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Figure 1: WeaVA is a visual analytics solution for the interactive exploration and analysis of weather observations as reported by citizens.
Our visual design combines flexible filters with optimized clutter-free maps, and synchronized histograms for an effective analysis of citizens’
weather reports, characterization of high-impact and unexpected weather events, and comparative analysis of multiple events.

Abstract

Observations of weather captured by citizens represent a novel and unique data source that can complement other authoritative
sources, such as remote sensing, and help detect and characterize high-impact weather events. This work proposes a visual
tool that characterizes weather events by visually analyzing online citizens’ reports gathered by MeteoSwiss, the Swiss Federal
Office of Meteorology and Climatology. Our solution supports the visual exploration of selected features like weather event cat-
egories and intensities through time and space. It presents a novel clutter-free bubble map visualization that facilitates an easy
exploration and quantification of weather reports. It allows the analysis at different zoom levels, supporting multiple interactive
exploration features such as synchronous or asynchronous event histogram comparisons, clutter-free pie-chart map visualiza-
tions, and animations. We illustrate our approach with a series of use cases and findings. We performed a user study with
domain experts from the national weather services in Switzerland, Austria, and Argentina to evaluate our tool’s expressiveness,
effectiveness, and easiness of use. We also list the benefits of our design, future work, and limitations.

CCS Concepts
• Human-centered computing → Visualization design and evaluation methods; Visual analytics; Geographic visualization;

1. Introduction

Weather analysis and prediction is a large and longtime field of
interest for humans. Many methods and sources are used to gain
information about the weather, such as monitoring stations, radio
soundings, or satellites. To improve the analysis and predictions,
new additional ways are searched. One of these newer ways is the
gathering of data with the help of citizens.

Online human digital traces (text, image, video) about weather
events are a unique and novel resource to support the understand-
ing and characterization of high-impact weather events. There are
several efforts from European Weather Services to collect weather
event reports generated actively by citizens, for example the mP-
ing app from the Deutscher Wetterdienst in Germany [Wet], or the
European Severe Weather Database, short ESWD [Lab18], among
others.
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In November 2021, MeteoSwiss launched a new feature, the Me-
teo reports, in their weather app, the MeteoSwiss App, in which
citizens can report the weather conditions in their surrounding ar-
eas, optionally including images. Such reports are divided into cat-
egories like cloudiness, rain, hail, and wind, specified and provided
by MeteoSwiss. For each of these categories, there are degree lev-
els for the respective intensities, like strength or dimension. Posted
reports and optional images are checked for correctness and ap-
propriateness before being included in the app. As a first step to
gaining more knowledge on how citizens report weather events, we
investigate the following main research questions (RQs):

R1: What weather event features are reported by citizens, and how
are they linked through the reports?

R2: How do people report high-impact weather events over time
and space?

R3: What patterns or unexpected activity can be extracted from
the visual inspection of weather reports?

To explore these RQs, we propose a visual analytics tool that fa-
cilitates the visual comparison of weather reports and their under-
lying weather events (see Fig. 1). Our tool presents the following
main contributions:

• A clutter-free bubble map visualization of the citizens’ reports
with comparative features. Our approach combines a fast bubble
map generation with a manageable amount of visual marks on
maps representing the locations. The shape of the bubbles is used
for additional information representation.

• An synchronous/asynchronous (sync/a-sync) histogram view
that facilitates the comparison of multiple categories and simi-
lar weather events over time. We refer to sync histograms to the
histogram views that are either synchronized on the starting date
and time or by duration. This view, combined with a time player
and linked to the map, allows the user to follow the reports’ ap-
pearances and changes in time and space.

• Multiple features and flexible parametrization that allow the user
to inspect potential patterns and unexpected events on the citi-
zens’ reports.

We present representative use cases showing how the tool can be
utilized and what information can be gained. We evaluated our tool
with seven domain experts to identify its expressiveness, ease of
use, and effectiveness, as well as possible improvements and limi-
tations. We summarized the lessons learned from using our solution
and the feedback from the user study.

The novelty of our work consists of (1) a balanced design that
combines spatial and temporal views with a flexible set of parame-
ters and filters to support the user in the characterization of weather
events through citizens’ report properties, (2) the identification of
spikes of attention in particular severe event cases, (3) the analysis
of the spatio-temporal citizens’ contributions, and (4) the multivari-
ate analysis and verification of uncommon reports.

2. Related Work

2.1. Weather Visualization Tools

Weather visualization is a longstanding active research topic. Raut-
enhaus et al. [RBS∗18] covered the related work in visualization

tools used for meteorological data analysis. More specific tools for
nowcasting and warning of severe weather hazards include AW-
IPS [UCAa] (the Advanced Weather Interactive Processing Sys-
tem), a meteorological decoding, display, and analysis package ini-
tially developed by the United States National Weather Service.
WarnGen [UCAb] is a tool based on the AWIPS CAVE platform
for creating and issuing weather warnings. WarnGen allows for the
visualization of weather radar data. However, to the best of our
knowledge, it does not provide information about crowdsourcing
information or distribution maps of citizens’ observation data sets.

2.2. Visual Analysis of Crowdsourced Data

We focus on a newly available dataset of crowdsourced
weather reports collected by MeteoSwiss with unique fea-
tures such as weather categories, intensities, and pictures taken
by citizens. Similar efforts to collect citizen data are be-
ing made by the European Severe Weather Database (eswd.
eu), the ”Unwetterzentrale” (uwz.com), the ”Zentralanstalt
für Meteorologie und Geodynamik (ZAMG)” in Austria, the
”Deutscher Wetterdienst ”(dwd.de) in Germany, and the
”Weather Observations Website” (WOW) of the Met Office in
the United Kingdom”(https://wow.metoffice.gov.uk/
). These datasets have shown potential to be used as comple-
mentary data sources to study weather phenomena [CGH∗16,
BHM∗19].

A close antecedent to our work is CitymisVis [HMCnM17],
which analyzes requests and complaints about municipal services.
In CitymisVis, the data is divided into categories such as street con-
dition, running water, parks and squares, and corresponding subcat-
egories. The visualization utilizes the geo-information of the report
on a map and then uses a heat map and hierarchical clustering to
highlight specific areas. Furthermore, detailed information on the
reports in certain highlighted areas is shown in an additional pie
chart where individual reports can be inspected. Besides the map,
they provide statistics over the data set, like our additional infor-
mation in the form of histograms. For them, the proportion of the
categories and sub-categories is more relevant than the timing of
the reports, so they decided to use a sunburst chart, where the inner
ring is about the categories and the outer ring is about the sub-
categories. Also, De Melo Borges et al. proposed EstaVis to cluster
and analyze reports of problems in urban infrastructure to facilitate
the data overviews [DMBBP∗16]. The main advantage of this work
is that it can deal with streaming processing of incoming reports by
a fast clustering computation mechanism.

CitizenSensing [NOV∗20, NVO∗21] is one of the most relevant
to our work as it also focuses on weather conditions. It visualizes
the report data in various forms: a map view for displaying the spa-
tial locations of the report, a Sankey diagram showing the link-
ages between weather event type, impact type, and personal level of
comfort, a word cloud view displaying frequent terms submitted in
the comments of the reported weather events, and a temporal scatter
plot, where each point corresponds to a report and is color-coded by
level of comfort or climate impact. Besides, the application further
provides temperature, air pressure, and humidity information that is
not based on the weather reports but on a sensor network. Although
providing multiple features and functionality, CitizenSensing has a
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limitation in that it does not scale well with a large number of re-
ports, as the maps would be overfilled with location information,
and the scatter plot would also be cluttered with too many points,
whereas our work specifically addresses this issue.

2.3. Clutter-Free Spatial Data Visualization

An important point we needed to address in our work is how to
visualize overplotted visual elements on the maps. We hereby sum-
marize some of the most commonly used approaches for encoding
spatial point data over 2D maps.

Dot plots or scatter plots, with various shapes, can represent
data items on maps [ZKT21, WCD∗19], but lack the ability for
visual abstraction of potential clusters or dense data regions if
showing the clusters or hot spots of data points is essential. Pixel
maps [Kei00] are helpful, but their neighborhood pixel expansion
criteria might mislead the visual interpretations of the phenom-
ena. On the other hand, density plots, including heatmaps, can
show different clusters but lose the information of individual data
points [WXS12,ZLG∗21]. Other antecedents include different line
plots on maps, but they mainly deal with certain spatial information
such as trajectories [KJW∗18, ZCL∗21, ARH∗15].

Extending basic plots into well-designed glyphs also has a broad
application in spatial data visualization [BKC∗13, ML19]. Bergen-
stråhle et al. [BBL20] facilitate cluster evaluation with their R-
based package SpatialCPie. It uses pie charts to indicate the simi-
larity between spatial regions and clusters and further plots an array
of such pie charts to show the similarity scores between each spot
and the centroid of the analyzed cluster. Kumpf et al. [KTB∗18]
and Weng et al. [WXS12] both use a pie chart-like glyph design
to represent cluster information in their applications, but the size
of those pie chart glyphs is set to be a constant. The work of Rau
et al. [RHWS22] presented different gridification methods to make
the data clutter-free. McNabb and Laramee [ML19] used level-of-
detail scale-aware glyph maps to reduce clutter. These two last an-
tecedents are the closest to our clutter-free bubble method.

3. Methodology

In this section, we describe the participatory design process, the
data model, and the visual features of our solution.

3.1. Data Sets

The main data set used for our solution is citizens’ weather reports
contributed by users of the visual tool named MeteoSwiss App. This
data set consists of 501,053 reports. The time range of the data is in
total from 10th of June 2021 to 6th of December 2023. We also use
auxiliary data from the Federal Office of Topography SwissTopo to
identify cities and towns, including postal codes and perimeter. The
data is used for information about the cantons and their locations.

Reasons for reports not passing the quality check are failing val-
idation with the weather data, being outside of the time range or
supported region of the feature, or problems with the user like too
many images per hour or lost trust. The reasons for removing im-
ages are that they contain humans, text, hate symbols, alcohol or

drug products, or that there were problems with the upload. The
filter is automated and removes images that are unsure so that no
problems should be in the approved images.

3.2. Design Process

The visual design was done using an iterative and participatory de-
sign process. Together with experts from the MeteoSwiss, we have
identified the main objectives and tasks of our tool:

T1: To visualize the spatio-temporal distribution of weather re-
ports over time and space.

T2: To characterize weather events using multiple weather report
categories.

T3: To visually compare two or more weather events identified
by the users using different temporal ranges, regions, categories,
and intensities.

Starting from an initial design prototype, we iterated over it with
our collaborators in several rounds. In particular, their feedback
helped us to add the required flexibility to the tool by expanding
the parameters and feature filters, adding multiple selections of cat-
egories, and supporting the visual comparison of multiple events. In
the last step of our design process, we included a broader audience
of experts and computer scientists. The main feedback we received
from this iteration was the need to compare several categories and
intensities distributed in the map. To respond to this feedback, we
designed the clutter-free bubble map that allows for a non-occluded
view of the report distribution over time and space, distinguishing
different categories per location employing pie charts.

3.3. WeaVA Visual Design

Our solution provides three main interactive features: (1) a strati-
fied clutter-free bubble map visualization that facilitates a clutter-
free exploration of a large number of citizen reports, and that allows
the user at the same time to have an overview of the density as well
as the distribution of reports over the map (task 1 and 2), (2) a com-
parative visualization of weather events and weather event features
(task 3), and (3) a sync/a-sync event histogram view that facili-
tates the temporal comparison of events over time, synchronized
by date, by duration, or without synchronization using independent
time ranges (task 1 and 2).

3.3.1. Clutter-free Bubble Map

There are different ways to present location information on a map,
such as choropleth, markers, and density maps, among others. We
have chosen to represent the report data with markers, as markers
show the location they belong to with more precision and allow for
the addition of several visual encodings into the marker.

We have also evaluated different basic clustering algorithms for
aggregated bubble maps, but none produced satisfying results. K-
Means clustering, for example, will generate different maps in each
generation when the starting points are not set to be the same. DB-
SCAN produces stable results, but for large numbers of reports,
typically, very dense maps are produced, leading to large areas that
are difficult to connect to a single marker. Furthermore, DBSCAN
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areas can be non-convex so that there are points between a marker
and a report that are not represented by the marker.

To solve the above mentioned issues, we apply a stratification
method that divides the map into a uniform grid of a given size
and computes the reports’ distribution. For every grid cell, the re-
ports belonging to it are aggregated into one marker, as illustrated
in Fig. 2. The basic grid distance uses a predefined value and adjusts
according to the zoom level on the map. Therefore, for each step of
zooming-in, the distance covered per pixel halves and, accordingly,
the distance of the zoom halves as well. Our method first calculates
the actual grid size by dividing the total distance in each direction
through the predefined maximal grid distance. The rounded-up grid
distance then divides the total distance to get the size of one cell
per direction. The grid will be initialized by assigning all reports to
their respective cells, as shown in Fig. 2(b). Next, the convex hulls
and the centroids of the contained reports are calculated for each
cell, see Figs. 2(c) and 2(d). The so-generated centroids will be the
coordinates of the bubble markers; see Fig. 2(e). Finally, different
markers are created from spatially separated points, only slightly
overlapping at the borders. We eventually use varying-sized circles
as can be seen in Fig. 2(f), i.e., bubbles.

(a) (b) (c)

(d) (e) (f)

Figure 2: Clutter-free Bubble Map algorithm steps: (a) initial re-
port distribution, (b) grid initialization, (c) convex hull definition,
(d) centroids extraction, (e) centroid locations, (f) clutter-free bub-
bles.

A pie chart marker is displayed if there are multiple reports in
one marker combined, whether it is because there are multiple re-
ports at the same coordinate or clustered together. The size of each
slice corresponds to the percentage reports of a respective event in
relation to the total number of reports. Each pie chart slice’s color
corresponds to the respective event’s color. We chose pie charts as
a marker to show multiple categories in one location because they
allow us to maintain a coherent design for the user and evoke the
whole-and-part visual metaphor. Moreover, the center of a circle
can more easily be connected to a spatial location than, for exam-
ple, a bar. Combined with the different circle sizes, the user can
have a rough qualitative estimate of the relative number of reports
for the given event.

Another advantage of our method is that the average complexity
of the algorithm is linear. It only loops once through the list of coor-
dinates, which is the complexity for the best clustering algorithms.

The bubbles sometimes slightly overlap. This is due to the bub-
ble center not being in the center of the grid cell but the points’

convex hull’s centroid. This is a trade-off with the information gain
of the centroid. The centroid shows where the reports are more rep-
resentative. Fig. 3 shows an example of a Clutter-free bubble map
and its counterpart, a bubble map with clutter for many reports.

(a) (b)

Figure 3: Clutter-free Bubble Maps. (a) shows the results of the
clutter-free bubble maps, and (b) shows how reports are depicted
by using only location markers.

The marker size is used as another visual variable to show the
number of reports per marker in the cluster-free bubble map. We
use a linear normalization, where the rate per cell is calculated as:

ratei =
all reports in cell i

max number reports in any single cell
(1)

Using this per-cell normalization rate, the size of a marker in its
i-th cell is then calculated as:

sizei = smin +(smax − smin)∗
√

ratei (2)

where smin and smax are the minimal and maximal sizes of markers,
and i is the cell in which the marker is located. The maximal size of
a marker is the grid cell size. The root is taken for the size since a
linear growing area is desired instead of a linear growing diameter.

3.4. Visual Comparison Map

The visual comparison map, as shown in Fig. 1(c), allows the user
to compare different categories associated with an event. For ex-
ample, reports of a thunderstorm might be related to wind, hail,
and rain. Moreover, comparisons of similar events that happen at
different time ranges or geographic locations can also be made.
The second type of comparison is especially useful to character-
ize spatio-temporal changes or similarities of high-impact weather
events.

3.5. Sync/A-sync Time Histogram View

The sync/a-sync histogram view plays an important role in the vi-
sual comparison of similar weather events, as reported by citizens.
This temporal analysis and comparison view supports (1) the anal-
ysis of a particular weather event evolution in time and (2) the com-
parison of similar weather events that may occur at different times
or locations. The synchronization can be done by the start date or
the duration of the event or can be omitted, i.e., asynchronous, as
further described below. The combined analysis of this view and the
visual comparison map allows the user to have a global overview
of similarities among multiple events of interest.

The histograms provide information about the number of reports
with or without images over a selected time period of the event. The
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(a) (b) (c)

Sync Duration Sync Duration and Start Time No Sync

Figure 4: The sync/a-sync histogram views: (a) shows two histograms corresponding to two different storm events on the 16th/ 17th of
February and 21st of February synchronized by duration. (b) shows the same selected events synchronized by start and end date. (c) shows
both events in the sync histogram views without synchronization.

start and end times of the event are defined by the user. The lower
and darker part of the histogram represents the reports with images,
and the upper part represents the reports without images. The user
can adjust the number of bins displayed to analyze the temporal
distribution of the reports at different levels of detail. By default,
the number of bins is set to 20, following Sahann et al. [SMS21],
who found that 20 bins is the optimal number because the error
rate of human observers becomes stable and does not improve with
additional bins. However, the user is free to change this number as
desired.

In the comparison view, the user can change the synchronization
of the display of the different histograms. The options are:

Sync the duration: This option synchronizes the temporal axis of
the histogram to the duration of the longest time range. The tem-
poral axis of each event begins at its own start time but lasts
the same as the longest time range. This option is best suited
to compare events of the same category on different dates (see
Fig. 4(a)).

Sync the start: This option synchronizes the start of the histogram
temporal axis to the earliest start time. This option is best suited
to compare events of different categories or intensities around the
same time (see Fig. 4(b)). The events’ duration is set to last the
same as the longest time range of both events for comparability
reasons.

Sync nothing: In this option, the histograms are not synchronized,
neither start and end times nor duration of the events. The
used boundaries are the ones selected in the selection view (see
Fig. 4(c)). This option is useful when the users want a quick,
broad search to spot interesting events.

The users can drill down into a temporal analysis by brushing
and selecting a sub-range in the histograms. The user can select a
subset of reports by clicking and dragging over multiple bins. The
reports of the selected bins will simultaneously be highlighted on
the map.

4. Use Cases

In this section, we describe two use cases to illustrate the main use,
features and benefits of using our tool.

4.1. A Major Hail Event near Zurich

In this case, we analyze an event that took place in the afternoon
of 4th of May 2022 in the city of Zurich. The event surprised
the population and many citizens reported it, as portrayed in the
news [Kle22]. The user selects hail as the leading category, the
date of the event, and the preferred area and surroundings: i.e. the
canton of Zurich. By visualizing the information in the sync/a-sync
histograms, she narrows down the event to the approximated time
of occurrence as shown in Fig. 5(a). Subsequently, she adds the
cloudiness, rain, and lightning categories as shown in Fig. 5(b).
Further, she slightly varies the time range to add further observa-
tions that were reported right before or after the peak time, as ob-
served in the histograms (see Fig. 5(c)). The results of her analysis
reveal several findings:

1. The number of reports per category varies a lot. The majority
of the reports are about hail (387), followed by lightning (40),
rain (28) and finally cloudiness (11). It shows that citizens report
the most impactful category in case of a special weather event.
These findings are aligned with R1 (Section 1) and T1 and T2
(Section 3).

2. An analysis of reported intensities shows high variability in the
reports. For hail, the maximal number of reports is for a size of 1
cm, but sizes up to 3 cm are reported as well in the same reports
group. These findings are aligned with R3 and T2.

3. The number of reports per area varies along the path of the
weather front. Most reports came from areas around university
buildings. These findings are aligned with R2 and T1 and T2.

4. The spatio-temporal analysis shows that a clear progress of the
weather front can be seen, as citizens in the south report earlier
than citizens in the north. These findings are aligned with R3,
T1, and T2.
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(a)

(b)

(c)Lightning

Hail

Lightning
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Figure 5: Major hail event on 4th of May 2022, in the city of Zurich. (a) shows citizens’ reports on the map corresponding to lighting,
(b) shows citizens’ reports on the map corresponding to hail, and (c) the visual comparison map showing how hail, rain, cloudiness, and
lightning contribute to the specific high-impact weather event.

These findings show that our tool facilitates a quick spatio-
temporal overview of the number of reports for the same high-
impact event. This information can be useful to study how citizens
report weather events, what categories or kind of events are impor-
tant for them to report, and how reports progress in time and space.

4.2. Comparison of two Similar Stormy Events

High-impact weather events repeat with certain periodicity over
time and space, some of them are particularly local and vary
slightly in their spatio-temporal extension. These characteristics
make the analysis of similar or analog events of high interest not
only for meteorologists but also for the general public.

To illustrate how our tool facilitates such an analysis of ana-
log events, the user examines reports of heavy storm events and
compares their similarities and differences. We chose an event
of heavy storms that occurred in February 2022. The selection
was made based on information from the climate bulletin of Me-
teoSwiss [Met22].

The user starts her exploration by selecting the category "wind",
which is the main category associated with heavy storms. Then,
she narrows down her analysis to high-intensity winds, so that no
reports of breezes are included. With the help of the histogram,
the user observes that, indeed, February 2022 is reported as the
stormiest month in the available time range. The histograms show
two peaks in February corresponding to the storms that took place
on 6th and 21st February, see Figs. 6(a) and 6(b) respectively. The
analysis of the two storm events reveals that:

1. The storm on 6th February shows more citizens’ reports than
the storm on 21st. However, the second storm has more reports
in the Alps and in the South as shown in Fig. 6(c). (R1 and T3)

2. The analysis of the intensities shows that citizens reported it

quite differently. Most citizens reported stormy winds, some
even storms, and a few citizens reported the intensity of a hurri-
cane, see Fig. 6(d). (R2, R3, and T2)

3. The spatio-temporal comparison done by playing through the
reports of both events shows no difference in the spatial distri-
bution. The number of reports grows similarly in the whole area.
(R1, R2, and T1)

4. The storm in the morning shows that citizens reported the
weather throughout the whole night. Even so, the number of
reports strongly increased from 6:00 AM, a hypothesis could
be that many citizens were awake. After 8:00 AM, the number
decreased again rapidly, see Figs. 6(e) and 6(f). (R3 and T1)

5. The number of reports of the evening storm has a more contin-
uous progression. The reports present two waves, with a local
minimum around 19:00, which can be due to a break of the wind
or other citizens’ activities, for example, citizens eating at that
time, see Figs. 6(e) and 6(f). (R3 and T1)

6. The spatio-temporal analysis of both events through the player
shows that both were reported over the whole time in the low-
lands of Switzerland. Unlike the hailstorm of the first use case,
this event has no visible front. (R1, R2, R3, and T1)

7. The storm happened at different times of the day. The storm on
6th of February was in the early morning, the one on the 21st in
the evening, as shown in Fig. 6(e). (R1, R3, and T3)

These findings raise new research questions about how some
daily routines might be reflected in the data and how such phe-
nomena might attract users’ attention and interest in observing and
reporting more similar events in the future.

5. Domain Expert Evaluation

We evaluated our visual design using a round of semi-structured
interviews. Our interviewees consist of a diverse group of meteo-
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(a)

(b)

(c) (e)

(f)

Figure 6: Heavy storms registered during February 2022. (a) shows the distribution of wind reports on 6th of February, (b) the distribution
on 21st of February. For both, the clutter-free bubble map is used. (c) shows the visual comparison of these two heavy storms. The pie chart
markers show on one hand how prominent citizens’ reports were on the upper north of the country, and second that in the same area people
registered or noticed more the first event. (d) shows the detailed information of a bubble. Citizen reported different intensities, even on a
hurricane level. (e) shows the events over the whole day of the respective event, emphasizing the day time of the storms, and (f) shows the
same event with slightly shifted time ranges to align the peaks of the storm reports. There are only few reports containing images, which can
be due to the nature of the category wind, which is difficult to capture in a static image.

rologists, environmental scientists, and computer scientists work-
ing at the national weather services of Switzerland (MeteoSwiss),
Austria (ZAMG), Europe, and Argentina in South America. We in-
terviewed a total of seven participants. Five interviewees have more
than ten years of experience in weather forecasting, and the other
two have data science jobs directly linked to weather forecasting.

The interview contained a pre-experiment questionnaire, a pair
analytics session, and a post-experiment questionnaire, and lasted
approximately 45 minutes approximately. We provide the evalua-
tion form as supplementary material.

Participants found the novel clutter-free bubble map the most ef-
fective among all the visual features. In general, all the features
are evaluated as very effective, besides the preview lens which was
rated moderately to very effective. They found the sync histograms,
the clutter-free bubble map, and the preview lens moderately to very
easy to understand, compared to other features. These results make
sense because these visual features are enhanced for visual compar-
ison tasks which makes them more complex. We observed a similar
pattern in their responses regarding the feature expressiveness, but
the participants’ feedback was also very positive. They found all
visual features very expressive to extremely expressive.

They gave positive feedback and mentioned a wide range of tasks
that can already be addressed by our tool such as:

• identifying high-impact weather events,
• characterizing weather events’ spatial distributions,
• performing evaluation and comparison of past weather events,
• complement the verification process of severe thunderstorm

warning,
• analyzing citizens’ activity when warnings are issued or when

there is a missing warning of high-impact weather events.

They also mentioned possible future extensions for the tool such
as spatial statistical reports, overlay of remote sensing observa-
tions and warning maps, the inclusion of reported images and fil-
tering based on image feature extraction, export of customized
reports for further analysis outside the tool, and real-time per-
formance. The current code of our tool is publicly available at:
https://github.com/dhaess/WeaVA.

6. Conclusions

In this paper, we introduced WeaVA, a visual analytics tool for char-
acterizing weather events as reported by citizens. Our visual design
and solution successfully answered our initial research questions in
Sec. 1 and tasks in Sec. 3, as shown through the different use cases.

During the expert user evaluation, we identified further potential
features and future work, such as the query by automated features
extracted from images attached to the reports, the inclusion of re-
motely sensed data coming from radars and satellite images, and
the possibility of importing data sets from different countries, in
particular, the so-called European DACH area composed by Ger-
many, Austria, and Switzerland.

A limitation is that our solution currently needs to support real-
time analysis. To include them, we foresee using progressive visual
analytics and high-performance computing methods.
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