainty.

Past research on communication effectiveness of uncer-
tainty visualization has been complemented by research
on uncertainty visualization effects; this work empha-
sizes effects for decisions [BCJ∗11, CHL13, FFK14, LB00,
RHFL14] (e.g., are resulting decisions different and, if so,
better) and for risk assessment in contexts ranging from
medical diagnosis (e.g., [MDF12]) to climate change im-
pacts (e.g., [Ret13]). Colleagues and I have reviewed more
than 40 empirical (mostly geospatial) assessments of uncer-
tainty visualization effects [KMRSed]. Key findings are that:
(a) these studies have conflicting results due to inconsis-
tent methodologies, even on the question of whether uncer-
tainty depiction helps or hinders decisions; and (b) the judg-
ment/decision tasks involved are typically extremely simple
ones, unrepresentative of real-world decisions. Thus, even
when we assume that the uncertainty communication is suc-
cessful, understanding the effect of uncertainty visualization
for risk assessment, decisions, action-taking, or other objec-
tives that the visualization supports remains a largely open
research challenge, as is how to design uncertainty visual-
ization to achieve positive effects.

My contention here is that our lack of progress in address-
ing the challenges of uncertainty stems from two primary
impediments. First, empirical research has been ad hoc, with
inconsistent, uncomparable methodologies applied. Thus,
results are less than the sum of the parts due to contradic-
tions. The review papers cited above provide some sugges-
tions for addressing this impediment, thus, I will not address
it further here. Second, the field has devoted almost all of
its attention to data uncertainty and its signification. Almost
no attention has been given to reasoning/decision-making
under uncertainty. While it is understandable that research
in information/scientific visualization has focused on visual
signification of data uncertainty, it is surprising that there
has been so little attention to the challenge of reasoning with
uncertainty in the visual analytics. Here, I focus the remain-
der of the paper on sketching some ideas toward address-
ing this second impediment. The goal is to provide a base
for developing, subsequently, a conceptual framework to un-
derstand and facilitate visually-enabled reasoning/decision-
making under uncertainty and to use that framework to de-
velop visual analytics methods to achieve this objective.

2 Conceptualizing Uncertainty

There have been a range of approaches to conceptualizing
uncertainty in the cognitive and decision sciences that are
relevant to developing visual analytics methods and tools
that support analytical reasoning under uncertainty. Here, it
is impossible to cover these approaches comprehensively. In-
stead, I highlight three approaches that address core perspec-
tives: (1) understanding the basis for uncertainty; (2) under-
standing levels of uncertainty; and (3) understanding the role
of information and knowledge in relation to uncertainty.

2.1 Basis for uncertainty

In an important early paper, Kahneman and Tversky intro-
duce a model of the basis of uncertainty in human reason-
ing that underpins much of their subsequent work on judg-
ment and decision-making [KT82]. The key contention (Fig-
ure 1) is that uncertainty can be attributed to both the hu-
man thinkers internal knowledge and to the external world
(which can be difficult or impossible to predict due to dis-
positions outside the control of the decision-maker; dispo-
sitions here are the tendency of something to act in a cer-
tain manner under given circumstances). Externally they dis-
tinguish two bases for uncertainty: distributional (where the
case in question is an instance of a class of similar caseswith
relative outcome frequencies known or estimateable) and
singular (where probabilities are assessed by propensities of
a particular case at hand). Internal bases are partitioned into:
reasoned (that could reflect a process of sifting and weigh-
ing evidence and arguments) and introspective (that involve
judgment of the strength of an association).

Figure 1: Variants of uncertainty proposed by Kahneman
and Tversky; extended from Figure 2 in [KT82].

2.2 Levels of uncertainty

Courtney [Cou03] identified four levels of uncertainty, each
of which requires different strategies (and decision aids) to
address: (a) clear enough future: where point forecasts exist
that are ‘close enough’ for the decision at hand (e.g., location
decision certainty: will a Segafredo Café opened at Kärntner
Str and Philharmoniker Str in Vienna make a profit?); (b)
choice among alternate futures: with a limited set of possi-
ble outcomes defined, one of which will occur (e.g., given a
choice of two intersections vs. a location inside the train sta-
tion for a Segafredo Café, which will be the most success-
ful?); (c) range of futures: with a possible range definable
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within some bounds (e.g., given an estimate that 35-55% of
Starbucks patrons will switch allegiance, will a Segafredo
Café be successful across the street?) and (d) true ambiguity:
given which it is impossible to even define the range of pos-
sible outcomes uncertainties may be both unknown and un-
knowable (e.g., how will Star Trek like food replicators that
bring a cup of ‘real’ Segafredo espresso and pastry to you
impact the success of physical Segafredo Café locations?).

This continuum ranges from situations in which visual,
decision-support tools should focus on helping the decision-
maker understand the range of outcomes and consequences
that may result from the decision to situations in which a
more iterative, speculative what-if process needs to be sup-
ported (in which a wide range of uncertainties can come into
play). For the latter, analytical tools need to support: gath-
ering more information, working backwards from potential
options to develop scenarios that could support them, and
testing scenarios and their assumptions by comparison to
analogies, references cases, and other past experiences.

2.3 Information & knowledge in relation to
uncertainty

In relation to organizational decision-making, Zack [Zac07]
characterizes the information and knowledge-based prob-
lems faced by organizations. He identifies four categories as
part of a 2x2 typology, one cell of which is labeled as un-
certainty (Figure 2). But, in relation to the external-internal
basis for uncertainty outlined above (as it relates to decision-
making), it seems reasonable to consider all four categories
as reasons for ‘uncertainty’ about which decision is best
(with uncertainty about information being one component).

Figure 2: Four reasons for uncertainty about which decision
is best; derived from Figure 1 in [Zac07, p. 1665]

The categories focus on information input to decisions
and knowledge available through which to interpret the in-
formation. Specifically, they address the challenges of lack
versus diversity of inputs along with the distinction between
information and the knowledge required for its interpreta-
tion. To some extent, this distinction echoes that made by
Kahneman and Tversky [KT82, p. 151] between external
and internal uncertainty. Both components related to infor-
mation require tools that support analysis (to turn data into
information in the first place and then to support develop-
ment of decision options and identification of potential out-
comes and consequences. Lack of information is labeled as
uncertainty: defined as insufficient information to accom-
plish a task. Addressing ‘uncertainty’ in this narrow sense

requires visual analytics tools that support information for-
aging along with analysis. Alternatively, particularly in the
era of big data, situations arise with information volumes
and diversity rather than limits. Zack calls this problem com-
plexity: more information than can be processed. To address
complexity, visual analytics tools need to support analysis
combined with selection and abstraction (e.g., tools for fil-
tering, topic modeling and clustering, dimension-reduction).

The knowledge column, described by Zack [Zac07, p.
1665], relates to context needed for information interpreta-
tion. Lack of knowledge is labeled ambiguity. This can be
considered as the lack of an appropriate "frame of "refer-
ence through which to interpret the information. Visual an-
alytics tools can to build the frame needed to create con-
text. An example of an effort to develop such visual analyt-
ics tools is found in [TM12]. Just as with information, there
can be a diversity of reference frames leading to a diversity
of possible interpretations. Uncertainty about which one to
accept as a basis for decisions is termed equivocation: com-
peting/contradictory reference frames. Equivocation yields
confusion and requires visual analytics tools for re-framing,
analysis of competing hypotheses, deliberation, negotiation,
etc.

3 Reasoning under uncertainty

Reasoning under uncertainty is a complex topic that has
been addressed over many decades from many disciplinary
perspectives; Google Scholar lists over 7,700 entries for the
phrase. But, few papers in visualization or visual analytics
have directed specific attention to reasoning under uncer-
tainty. This situation is surprising given the 2005 definition
of visual analytics as the science of analytical reasoning fa-
cilitated by visual interfaces [TC05, p. 4]. This emphasis on
analytical reasoning suggests that visual analytics is the ideal
conceptual framework for connecting advances in uncer-
tainty visualization with the complex challenge of enabling
reasoning under uncertainty. This should be particularly true
for real-world problems in which multiple forms of uncer-
tainty, both external and internal in Kahneman and Tver-
skys [KT82] terms, are involved and in which the reason-
ing and decision-making process is often based upon large
amounts of messy, inconsistent, and changing data.

One basis for understanding reasoning is the classic work
on heuristics reported in the Tversky and Kahneman [KT82]
paper cited above. Specifically, they identify three heuristics
used in judgments under uncertainty.

• Representativeness: When asked to judge whether an en-
tity is a member of a class, people consider how ‘represen-
tative’ the entity is of the class. A common flaw with this
heuristic (one of six flaws outlined) is that base rates (i.e.,
the overall probability that any entity will be part of the
class) are frequently neglected. One example is the task of
judging how likely it is that a particular social media post
was by someone from a particular country. Using a repre-
sentativeness heuristic, an analyst might consider word use,
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sentence structure, places mentioned to decide without con-
sidering the proportion of all tweets that are issued from the
country in question. Another example is found in a study by
Micallef, et al [MDF12] focused on estimating the proba-
bility of having cancer based on a positive test for cancer.
Results suggest that with no visual aids, participants ignored
base rates and that graphic depictions without numerical in-
formation work better than those with numerical information
as a strategy to overcome this bias. Overall, including visual
depictions that remind the analyst to consider a range of sta-
tistical factors important in weighing evidence can help to
counter misapplication of the representative heuristic.
• Availability: Individual knowledge and memory underlie
the availability heuristic; here, ability to recall concrete in-
stances / occurrences is used as a heuristic to judge the prob-
ability of an event or frequency of a class. For example, a
coastal vacationer who knew a Hurricane Katrina victim is
more likely to decide that the risk of an impending hurricane
is high enough to evacuate than someone who once evac-
uated a vacation site only to have the hurricane fizzle out
and do no damage. While availability is in part a function of
probability or frequency, it is also affected by a wide range
of other factors underlying long-term knowledge held by an
individual as well as short term knowledge and recent ex-
periences. Kahnemahn and Tversky [KT82] cite four biases
that impact availability: (a) retrievability of information (fre-
quency judgments are biased by familiarity of entities); (b)
effectiveness of search set (frequency judgments are biased
by the number of instances of a set that can be thought of);
(c) imagability (the ability to conceive of alternative situa-
tions or outcomes positively biases estimates of frequency);
and (d) illusory correlation (the propensity to assume that if
one feature exists others will too, biases probability and fre-
quency judgments whenever one feature is present). In all
cases, visual analytics methods can help counter availability
bias by providing access to representative evidence.
• Adjustment from an anchor: People have a propensity to
make any estimate in relation to some, often arbitrary, initial
value. Initial values can be suggested by almost anything; ex-
periments have shown that randomly generated numbers can
act to anchor estimates to which those numbers have abso-
lutely no relation [MS00]. Anchoring results in a numerical
estimate being insufficiently different from the anchor; any
anchor can prompt biases in evaluating likelihood of con-
junctive or disjunctive events (i.e., the chance of multiple
specific events in a set number of tries versus the chance of
any one event across multiple tries) and in estimates of confi-
dence intervals that specific outcomes will be achieved. For
example, anchoring based on current global temperature is
likely to produce overly conservative max/min estimates of
expected global temperature in 100 years.

The ideas above just scratch the surface of research on rea-
soning, judgment, and decision-making under uncertainty.
Integrating insights from this work is a core challenge for
visual analytics in support of reasoning with uncertain data

about uncertain outcomes.

Zuk and Carpendale [ZC07] report one of the few steps
in this direction. One component of this work was a recon-
ceptualization of the typology of uncertainty that colleagues
and I presented in [THM∗05]. Zuk and Carpendale use this
typology as a base to delineate the types of reasoning un-
certainty that visualization needs to support in relation to
each of the 9 uncertainty categories: (1) Currency/Timing—
temporal gaps between assumptions and reasoning steps; (2)
Credibility—heuristic accuracy & bias of analyst; (3) Lin-
eage—conduit of assumptions, reasoning, revision, and pre-
sentation; (4) Subjectivity—amount of private knowledge
or heuristics utilized; (5) Accuracy/Error—difference be-
tween heuristic & algorithm (e.g. Bayesian); (6) Precision—
variability of heuristics and strategies; (7) Consistency—
extent to which heuristic assessments agree; (8) Interrelat-
edness—heuristic & analyst independence; (9) Complete-
ness—extent to which knowledge is complete.

4 Challenges

Past uncertainty visualization research has focused almost
exclusively on developing and evaluating methods to depict
numerical (or ordinal) measures of uncertainty (or probabil-
ity, variance, etc). Even when the role of uncertainty in deci-
sions has been the focus, research has been restricted to as-
sessing whether methods to visualize data uncertainty lead to
different/better (usually trivial) decisions. Missing (almost
entirely) is research on visual methods to enable reasoning
and decisions under uncertainty.

In the context of real-world decisions, uncertainty related
to reasoning with information in context is more important
than uncertainty related to data. Thus, in visualization/visual
analytics, we have missed more than half of the picture. Em-
phasis has been on (a) developing methods to depict data
uncertainty visually and (b) determining how effectively and
efficiently they can be used. Attention is needed to the role
of visual interfaces in reasoning under uncertainty – our fo-
cus needs to switch from depicting uncertain data to support-
ing reasoning and decisions in situations for which not only
data but the problem itself, options, potential outcomes, im-
plications of outcomes, etc. are uncertain. Doing so requires
addressing (at least) these following challenges:

• understand components of uncertainty and their relation-
ships to: use domains, information needs, and expertise;
• understand how knowledge of uncertainty (or lack of it)
influences reasoning, decision making, and outcomes;
• understand how (or whether) uncertainty visualization
aids / hinders exploratory analysis, reasoning, and decisions;
• leverage understanding to develop useful/usable meth-
ods/tools to: signify multiple kinds of uncertainty; interact
with uncertainty depictions; support reasoning/decisions
under uncertainty; capture/encode analysts uncertainty;
• assess usability and utility of the methods/tools – design
studies for reproducibility and comparability.
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