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Figure 1: Visual analysis tool for multi-field climate ensembles: An embedding of spatial segments based on their time series correlations
(a) allows for cluster detection and selection. The selected segments are highlighted on a geographical map for spatial context (b). The
respective time series can be visualized as a graph over time (c), while the correlations among the segments and their distribution over the
ensemble are shown in a heatmap (d).

Abstract
Spatio-temporal multi-field data resulting from ensemble simulations are commonly used in climate research to investigate pos-
sible climatic developments and their certainty. One analysis goal is the investigation of possible correlations among different
spatial regions in the different fields to find regions of related behavior. We propose an interactive visual analysis approach that
focuses on the analysis of correlations in spatio-temporal ensemble data. Our approach allows for finding correlations between
spatial regions in different fields. Detection of clusters of strongly correlated spatial regions is supported by lower-dimensional
embeddings. Then, groups can be selected and investigated in detail, e.g., to study the temporal evolution of the selected group,
their Fourier spectra or the distribution of the correlations over the different ensemble members. We apply our approach to
selected 2D scalar fields of a large ensemble climate simulation and demonstrate the utility of our tool with several use cases.

1. Introduction

To quantify the uncertainty of weather forecasts and climate pro-
jections, ensemble simulation techniques have been used for many

years. By running the same model several times with slightly dif-
ferent initial conditions, the internal variability of the modeled sys-
tem can be captured and its response to climate forcing can be
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estimated. Nowadays, single model initial-condition large ensem-
bles (SMILEs) with ensemble sizes of the order of 100 or more
[MML21] are increasingly used to obtain statistically robust es-
timates of the internal variability. However, the use of ensemble
techniques adds an additional complexity to the multivariate, time-
dependent spatial datasets, increasing their size and the effort re-
quired to analyze and visualize them.

Analyzing the correlations in climate simulation ensembles al-
lows for studying long-range interaction in single fields as well
as among multiple fields. As the number of correlations grows
quadratically with the number of data points, most approaches use
a reference point to which the correlations are computed. However,
the choice of a suitable reference point is a difficult task, which
strongly influences the analysis. A global analysis approach, in-
stead, allows for a more comprehensive analysis.

To support the visual correlation analysis of such large and com-
plex multi-field ensemble datasets, we developed an interactive ap-
plication specifically designed to assist the user in identifying and
further analyzing spatial regions with similar temporal behavior in
one or more physical parameters. Starting from an embedding of
the data points representing regions based on the similarity of their
simulated time series, clusters of highly correlated regions can be
interactively selected by brushing interactions. The properties of
the clusters can, then, be analyzed in more detail in a geographi-
cal map, a correlation heatmap that also shows the variability over
the ensemble, and a line plot showing the underlying time series
or a Fourier transform thereof. Based on a 2D subset of the Grand
Ensemble simulations of the Max Planck Institute for Meteorology
(MPI-GE) [MMSG∗19], we present several use cases that demon-
strate the utility of our tool.

Our main contributions can be summarized as follows:

• We propose to use dimensionality reduction for a global corre-
lation analysis of time series in different spatial regions among
multiple fields at once.

• We present an interactive visual analysis approach that allows
for an analysis of correlated regions at different levels of detail.

• We present several use cases from the field of climate research
to show the utility of our approach.

2. Related Work

Many different approaches for a wide variety of domains have been
proposed recently to analyze different aspects of spatio-temporal
ensemble simulations [WHLS19]. Weather and climate simulations
as one of the major application areas have led to several approaches
that are focused in this domain [BLLS16, KRRW18, ZCL∗20].
Jänicke et al. [JBMS09] use wavelets for the analysis of climate
data on different scales. Kappe et al. [KBL19] analyze the variabil-
ity of climate ensembles over time, while Vietinghoff et al. focus
on the spatial variation of different climate phenomena [VHB∗21].
Segmentations for multivariate data [HBLW21] have been pro-
posed but neither deal with temporal data nor correlations.

The analysis of correlations is a common task where mostly
correlations between different fields on a fixed position are com-
puted [JPR∗04, ZHQL16, WTZG18] or correlations in a single

field between different spatial positions [PW12,ACM∗19,BGR∗19,
ALI∗19,EHL21]. Other approaches tackle the high dimensionality
of the correlation matrix by visualizing the correlations based on
a user-defined reference point [CWMW11, SWMW09]. Sauber et
al. [STS06] compute correlation fields among different variables
and represent them in a graph which is growing exponentially.
Additionally, they are not considering correlations among differ-
ent spatial regions. Nocke et al. [NBD∗15] desribe coupled climate
networks to study correlations among multi-fields which have been
used to study correlations among two fields [ECKD21, DWW23].
Neither more than two fields nor ensembles have been studied.
None of the discussed approaches allow for a global correlation
analysis between spatial regions of multiple field, which is the ob-
jective of our analysis approach.

3. Visual Analysis Workflow

We propose an interactive visual analysis workflow for investigat-
ing correlations in a spatio-temporal multi-field climate ensemble
simulation data set as shown in Fig. 2. After preprocessing the data,
which is explained in detail in Section 4, we obtain correlations
among segments, where the segments describe homogeneous spa-
tial regions, i.e., in which the evolution of the field is highly corre-
lated. Then, the correlations among segments are analyzed interac-
tively as described in Section 5.

In order to support finding segments with similar temporal pat-
terns, the analysis process starts with a 2D embedding, where each
segment is represented by a point in the embedding and correla-
tions between segments are mapped to distances between the cor-
responding points. Clusters in the resulting point cloud represent
highly correlated segments. The user can select one or more clus-
ters, of which the underlying data are then shown in linked views.
A geographic map view shows the selected segments to provide
spatial context. Selections in the map view are also possible such
that the corresponding segments are highlighted in 2D embedding.
For a more detailed analysis, we additionally include a heatmap vi-
sualization of the correlation data. Here, we use color to encode the
correlation over the whole ensemble and also visualize the spread
of the correlations among all ensemble members (see Section 5.4).
We also provide a line plot that shows the median as well as the
spread of the ensemble over time. For further analysis of cyclic
patterns in the time course of the data for the selected areas, our
system offers the possibility of spectral frequency analysis, which
is a common tool in climate research. We support temporal selec-
tions of which a Fourier transform can be computed and visualized
in a line plot. Note that all visualizations are closely linked by using
a consistent color coding for the different fields. We implemented
our approach in a web-based analysis tool using Plotly and D3.

4. Preprocessing

As a preprocessing step, we divide the data into spatial segments of
locations that are highly correlated. This step significantly reduces
the data size for subsequent analysis steps while keeping the inter-
nal variability of the data. Then, we compute a correlation matrix
among the different segments over the whole ensemble as well as
each ensemble member separately.
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Figure 2: The analytical workflow starts with a preprocessing step leading to correlations on a level of (homogeneous) segments. These
correlations are analyzed in an interactive visual manner at different aggregation levels.

4.1. Segmentation

For obtaining a spatial segmentation of the original data, where
each of the segments consists of highly correlated spatial samples,
we follow the same approach as Evers et al. [EHL21]. Since the
segmentation may be rather different in different fields, we apply
this approach for each field separately to reduce the complexity of
the data more effectively. In the following, we denote a time se-
ries at spatial sample xi for the field v and ensemble member rk as
sivk(t). The correlation between the time series sivk(t) and s jwk(t)
of the same ensemble member at the spatial positions xi and x j for
fields v and w can be computed directly. To obtain a time series
that contains all n ensemble members, we use a concatenation. The
concatenated time series fiv(t) at spatial sample xi and field v can
be written as

fiv(t) = sivk

(
t −

k−1

∑
l=1

Tl

)
for

k−1

∑
l=1

Tl < t ≤
k

∑
l=1

Tl . (1)

The number of time steps of simulation run rk is denoted as Tk. The
pairwise correlations in a single field between two concatenated
time series fiv(t) and f jv(t) are computed for each spatial sample
pair leading to a correlation matrix for each field. In this work, we
use the Pearson correlation coefficient [BCHC09], which is com-
monly used for time series. Note that the correlation measure can
be easily exchanged, for example, to use a non-linear measure.

Based on the correlation matrix, we compute a distance matrix
by mapping the correlations from a range [−1,1] to distance in the
range of [0,1], where a strong positive correlation is considered
as a distance of 0 and a strong negative correlation as a distance
of 1. The resulting distance matrix is used as an input to a multi-
dimensional scaling where each spatial sample point of the data is
mapped to three dimensions. By assigning the three-dimensional
values to the spatial positions, we obtain the so-called similarity
images where similarity of colors represent the correlation strength.

Similarly to Evers et al., we use a hierarchical watershed seg-

mentation approach to compute the segments from the correlations,
but for our work we use only the highest level of detail of the hierar-
chy. By following this procedure, we obtain a segmentation where
each segment contains only highly correlated data points. For each
of these segments, we can compute the mean over all spatial sam-
ples for each ensemble member separately, which results in n time
series for each segment for an ensemble with n ensemble mem-
bers. By construction, we can assume that the individual segments
are highly correlated and, therefore, sufficiently similar to be aggre-
gated into a mean. In the following, we only work on these segment
ensemble means which significantly reduces the size of the data. It
also ensures that these data depend on the complexity of the un-
derlying data instead of the spatial grid resolution. This can be ob-
served for the case of the MPI-GE data: Pressure shows variability
on a large scale, resulting in only 490 segments, while precipitation
varies on smaller scales, resulting in 974 segments.

4.2. Correlations

In the following, we consider all fields together and compute cor-
relation matrices for all segments of all fields. For the first correla-
tion matrix, we still use the concatenated time series as defined in
Equation 1 over all ensemble members. The values of this corre-
lation matrix can be mapped to distances again as described in the
previous section and will be used for the projection. Additionally,
these correlation values will be used in the heatmap for a direct vi-
sualization. However, to cover the variability among the ensemble
members, we also compute pairwise correlations between the time
series of the individual ensemble members. This leads to n correla-
tion values for each segment.

5. Visual Design

In the following, we will discuss the design decisions for the dif-
ferent visual encodings included in our interactive visual analysis
tool.
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5.1. Embedding

As the starting point of the analysis, we use a dimensionality re-
duction to compute a 2D embedding as shown in Fig. 1a, where
each data point represents a spatial segment. For its computa-
tion, we chose uniform manifold approximation and projection
(UMAP) [MHSG18], because our goal is to identify clusters of
highly correlated segments, which are well preserved by UMAP.
Additionally, UMAP tends to better preserve the global structure
when compared to techniques like t-SNE. The projection is com-
puted based on the correlation matrix that aggregates time series
data for the whole ensemble (see Section 4.2). To compute dis-
tances from the correlation values, we map the correlations to a
range of [0,1] in the same way as we did for the computation of
the similarity images. Therefore, we obtain an embedding that con-
tains the structure of the complete multi-field ensemble where the
different fields are encoded by color. Since we are computing cor-
relations of time series, it is possible to include multiple fields rep-
resenting different physical properties without performing normal-
izations. Depending on the analysis goal, highly anticorrelated time
series shall be considered to be similar. Therefore, we provide the
users with the option to alternatively compute the distance di j be-
tween segments i and j as di j = 1−|ci j| where ci j is the correlation
between these segments.

The result of the UMAP algorithm strongly depends on the num-
ber of neighbors included for each point. As the optimal choice of
this parameter is not obvious,the user can change the parameter
and find a suitable setting. The density of the embedding can also
be modified. By adjusting the parameters, it is also possible to find
different features in the data. Analyzing multiple fields at once can
lead to visual clutter in the scatterplot of the projection result. To
address this issue, the user can interactively select which fields to
display without affecting the fields included in the analysis within
the linked visualizations. However, if any fields should be generally
excluded, it is also possible to make a global selection of the fields
that affects all visualizations. Groups of points can be selected by
brushing in the scatterplot. To highlight the selected points, the sat-
uration of the other sample points is decreased.

5.2. Spatial Visualization

Since the UMAP projection by definition does not show spatial re-
lationships, an additional linked map view is needed to analyze re-
gional features in the data. For this reason, we included a world
map with continental outlines that provides the geographic context,
as shown in Fig. 1b. When the user selects any points in the UMAP
projection, the outlines of the corresponding segments are drawn
on the world map. Thus, a direct connection between the sample
points in the embedding and their spatial positions is possible.

It is also possible to apply a lasso selection directly in the map
view. Here, each segment which at least partially overlaps with the
selected region, is selected. The selection is also closely linked to
the embedding where the points representing the selected segments
are shown as selected.
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Figure 3: The Fourier transform of the temperature anomaly ex-
hibits two dominant peaks in the ensemble mean, several smaller
peaks, and a strong variation over the ensemble. While the fre-
quency of 1/year indicates seasonal variations, the other frequen-
cies might be attributed to the El Niño phenomenon.

5.3. Time Series Visualizations

For the segments of interest that have been detected, the time se-
ries are also visualized directly. We choose to visualize the time
series as a graph over time where we also show the uncertainty in-
troduced by the ensemble as shown in Fig. 1c. Here, we follow the
same approach as Evers et al. [EHL21] which is inspired by func-
tional boxplots [SG11]. We visualize the median of the set of time
series together with a band spanning the range from the minimum
to the maximum. We did not use traditional functional boxplots,
as the ensemble data are relatively noisy, leading to many outliers.
For linking the time series to the other visualizations, we apply the
same color coding for the different fields as in the other visualiza-
tions. While this color-coding does not allow the user to distinguish
segments of the same field, it allows for a clear separation of the
different fields. As our approach aims at investigating correlations
between time series of different fields, we show all time series of all
fields together. Since the different fields cover very different ranges
of values, we use separate y-axes for each field. This allows us to
plot the values together without having to perform normalization,
which would lose the scaling of the individual values.

Certain climate phenomena such as the El Niño/Southern Os-
cillation (ENSO) phenomenon occur at quasi-regular intervals, but
the frequencies of their occurrence might change over time due to
a changing climate. To enable studying frequencies as well as their
variations over selected time intervals, we include a Fourier analy-
sis in our approach. The users can brush in the time series visual-
ization to select a time interval for which then a Fourier transform
is computed. The Fourier transform is computed for each ensemble
member individually. For the visualization, we compute the mean
to reduce the noise introduced by the ensemble. Additionally, we
remove the linear trend to avoid that the global warming dominates
the frequency spectrum. To show the variability within the ensem-
ble, we use a band ranging from the minimum to the maximum
value. As we are mainly interested in the frequencies and want to
compare different fields directly, we normalize the Fourier trans-
form such that the mean spectrum lies in the range of [0,1]. The
Fourier transforms of all chosen segments are shown together in a
line chart as shown in Fig. 3.
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Figure 4: For several variables, the heatmap (bottom) shows cor-
relations between the temporal developments in the selected seg-
ments shown in the geographical map (top). The pressure fields
(psl and pslAnomaly) are anticorrelated to the other variables.
The correlations among the temperature anomaly fields (tsAnomaly
and tasAnomaly) and those among the precipitation fields (pr, prA-
nomaly, and prRelativeAnomaly) are mostly higher than those be-
tween the different groups.

5.4. Correlation Heatmap

One analysis goal of our approach is finding clusters of highly cor-
related segments. However, dimensionality reduction techniques
might introduce projection artifacts. The avoid misinterpretations
and investigate the correlation values in more detail, we visualize
them directly by using a heatmap as shown in Fig. 1d. In the
heatmap, we apply a color coding to the correlation values that
cover the entire ensemble. We use a diverging color map, where
red encodes positive correlations and blue encodes negative
correlations.

The interpretability of heatmap visualizations strongly depends
on the sorting of its rows / columns. We apply a hierarchical cluster-
ing using Ward’s minimum variance method [WJ63].Thus, we ob-
tain a sorting where similar rows / columns of the matrix are placed
closely together. Then, clusters appear as blocks in the heatmap.
To allow for a quick interpretation to which field the corresponding
row / column of the matrix belongs, we use the colors for the fields
instead of labels. This method also scales well when the number
of rows / columns increases. To obtain spatial information of the
segments, the users can hover over the cells in the heatmap and the
corresponding segments are highlighted in the map view by filling
them with semi-transparent grey color. Not using the full opacity
ensures that the map providing spatial orientation as well as poten-
tial segments from other fields remain visible.

To investigate the variation within the ensemble, we enrich each
cell of the heatmap with a visualization of the distribution of the

correlation values of the different ensemble members. In this way,
the variety within the ensemble can be estimated and it is possible
to observe whether the aggregated correlation is representative for
the ensemble data. The distribution is shown as a graph which we
obtain by applying a kernel density estimate for smoothing. Here,
we use the Epanechnikow kernel [Epa69], which minimizes the
mean square error. The resulting graph is shown in each matrix
cell as an overlay above the color coding.

For a large number of selected elements, the limited scalability
of this method becomes obvious. The overlayed distributions hide
the color-coded correlation cells below. One option to overcome
this problem would be the use of an approach similar to responsive
matrix cells [HBS∗20], which only shows a detail visualization on
demand. However, as our detail visualization is identical in each
cell and it is desirable to show or hide all of them at once, we leave
it to the users to decide whether to show the distributions or not.
By hiding the ensemble spread, sorting the matrix and using col-
ors for the fields as labels, the heatmap scales well also for large
correlation matrices, as can be seen in Fig. 4.

6. Use Cases

For our use case, we apply our tool to a 2D subset of
MPI-GE, the Max Planck Institute for Meteorology Grand
Ensemble Simulations [MMSG∗19] (available at https://esgf-
data.dkrz.de/projects/mpi-ge/). The dataset consists of a pre-
industrial control experiment, a historical experiment (1850-2005),
a 150-year 1%-CO2 increase experiment starting in 1850, and the
three different future scenarios RCP2.6, RCP4.5, and RCP8.5 for
the time period 2006-2100. For our application examples, we chose
precipitation, sea level pressure, near-surface air temperature, and
surface temperature of the simulations of scenario RCP8.5. This
scenario is the one with the strongest forcing, i.e., a business-as-
usual scenario with strongly increasing greenhouse gas concentra-
tions throughout the century.

In weather and climate data, the signal-to-noise ratio of the
correlation between the temporal developments of a physical
parameter at different locations can be strongly impacted by
the large variability caused by the daily and the annual cycle.
Depending on the variable and the temporal scale of the desired
analysis, it may be necessary to derive the anomaly of a quantity
relative to a reference state first. For example, in order to analyze
spatial correlations of temperature changes based on monthly
data, it is desired to compute temperature anomalies relative to a
reference climate, i.e. the multi-year mean monthly temperatures
of a reference time interval. We use the years 1986-2005 of the
historical experiment as the reference climate for analyzing climate
change within the RCP8.5 runs.

6.1. North-Atlantic Oscillation

The North Atlantic Oscillation (NAO) is a fluctuation of the air
pressure difference between the Icelandic Low and the Azores High
in winter seasons. The pressure difference between the two sys-
tems has a strong influence on the strength and direction of west-
erly winds and the location of storm tracks over the North Atlantic,

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

73



M. Evers, M. Böttinger & L. Linsen / Interactive Visual Analysis of Regional Time Series Correlation in Multi-field Climate Ensembles

prAnomaly

tsAnomaly

pslAnomaly

Correlation

Azores HighIcelandic Low South Europe

Figure 5: The set of points selected in the embedding corresponds
to regions north-west of Europe. Several correlations and anticor-
relations between the regions containing the Azores High and the
Icelandic Low in the pressure anomaly can be observed and inves-
tigated in the heatmap.

and thus on winter weather in Europe. Since a strong NAO is char-
acterized by very high air pressure values in the Azores region and
particularly low values near Iceland, we look here for a strong an-
ticorrelation between the temporal patterns of the two regions.

To easily select a set of points representing correlations as well as
anticorrelations, we consider the absolute value of the correlation
for the UMAP computation as described in Section 5.1. Here, we
select segments for the pressure and precipitation anomaly that con-
tain the regions for the Icelandic Low as well as the Azores High, as
can be seen in Fig. 5. Using the heatmap reveals a dominant anticor-
relation between the Icelandic Low and the Azores High with little
variation within the ensemble. Additionally, the pressure anomaly
in the region of the Icelandic Low is correlated with the precipita-
tion anomaly in southern Europe and anticorrelated with the pre-
cipitation anomaly segments in northern Europe. For the segment
that covers the Azores High, we observe the contrary even though
the correlation with the precipitation segments in the north is of-
ten weaker. These regions and the correlations among the different
fields are related to the NAO.

Figure 6: The Fourier transform of the precipitation and pressure
anomalies show two dominant peaks in the ensemble mean and a
strong variation over the ensemble. Besides yearly patterns, there
is also a clear signal for repetitions twice a year.

The Fourier transform of four selected segments in these regions
(see Fig. 6) reveal only two dominant peaks. The first one indicates
the yearly seasonal cycle. As we consider the anomalies, a clear
sign for the frequency of one year indicates that the yearly cycle did
not stay constant with reference to the historical runs. The second
peak at a frequency of 2/year can also be explained by seasonal
fluctuations.

6.2. El Niño

The El Niño/Southern Oscillation (ENSO) phenomenon is the
strongest mode of internal climate variability on interannual
timescales. El Niño is characterized by a pronounced positive
anomaly in the sea surface temperature of the eastern and central
tropical Pacific in the winter season, occurring on average every 4
years [LK09]. It also has a strong impact on the weather in other
regions worldwide.

To place points of correlated and anticorrelated segments close
to each other in the scatter plot, we consider both cases as a small
distance. When selecting a set of points in the embedding as shown
in Fig. 7, we observe long-range correlations and anticorrelations
also referred to as teleconnections. The region west of South Amer-
ica corresponds to the region where the El Niño phenomenon oc-
curs. The heatmap in Fig. 7 shows that the temperature fields in this
region is positively correlated to the temperature in East Australia
and to the North of South America. These findings are in agreement
with the IPCC report [CRS∗21]. Also, we observe a negative corre-
lation to the relative precipitation anomaly in the South of Africa.

To study the frequency of the ENSO phenomenon, we select a
subset of the segments and compute the Fourier spectrum for the
full time interval as shown in Fig. 3. Here, we observe a large peak
at a frequency of 0.12/year, which corresponds to a period of ap-
proximately 8 years. This is not a common period for the El Niño
phenomenon. Several smaller peaks, instead, show typical period
lengths. Additionally, the peak at a frequency of 1/year indicates a
change in the seasonal pattern, as the seasonal cycle was removed
based on historical simulation runs. To better understand changes
over time, we compute the Fourier spectrum for the time period of
2006 to 2035 and compare it to the years from 2070 to 2100 (see
Fig. 8). The most obvious change is the appearance of the 1-year
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Figure 7: The selected points correspond to the temperature
anomaly in the El Niño region, northern South America, and east-
ern Australia, and the relative precipitation anomaly in South
Africa. The heat map shows a positive correlation (red) between
the temperature anomalies and a negative correlation (blue) with
the precipitation anomaly.

periodicity which is barely present in the earlier period. A closer
look at the visualization of the time series clarifies that the strength
of the seasonal cycle increases over time. Additionally, we observe
a small peak indicating a periodicity of 3.2 years for the earlier
time interval, while it is located at 2.6 years for the later time in-
terval. This observation might provide a hint towards a shortening
of the period length for the El Niño phenomenon which had been
observed earlier. However, as these peaks are not very prominent
and we observe ensemble means, it might not affect all ensemble
members, which requires further investigation.

7. Discussion and Conclusion

We presented a new approach for correlation analysis in multi-field
climate ensembles. Starting from an embedding, we identify clus-
ters of highly correlated spatial regions in different fields. Sets of
selected segments can be analyzed in different detail visualizations.
The usefulness of our approach was shown by analyzing the MPI-
GE dataset. We identified well-known climate anomalies, studied
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Figure 8: The Fourier transform of the temperature field changes
for different time spans indicate a shortening of the interval be-
tween El Niño periods from 3.2 years to 2.6 years and a change of
the seasonal oscillations.

the correlations and frequencies and also identified some features
that could not yet be fully explained, like the dominating 8-year pe-
riod in the El Niño region. Studying the distribution of the Fourier
transform among the ensemble members in more detail provides a
future research direction that might lead to additional insights.

Our analysis does not require the choice of a reference point to
compute correlations and works on several fields at once. After the
preprocessing, we work only on the level of segments. Therefore,
the scalability regarding the spatial resolution of the data depends
only on the variability of the dataset. With an increasing number
of fields, the visualizations get more cluttered. Additionally, a very
high number of segments slows down the application as the UMAP
projection needs to be applied to more points. However, as the
UMAP does not need to be recomputed frequently and due to the
selection of fields that should be included in the visualizations, our
approach still works on subsets of these kinds of data, where the
fields that are included can be changed interactively.

In this work, we have analyzed 2D spatial data from a cli-
mate simulation. Nevertheless, all preprocessing steps as well as
all visualizations can be directly applied to 3D datasets, except
for the map view, which would have to be replaced by a suitable
3D visualization. It is also easy to apply our analysis approach to
multi-field simulation ensembles from other fields where correla-
tions between different spatial regions are of interest. We provide
our source code at https://github.com/marinaevers/
regional-correlations.
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