EnvirVis 2019

Workshop on Visualisation in Environmental Sciences

Porto, Portugal
June 3 – 4, 2019

Workshop Chairs
Roxana Bujack, Los Alamos National Laboratory, USA
Kathrin Feige, Deutscher Wetterdienst, Offenbach, Germany
Karsten Rink, Helmholtz Centre for Environmental Research - UFZ, Germany
Dirk Zeckzer, Leipzig University, Leipzig, Germany

Proceedings Production Editor
Dieter Fellner (TU Darmstadt & Fraunhofer IGD, Germany)
Sponsored by EUROGRAPHICS Association
Table of Contents

Table of Contents ... iii
International Programme Committee .. iv
Author Index .. v
Keynote and Invited Talks ... vi

Weather and Climate

On Inconvenient Images: Exploring the Design Space of Engaging Climate Change Visualizations for Public Audiences ... 1
Florian Windhager, Günther Schreder, and Eva Mayr

Topology-based Feature Detection in Climate Data ... 9
Christopher P. Kappe, Michael Böttinger, and Heike Leitte

Lakes and Oceans

Leveraging Lagrangian Analysis for Discriminating Nutrient Origins 17
Soumya Dutta, Riley X. Brady, Mathew E. Maltrud, Philip J. Wolfram, and Roxana Bujack

Shehzad Afzal, Sohaib Ghani, Garth Tissington, Sabique Langodan, Hari Prasad Dasari, Dionysios Raitos, John Gittings, Tahira Jamil, Madhusudhanan Srinivasan, and Ibrahim Hoteit

Ecosphere and Infrastructure

SOAViz: Visualization for Portable X-ray Fluorescence Soil Profiles 33
Vung Pham and Tommy Dang

Visual Exploration of the European Red List .. 41
Stefan Jänicke
Nazli Yonca Aydin, ETH Zürich, Switzerland
Emmanuelle Beauxis-Aussalet, Centrum Wiskunde & Informatica, Netherlands
Anne Berres, Oak Ridge National Laboratory, USA
Wes Bethel, Lawrence Berkeley Laboratory, USA
Michael Böttinger, DKRZ, Germany
Urska Demsar, University of St. Andrews, UK
Soumya Dutta, Los Alamos National Laboratory, USA
Jocelyne Erhel, INRIA Rennes, France
Stefan Gumhold, TU Dresden, Germany
Hans Hagen, University of Kaiserslautern, Germany
Federico Iuricich, University of Maryland, USA
Michal Koutek, KNMI, Netherlands
David Rogers, Los Alamos National Laboratory, USA
Francesca Samsel, University of Texas, Austin, USA
Mike Sips, GFZ, Germany
Aidan Slingsby, City University London, United Kingdom
Marc Walther, TU Dresden, Germany
Alexander Wiebel, University of Applied Sciences Worms, Germany
Thomas Wischgoll, Wright State University, USA
Philip Wolfram, Los Alamos National Laboratory, USA
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afzal, Shehzad</td>
<td>25</td>
</tr>
<tr>
<td>Böttinger, Michael</td>
<td>9</td>
</tr>
<tr>
<td>Brady, Riley X.</td>
<td>17</td>
</tr>
<tr>
<td>Bujack, Roxana</td>
<td>17</td>
</tr>
<tr>
<td>Dang, Tommy</td>
<td>33</td>
</tr>
<tr>
<td>Dasari, Hari Prasad</td>
<td>25</td>
</tr>
<tr>
<td>Dutta, Soumya</td>
<td>17</td>
</tr>
<tr>
<td>Ghani, Sohaib</td>
<td>25</td>
</tr>
<tr>
<td>Gittings, John</td>
<td>25</td>
</tr>
<tr>
<td>Hoteit, Ibrahim</td>
<td>25</td>
</tr>
<tr>
<td>Jamil, Tahira</td>
<td>25</td>
</tr>
<tr>
<td>Jänicke, Stefan</td>
<td>41</td>
</tr>
<tr>
<td>Kappe, Christopher P.</td>
<td>9</td>
</tr>
<tr>
<td>Langodan, Sabique</td>
<td>25</td>
</tr>
<tr>
<td>Leitte, Heike</td>
<td>9</td>
</tr>
<tr>
<td>Maltrud, Mathew E.</td>
<td>17</td>
</tr>
<tr>
<td>Mayr, Eva</td>
<td>1</td>
</tr>
<tr>
<td>Pham, Vung</td>
<td>33</td>
</tr>
<tr>
<td>Raitsos, Dionysios</td>
<td>25</td>
</tr>
<tr>
<td>Schreder, Günther</td>
<td>1</td>
</tr>
<tr>
<td>Srinivasan, Madhusudhanan</td>
<td>25</td>
</tr>
<tr>
<td>Tissington, Garth</td>
<td>25</td>
</tr>
<tr>
<td>Windhager, Florian</td>
<td>1</td>
</tr>
<tr>
<td>Wolfram, Philip J.</td>
<td>17</td>
</tr>
</tbody>
</table>
Keynote

Human Perception and Visual Thinking Tools for Environmental Science

Colin Ware

Abstract

Visualizations are cognitive support tools. They take advantage of human pattern perception, support working memory and help with cognitive model building. Lessons for cognitive tool building will be developed with three examples relating to the environment. The first is a tool for analyzing a marine food web, it informs the need to design so that the inner workings of a model can be understood. The second is visualization software for analyzing the behavior of tagged marine mammals. Its design was informed by studies of visual working memory. The third is a model of seaweed architecture, with lessons for mental model building and the role of visualization in explanation.
Invited Talk

Making Sense of Weather Data: The Meteorological Workstation NinJo

Kathrin Feige, Sibylle Haucke, Aiman Younis, Bruno Zürcher, Bo Bergmann, and Dirk Heizenreder

Abstract

For weather forecasters, it is of utmost importance to have quick access to the most recent meteorological data within a stable software system. Visualizing all of this data in a goal-directed way supports them to monitor current and potential future weather situations, to generate a forecast, or to warn the general public about severe weather events – in short, it supports them to efficiently make sense of the large volume and variety of relevant information that is generated every day. The meteorological workstation NinJo was designed to fulfill this requirement: It is a server-client system with the core task to process and visualize meteorological data. It is continuously developed within an international consortium, and in operational use at six weather services. This talk provides a tour through the system, covering usage, technical aspects, and current development efforts along the way.
Invited Talk

A Virtual Geographic Environment for Multi-Compartment Water and Solute Dynamics in Poyang Lake, China

Karsten Rink, Erik Nixdorf, Lars Bilke

Abstract

We give a demonstration of a Unity-based framework for the presentation, exploration and analysis of complex hydrological studies in large catchments. A Virtual Geographic Environment has been developed for the 162,000 km2 catchment of Poyang Lake, the largest freshwater lake in China. It combines a wide range of 2D and 3D observation data sets with simulation results from both an OpenGeoSys groundwater model and a COAST2D hydrodynamic model, visualising water and solute dynamics within and across hydrologic reservoirs. The system aims at a realistic presentation of the study area, intuitive approaches to visualise interesting aspects of multi-variate data sets and easy-to-learn interaction techniques for navigation, animation, and access to linked data sets from external sources, such as time series data or websites.