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Abstract
This work presents Air Quality Temporal Analyser (AQTA), an interactive system to support visual analyses of air quality data
with time. This interactive AQTA allows the seamless integration of predictive models and detailed patterns analyses. While pre-
vious approaches lack predictive air quality options, this interface provides back-and-forth dialogue with the designed multiple
Machine Learning (ML) models and comparisons for better visual predictive assessments. These models can be dynamically
selected in real-time, and the user could visually compare the results in different time conditions for chosen parameters. More-
over, AQTA provides data selection, display, visualisation of past, present, future (prediction) and correlation structure among
air parameters, highlighting the predictive models effectiveness. AQTA has been evaluated using Stuttgart (Germany) city air
pollutants, i.e., Particular Matter (PM) PM10, Nitrogen Oxide (NO), Nitrogen Dioxide (NO2), and Ozone (O3) and meteoro-
logical parameters like pressure, temperature, wind and humidity. The initial findings are presented that corroborate the city’s
COVID lockdown (year 2020) conditions and sudden changes in patterns, highlighting the improvements in the pollutants con-
centrations. AQTA, thus, successfully discovers temporal relationships among complex air quality data, interactively in different
time frames, by harnessing the user’s knowledge of factors influencing the past, present and future behavior, with the aid of
ML models. Further, this study also reveals that the decrease in the concentration of one pollutant does not ensure that the
surrounding air quality would improve as other factors are interrelated.

Keywords: Time series, environmental visualisation, user interfaces, visual prediction, machine learning, meteorological data,
city planning, visual analytics, air pollutants

1. Introduction and Related work

Temporal datasets are essential and measured across almost all
the domains including environmental, healthcare, scientific and fi-
nancial. Visual analytics (VA) supported with Scientific or Infor-
mation Visualisation (Sci-Vis or Info-Vis) techniques are in de-
mand and also crucial for analysing these time-series datasets
patterns [WSHC11]. The characteristics of data, its size, multi-
dimensionality, and distribution contribute to make situation as-
sessment one of the most demanding tasks, both for the user
and the platform [TC05, IHK∗17]. Visual data exploration often
follows Shniderman’s mantra [Shn96]. The work related to vi-
sual prediction, time series visualisation and temporal analytical
approaches which matches the keywords of the proposed work
were explored. Recent techniques [KPN16, BZS∗16] on visualis-
ing the time series data supported with mathematical and statis-
tical metrics enable the user to build reasoning about the consid-
ered temporal datasets interactively. Visualisation techniques, high-
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lighting the anomalies and underlying trends correlations, through
an undirected interactive search [SSK∗16] were developed. More-
over, time series visualisation were explored by providing exam-
ples of simple charts including stacked graphs, index charts, hori-
zon graphs for visualising time-series datasets. The representations
of time series data become more contextual with the support of
cluster, calendar-based and, spiral visualisations [WAM11]. More
detailed and aggregated representations, using multi-resolution lay-
outs for handling over-plotting in large time series datasets were
developed [HJM∗11, Fu11]. Moreover they also reviewed the data
mining method for classification, pattern exploration, segmentation
and representation of time series data. Hochheiser and Shneider-
man, invented dynamic query tools for time series dataset interac-
tive explorations with user demand detailing [HS04]. Chronolenses
were proposed for time series data visual exploration and correla-
tion analysis [ZCB11b,ZCB11a]. Anomaly detection for modelling
multiple time series [CM05], clustering and classification [Lia05]
techniques to identify the similarity of data patterns among time
series dataset using weighted dynamic time warping [JJO11], dis-
tance metrics and agglomerative clustering have been developed
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[HC20]. Inter parameters relationships definition rules are revolu-
tionised by Hetland and Saetrom [HS05] with rule mining concept
for time series database. The scientific temporal data visualisations
are frequently used in support of interactive visual analytics and are
well-accepted within the disciplines [AA03, NOV∗20]. Moreover,
for understanding the temporal datasets and its trends, predicting
future and patterns remains a very challenging task with a few inter-
active visual models and user explorations behaviour support. Pre-
dicting the time series data using statistical methodologies like re-
gression analysis, and computational machine learning approaches
like neural networks, multilayer perceptron, fuzzy logic and self or-
ganising maps have been successfully applied for the existing stud-
ies [Lor86,Gui07,VSP11,JHZ11]. Visual prediction approaches in
the act of visually predicting a time-series variable by observing the
predictions from a computational model, shown alongside with the
time-series representations for social media and financial datasets
were designed. [HJM∗11, LKT∗14, BZS∗16]. Furthermore, inter-
action techniques with engaging the user in an efficient dialogue
in the contribution by people and computers to solve the task to-
gether i.e., mixed-initiative interaction techniques have also been
proposed [Hor10, Hor07, KLTH10, EFN12]. Data driven forecast-
ing in visual predictions for time series dataset visualisation with
highlighting the sequence and pattern in support of approaches to
explore correlations in multivariate spatiotemporal data have been
proposed by [HJM∗11, MMJ∗12].

However, the increased usage of the environmental monitoring
system and sensors installation on a day-to-day basis has provided
more information in monitoring the current environmental condi-
tions. Sensor networking advancement with quality and quantity
for air parameters, has given rise to an increase in techniques and
methodologies supporting temporal data interactive visualisation
analyses [Har06, Bog08]. Moreover, there exists a gap between the
environment as observed and its digital representation in the user
govern time frame for temporal data interactive analysis. Visual-
isation of meteorological and pollution data history and context
plays an essential role in visual data mining, especially in explor-
ing the large and complex datasets. and environmental conditions.
Including the context and historical information in the visualisa-
tion could improve user understanding of the environmental dataset
exploration process and enhancing the re-usability of mining and
managing techniques and parameters analysis to achieve the re-
quired insides. Although, traditional approaches cannot fully sup-
port the visual exploration of future trends in complex multivariate
time series datasets such as weather, and healthcare, mainly due
to their lack of consideration of inter-variable relationships (e.g.,
if PM10 increases, NO2 decreases). Exploring these relationships
through “what-if” questions (e.g., what if PM10 increases?) could
help the user to better judge the future environmental conditions
than blindly trusting computational models that lack contextual in-
formation.

Thus, there is still a gap the user likely needs to bridge for
comprehending the situation. The proposed work overcomes these
dissociations by proposing an Air Quality Temporal Analyser
(AQTA), an interactive system-user interface for visual prediction
of multivariate time series through deep learning models as well
as interactive visualisation techniques for air quality parameters.
Following are the contributions of the current work, (i) interactive

temporal visualisation of historical, present and future data through
various charts, to support the user in the interpretation of the data
that may be useful for further stages of the mining process such
as cluster identifications, important feature and pattern detection,
(ii) predicting the air quality standards for the desired temporal
frame (dynamic) with five designed deep learning models, thereby
highlighting the respective model’s success and failure for infer-
ence data along with supporting the arguments with easy graphical
support and suggesting best option to choose, (iii) visual preserva-
tion of context and historical information in all these user interac-
tions. These contributions combine together to form three phases
(1-3 shown in Figure 1) of interactive AQTA with back-and-forth
dialogues between user and AQTA. This interactive dialogue be-
tween the AQTA and the user continues until the user finds suffi-
cient information to come to a conclusion. This would infer smart
decisions for air quality planning, which in turn would help in profi-
cient management and development of the city’s resources. AQTA
is validated for Stuttgart, Germany as a used case study. The re-
maining paper is organised as follows: system and datasets used
and proposed approaches are discussed in section 2 and section 3,
respectively, section 4 discusses the results, followed by conclusion
in section 5.

Figure 1: AQTA workflow maintains an interactive dialogue be-
tween user and the system for visual prediction and in-depth anal-
ysis including correlation.

(a) (b)

Figure 2: (a) Predictive models analysis flowchart, and (b) Various
classes designed ranges.

2. System and Datasets

The temporal air quality datasets that are used and analysed in this
study ("luftdaten selber messen" http://www.luftdaten.info)
provide city sensors measurements at several locations in Stuttgart.
Historical dataset from 2016 to 2020 measured at total 8 city centre
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locations with the wind (speed and directions), temperature, pres-
sure and humidity along with NO, NO2, O3, PM10, with tempo-
ral information attached in a 30-minute time interval http://www.
stadtklima-stuttgart.de). The areas dataset were organised
separately into individual years for each parameter, using time in-
formation with past data first, followed by current data. This helps
to perform an in-depth study of air parameters. AQTA is imple-
mented as a web-based application using D3.js, Streamlit, Keras
library [Cho17] with TensorFlow in the backend in Python and ex-
ecuted on Intel® Core TM i7- 4770 CPU @3.40 GHz having four
cores. Each designed air quality predictor (ML) model was exe-
cuted separately for selected time series data for predicting the
(dominating) class magnitudes and analysing air nature. The fol-
lowing section 3 explains the proposed system architecture com-
prising of models, graphs and database at system side and inter-
active visualisation interface at the user side. Result in section 4
analyses and validates the outcome of sensor located at Stuttgart’s
city centre, and similar results were obtained for the other sen-
sors as well. AQTA web deployment along with detailed figures
are available in GitHub http://www.github.com/shharbola/
EnvirVis_AQTA.

3. Approaches

The proposed work combines different visual analysis of air quality
parameters, integrated into AQTA platform. Figure 2(a) provides an
overview of the workflow and highlights the motivation behind the
comparative analysis of different models. Here, the time series air
quality datasets comprises of pollutants i.e., PM10, Nitrogen Oxide
(NO), and Nitrogen Di-oxide (NO2), and Ozone (O3) and meteoro-
logical parameters like wind (speed and direction), pressure, tem-
perature and humidity, with temporal resolution T and Tw (w → 1
to m) denotes value of the selected parameter (above mentioned) at
time w, where 1 and m are the first and last values in the dataset,
respectively.

3.1. Air quality predictor

Multiple samples are designed using the dataset for training and
testing the proposed prediction algorithms. A sample consists of a
feature vector as an input with a corresponding output class. RealVb

(a scalar) consecutive values of considered parameter, from Tw to
Tw+RealVb

form a feature vector of dimension RealVb × 1 which is
the input of the sample. RealVf (a scalar) successive values of se-
lected parameter after the last value in the input i.e., Tw+RealVb

, are
used to define the sample’s output class. Mean (µ), and standard
deviation (σ) of the parameter of the entire dataset are calculated.
Various class boundaries are designed using µ and σ as shown in
Figure 2(b). Among RealVf , count of values occurring in each class
in Figure 2(b) is noted, and the class that has a maximum count
i.e., dominant, is assigned to the sample. Similarly, multiple sam-
ples based on the selected parameter are created by taking RealVb

values in the corresponding input from Tw to Tw+RealVb
by varying w

from 1 to m - RealVf , at an increment of 1. The outputs of these sam-
ples are designed as discussed above. Likewise, samples based on
other parameters (each independently) are created for each dynam-
ically selected parameter as discussed above. Thus, at this stage,
for RealVb values in the input from Tw to Tw+RealVb

, there would

be nine sets of samples, based on PM10, NO, NO2, O3 and wind
(speed and direction), pressure, temperature, and humidity. Here in
this analysis the size of RealVb and RealVf are kept equal with four
user options, (a) 12 representing 6 hours as temporal resolution of
considered dataset is 30 minutes, (b) 24 representing 12 hours, (c)
36 representing 18 hours, and (d) 48 representing 24 hours. These
conditions ensured comprehensive and accurate analysis of the data
with respect to independent and different user selections.

The first proposed air quality predictor ML model is Multi-
Convolutional Neural Network (MCNN) that has five single CNN,
say (CNN1, CNN2, CNN3, CNN4, CNN5). Each of these CNNi (i
→1 to 5) has its own input layer, three consecutive 1D convolu-
tional layers and last convolutional layer of each CNN connects
to a common fully connected layer which is followed by another
fully connected layer and an output layer. The architecture is ex-
plained in detail in [HC19b]. The output layer is a softmax layer
[SMKLm15], with the number of neurons same as the number of
the classes. There are five classes in the present study as shown
in Figure 2(b). The MCNN is trained and tested separately for the
prediction of dominant temporal nature of the selected parameter
(PM10, NO, NO2, O3, wind, pressure, temperature and humidity).
Therefore, for an inference sample, the MCNN could predict the
air quality parameters classes separately and visually highlight time
series data recurring motif.

The developed Long Short-Term Memory (LSTM) model (sec-
ond) is a special kind of Recurrent Neural Networks (RNN) capable
of learning long term dependencies with a chain-like structure. This
has an input layer, four neural layers (NL1, NL2, NL3, NL4), i.e.,
three sigmoid layers supported with two tanh layers and an output
layer. The architecture is explained in detail in [HC19a]. The input
layer is One Dimensional (1D) of the size of RealVb . The output
layer is a softmax layer, having the number of neurons the same as
the number of the classes i.e., five.

The third proposed time series prediction model uses K-Nearest
Neighbors (KNN) which is a supervised classification algorithm.
KNN based method makes predictions on the fly by calculating the
similarity between an input observation and values in the dataset,
with respect to time. Here K value is decided empirically and kept
fixed in all parameter analysis. The designed SVM based predictive
fourth model classifies the data by finding the best hyper-plane that
separates all data points of one class from those of the other class.
The best hyper-plane signifies the one with the largest margin be-
tween the classes. Similarly the last proposed Random Forest (RF)
based model uses a decision tree as a decision support tool for clas-
sification. When the RF is given a training sample, it formulates a
set of rules which are used to perform predictions. Moreover, RF
uses sufficient decision trees, to ensure the classifier does not over-
fit the model. The advantage of the RF as a classifier is that it can
handle missing values, and the classifier could be modeled for cat-
egorical values. Therefore LSTM, MCNN, SVM, K-NN and RF
(five deep learning models) are used to predict meteorological and
pollution parameters separately.

During training, the sample’s feature vector of dimension RealVb
× 1, forms the input of the designed models, while the sample’s
output class forms the output of these models. The objective be-
hind using a variety of supervised prediction models is to provide a
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possible option of selecting models based on best (compare) accu-
racy with respect to the various date, time, and parameters con-
ditions. The previous paragraphs discusses the various proposed
models of temporal air quality prediction. Besides prediction, the
detailed analysis of historical air quality parameters are also per-
formed in this work. Temporal filtering along with Pearson correla-
tion method analysis help to derive the relationships with highlight-
ing interconnections between the meteorological and air pollutants.
The user could select the parameters over the desired time frame
and compare the patterns interactively in AQTA, thus, making the
analysis more diverse and refined.

3.2. Visual interaction design

AQTA besides being air quality predictor, also provides tooltiping,
brushing and linking for maintaining the transparency and com-
bining different visualisation methods between user-computer di-
alogue efficiently and preserving the working memory of the user
during interactions [Shn96, Hor10]. Figure 1 provides an overview
of AQTA workflow (phases 1-3), with highlighting the system-user
interfaces of visual predictions comparative analysis. System: con-
sists of historical air quality temporal database, trained ML mod-
els, structure of various graphs and charts, and accepts user queries.
User: interacts with this system in various ways. The user selects,
inspects and views the states of the parameters with past present
and future (predictions) information. The user could also choose
among different ML models with analysing the performance of
each selected model (MCNN, LSTM, RF, K-NN and SVM) in
terms of total accuracy and difference metrics incorporated with
the interactive display through various graphs and charts. The user
could change the time step allowing for a different prediction du-
ration, and compare the results with the time series dataset and the
outcome of each model. This allows the user to decide which pre-
diction algorithms are the best and provides sufficient information
to make a decision.

The system works as per user desires with additional information
of revelling the correlation among the selected parameters answer-
ing “what if” questions of nine parameters dependency with each
other within selected time frame. Furthermore, detailed analysis of
the patterns in the dataset in the three phases of AQTA are carried
out using additional charts, heat-map, time histogram, that are ex-
plained below.

3.2.1. Inspecting data history visualisation (Phase 1)

The phase 1 visualisation of AQTA uses time series stack chart
with calendar heat-map to provide interaction with the air qual-
ity datasets visually. The inspecting overview shows the over-
all patterns for multiple parameters of interest selected from air
quality parameters list available in the interface (Figure 3). The
time dataset overview design contains horizon graphs. The effec-
tive discrimination option in horizon graphs makes it more desir-
able [JME10]. This is accompanied with stacked chart to provide
a detailed time series data inspection of parameters magnitudes
with calendar heat-map view option in order to compare the trends
among air quality parameters based on the months during a year.
The user could select each year and then even explore in detail for

each day with 30 minutes (here the sensors’ data temporal resolu-
tion) for air quality parameters temporal analyses. This phase pro-
vides a detailed understanding of the air quality data history and
preset with highlighting the patterns which are actually present and
measured by the sensors (here no smoothing or data cleaning per-
formed i.e., real original datasets).

Figure 3: Data inspection (a part of Phase 1) week-wise over the
years for selected parameter

3.2.2. Prediction visualisation (Phase 2)

The phase 2 visualisation consists of square-time charts, and tem-
poral circle mark chart coupled with histogram highlighting the
predicted value (Figure 4). Predicted outcome with respect to time
frame (6hr, 12hr, 18hr, 24hr) choices are displayed with the help of
square-time chart with tooltip highlighting the class assigned and
color encoding makes it easy to distinguish in detail the classes with
respect to each predicted value in the time frame. Each class is as-
signed dynamic color encoding according to predicted class range.
The comparison and preforming the analysis of predicted versus
the actual values is shown with the help of time series square-time
graph with the color encoding representing the difference of actual
and predicted (Figure 4 (a)), that occur in the range i.e., (-4, -3, -2,
-1, 0, 1, 2, 3, 4) calculated by assigning 1 = calm, 2 = light, 3 =
mild, 4 = strong, 5 = strongest as in Figure 2(b). Tooltiping are also
added to this representation to make it easier for user to understand
the actual and predicted values along with their respective differ-
ence in the time frame. In order to provide a detailed comparison
and more easy interaction by double encoding, mark circle with in-
tegrated histogram graph is designed (Figure 4 (b)). Here the circle
radius is governed by the class ranges and color according to the
assigned class with respect to time. The histogram shows the count
of the records estimated or predicted each day and binned accord-
ing to the assigned class patterns. Both actual (Figure 4 (b) left) and
predicted (Figure 4 (b) right) values are compared in this interface
with clearly highlighting the pattern of meteorological and pollu-
tion parameters in time frame, which helps user to make advance
and comparative estimation of the environment and its pattern with
model’s success information.

3.2.3. Correlation visualisation (Phase 3)

The phase 3 visualisation of AQTA is implemented as an air qual-
ity parameters’ correlation structure detailed analyses. The time se-
ries exploratory analysis of meteorological and pollution parame-
ters also requires supporting, identifying the correlation and how
these parameters are controlling and effecting each other’s nature
in interaction. Pearson correlation method is used for analysing
these relationships among the parameters. The correlation graph
(Figure 5) explores the correlation structure of the meteorological
and pollution parameters dataset using two connected subplots: an
interactive correlation heat-map (Figure 5, left image) and a 2D
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Figure 4: Phase 2 inference (comparing actual versus predicted
output)

histogram showing the density of values (Figure 5, right image).
Clicking on a cell in the correlation heat-map shows correlation
coefficient value for that particular cell, (shown in pink highlight in
Figure 5, left image), where parameter1 (on X-axis) and parame-
ter2 (on Y-axis) represent associated air quality parameters of the
selected cell on X-axis and Y-axis. Selection linked binning on the
fly is performed for the selected cell generating a 2D histogram
(detailed bins) between parameter1 and parameter2, with the ad-
vantage of highlighting overlapping values leading to a higher den-
sity of values (frequency) in the darker color bins, making it clear
to the observer that there are more similar range values in the se-
lection. Thus, the correlation heat-map shows the parameters and
value ranges (all) associated with that particular cell and the corre-
sponding data in the 2D histogram. This enables user to quickly see
the pattern in correlations using the heat-map, and allows to zoom
in on the dataset underlying those correlations in the 2D histogram.

All the graphs and subsections integrating with visual predic-
tions help the user to provide a more clarity of the time series and
environmental conditions. AQTA (1-3 phases) tries to bring all the
information together that could be derived from air quality param-
eters condition in the considered city (Stuttgart, Germany) in order
to derive the time series patterns and correlations.

Figure 5: Temporal visual correlation analysis using correlation
heat-map (left) linked with 2D histogram (right).

4. Results: Use case

AQTA was used for visual analysis of Stuttgart’s COVID lockdown
air quality situation (in year 2020) to facilitate visual exploration
of prediction models outcome and reality conditions that occurred
during this sudden pandemic. AQTA results were compared with
real world measurements to support analyser inference outcomes
and interaction in subsections 4.1 and 4.2 respectively, followed by
4.3 for discussion.

4.1. Inference

Several samples, each having input and corresponding output, were
created as described in section 3.1. Values of k1 and k2 (Figure 2(b))
were empirically taken as 0.80 and 0.50 respectively (same for
all parameters), so that a sufficient number of samples occur in
each class. Moreover, Synthetic Minority Oversampling Technique
(SMOTE) was used to do up-sampling of the classes having less
number of samples. Total samples for a given year were randomly
split into training and testing with 35% of the total samples as the
testing samples. The designed models were trained and tested on
these samples. When samples were prepared for the inference (val-
idation) for year (2020), the samples were created similar to model
training and testing phase (as mentioned in section 3.1). The mod-
els had never seen the dataset which were used in inference there-
fore the pattern and class predicted dynamically, were predicted
based on the designed models achieved accuracy. The obtained ac-
curacies for five designed models are approximately between 90%
to 95% [HC19b, HC19a].

These classification outputs are shown in the supplemental ma-
terial on Github. These outcomes represent AQTA phase 2 of Fig-
ure 1. The classes square chart uses diverse color coding to high-
light the model’s predicted classes assigned with respect to selected
timeframe of (6hrs, 12hrs, 18hrs and 24hrs) future prediction. Class
specific color coding provides more distinguish representation irre-
spective of the selected timeframe (small or large), that helps in
quick user understanding and assessment of lot of predicted infor-
mation at one go. The graphs (Figure 4) comparing the actual and
predicted results difference, highlight the success and failure of the
selected predicted models in the selected timeframe (as shown in
Figure 4 (c)). The difference (actual - predicted) of the selected
model classification outcome is shown with square chart (Figure 4
(a)), here sequential single-hue schemes (blues) encoding shows
the difference values i.e., (-4 (light blue), < 0 = model success, <
4 (dark blue)) attached with tooltip information. Another graph,
circle mark charts, represents actual and predicted classes sepa-
rately (Figure 4 (b)). In these circle mark charts, the radius encodes
the ranges of the assigned classes (calm < light < mild < strong
< strongest). Integrated histograms at the bottom of these graphs
denote each day’s (overall) predicted and actual record of classi-
fication outcome, with colors and conditional selection are linked
with the above circle mark charts. The together build selection be-
tween circle mark charts and corresponding histograms, gives the
user option to filter the outcome as per the requirements. This helps
in detailed analysis of the actual and predicted classification out-
comes and model’s success-failure overview, in each selected time
frame and arriving at a conclusion to pick the best model.
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4.2. Interactions

The data inspection i.e., phase 1 is used to provide user the freedom
to visually analyse all the historical data (available in database)
with graphs by temporal queries. The options available for user are
either to compare all the years with respect to month, day for the de-
sired parameter or to explore in depth each year independently with
querying based on week (Figure 3), date and time with overall op-
tion palette available to change, update the selection, process new
one, save the results and return. Therefore, users can use controls,
which provide zooming, selection, tooltiping and saving outcome
(image format) options, to view the models classification distribu-
tions at different timeframe. The user can use several available op-
tions on the screen, to get back to the default views, change the se-
lection, reset the main phase view, the phase details views, or all the
views. The output of phase 3 (Figure 5) is the temporal correlation
analysis of meteorological and pollution parameters with yearly se-
lection option available to user. Creating one cohesive interactive
plot using correlation heat-map linked with 2D histogram (showing
the density of values), helps to answer queries related to parameters
interrelationships and how their dependency fluctuates in time with
comparison option. Binning on the fly, with user parameters selec-
tions and displaying the correlation (heat-map with yellow green
blue sequential multi-hue schemes) and frequency (2D histogram
with oranges sequential single-hue schemes) allow to have details
of an individual correlation as shown in Figure 5. The interactive
chart enables to quickly distinguish pattern in correlations using the
heat-map, and allows to zoom in on the meteorological and air pol-
lution data underlying those correlations in the 2D histogram. This
indicates that the correlation leans heavily on the tail of the data
and vice versa. Visual correlation analysis queries would help to
understand the data and temporal dependencies more clearly with
interactive charts which makes understanding very easy and less
time taking, making environmental planning more comprehensive
and interesting.

4.3. Discussion

ML based prediction algorithms used in AQTA are based on
[HC18,HC19a,HC19b]. These approaches with good prediction re-
sults are applied in phase 2 of AQTA to achieve an interactive visual
prediction, and pattern analysis platform. This aides user to under-
stand easily the inside of data, complexity of the parameters, trends
and details, and air quality impact. AQTA focuses on integrating
and linking the simple charts representation to discover complex
air quality parameters interactively in various timeframes, with op-
tions to have a visual data overview (history and present in phase 1),
predicting future with model success, failure comparison (phase 2),
and a correlation structure of their interrelationships (phase 3). The
proposed framework is successfully implemented for the Stuttgart
city central location. However, it could be applied to any number
of sensors for any given location (area) with some ML tuning and
training of the respective datasets. The air pollution from predom-
inantly non-traffic-related pollutants (e.g., dust deposits) has de-
creased significantly in recent years. The traffic-related pollutants
(e.g.,NO, NO2, PM10, O3) remain at a high level in the city [sta21].
The city’s air quality is controlled and not deteriorating further, due
to the strong monitoring and control measures by the state govern-

ments, city’s policymakers and increase environmental awareness
among people. But still the AQTA analysis shows that during sum-
mer and autumn of the year 2019, PM10 trends are alike as in the
previous years 2017 to 2018 with a few reductions. Furthermore,
there is depletion in PM10 concentrations during the summer and
autumn of the year 2020 probably due to the strict lockdown and
movements restrictions. However, the decrease in the concentration
of one parameter and increase in others’ does not ensure that the
overall air quality is improved for e.g., PM10 is observed reduced
in Oct 2020, while O3 concentration is higher. The reasons behind
these relationships and trends are more evident with the correla-
tion structure integrated with this analysis, highlighting that PM10
is positively correlated with NO and NO2, while negatively cor-
related with O3. Similarly, NO and NO2 are negatively correlated
with O3. Thus AQTA allows the actual data to convey itself and
used to upgrade the user’s hypothesis with the best understanding.

PM10 concentrations were predicted for 22-29 March 2020 when
there were strict COVID lockdown restrictions during these days.
The MLS models predicted the air quality parameters with good
accuracy during these conditions. Thus, the proposed AQTA frame-
work has good potential for visual analytics along with prediction
in different conditions. While analysing parameters from 20 April
2020 to 1 May 2020 and taking 6 hours time in future, LSTM model
predicted the NO and NO2 concentration to be strongest on days
22, 28, and 29 April 2020. It was between calm and mild for rest
of the days. The comparison of predicted values with the real data
showed approximately 95% accuracy of the model. When the re-
laxation in the lockdown was given one month later, at that time
also, model gave good results. Further, the model also predicted
the pressure range from calm to mild on 21 April, strongest class
on 23 April, and calm on 28 April. The predicted and actual values
matched for 23, 28 April but there was a mismatch for 21 April. As
pressure and PM10 are positively correlated their spikes and pat-
terns show similarities with their effects over the days which also
cross validates the correlation with reference to data range trends.
PM10 concentrations were observed to be higher specially on Fri-
days (apart from other weekdays) in February of year 2020, as well
as on Fridays and Saturdays in April and on Saturdays in May of
2020. Similar trends were observed for NO and NO2 concentra-
tions during the same timeframes (correlation discussed above).
Usually these trends were also similar to previous years, weeks,
and days patterns, with only fluctuation in concentrations ranges
(calm to strongest). These patterns could be because people might
be using public transports and shared cabs on working days. Trans-
portation emits more than half of NO and NO2 in the air. During the
weekend, people travel to their homes, have family outings besides
other important travel plans, thereby contributing to higher pollu-
tants concentrations. PM10 concentrations predicted using LSTM
for new year eve’s on 31.12.2020 to 01.01.2021 from 12:00 pm to
12:00 pm was between mild to strong, to strongest (12:00 am to
2:00 am) and then mild ranges which matches with the published
report of Stadtklima Stuttgart on 01.01.2021 on PM10 concentra-
tions in Stuttgart on New Year’s Eve 2020-2021 [ss21].

The day wise analysis of wind speed was also performed for
February 2020. It was observed that on Thursday the magnitude of
wind speed occurred mainly between strong and strongest classes.
This trend was also noticed for the previous years as well. Simi-
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larly also observed for temperature on Monday (strongest), Satur-
day (strong), Sunday (strong), and Friday (mild) classes patterns
occurred within the selected timeframes. Such analysis helps in
proper utilisation and planning of renewable sources like wind.
Moreover, wind speed, pressure and temperature are positively cor-
related to each other, while wind direction and speed are in positive
interrelationship with O3. Therefore, it was also observed that the
local wind could often develop that do not cause high magnitude
winds, but play an essential role in local ventilation of the city ar-
eas and determines the spread of air pollutants (as found from cor-
relations insight discussed above). The Stuttgart region is one of
the areas with the lowest rainfall in Germany, mainly due to the lee
location (Black Forest, Swabian Alb) and precipitation conditions
playing a significant role in cleaning the atmosphere through the
wet deposition. Moreover, the humidity of an area is highly con-
trolled by the wind directions as they are positively correlated. In
year 2020 April, May and August months, the measured humid-
ity is lower (on average) while in comparison to same months in
2019. These trends also matches with the changing wind direc-
tions occurred during the same year and months patterns. Due to
the high temperatures trends in recent years, combined with the ex-
isting humidity patterns, Stuttgart is one of the areas with increased
heat load (approx. 30 days), with occasional cold fillips and this
infer seems coherent with the state climate published annual re-
port [ss21]. Hence, AQTA provides an add-on to the existing liter-
ature in terms of air quality multiple time series datasets dynamic
visual predictions along with its detailed analyses comparisons and
validation with reality.

5. Conclusions and Future Work

Visual analytics of air quality parameters using interactive graphs
as well as to understand the data and temporal dependencies with
interactive AQTA tool has been the objective of this work. AQTA
provides a quick facts-crosscheck supporting the present alarming
air quality situation in the city and requirement of probable con-
trol measures. The interactive platform for visual prediction of air
quality parameters would help to plan the future with more green
policies. Designed platform in this work could be further improved
with the ensemble of advance visualisation approaches. The future
focus for the authors would be to improve the visual analysis and
utilising more advance deep learning models. Meanwhile, the de-
vised work has the potential for creating environmental awareness
among humankind, and moreover, provide a foreknowledge for bet-
ter city planning.
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