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Abstract
Human pose reconstruction and motion prediction in real-time environments have become pivotal areas of research, especially
with the burgeoning applications in Virtual and Augmented Reality (VR/AR). This paper presents a novel deep neural net-
work underpinned by a stacked dual attention mechanism, effectively leveraging data from just 6 Inertial Measurement Units
(IMUs) to reconstruct human full body poses. While previous works have predominantly focused on image-based techniques,
our approach, driven by the sparsity and versatility of sensors, taps into the potential of sensor-based motion data collection.
Acknowledging the challenges posed by the under-constrained nature of IMU data and the inherent limitations in available
open-source datasets, we innovatively transform motion capture data into an IMU-compatible format. Through a holistic under-
standing of joint dependencies and temporal dynamics, our method promises enhanced accuracy in motion prediction, even in
uncontrolled environments typical of everyday scenarios. Benchmarking our model against prevailing methods, we underscore
the superiority of our dual attention mechanism, setting a new benchmark for real-time motion prediction using minimalistic
sensor arrangements.

CCS Concepts
• Computing methodologies → Real-time simulation; Motion processing; Reconstruction;

1. Introduction

The motion prediction and generation of avatars, particularly in
Virtual and Augmented Reality, has grown increasingly paramount
as technology’s role in human-computer interaction continues to
evolve. As VR and AR platforms continue to gain traction, their
efficacy hinges on the realistic portrayal of user avatars, capturing
the nuances of human motion. This requirement emphasizes the im-
portance of generating realistic and kinematically consistent avatar
motions.

Historically, generating realistic and kinematically consistent
avatar motions was a challenging task, primarily due to the com-
plexities associated with accurately predicting human movement.
Traditional methods have often relied on extensive motion capture
datasets, heuristic-based algorithms, or simplified kinematic mod-
els. While these approaches laid a foundational groundwork, they
often fail to account for the nuance and unpredictability inherent in
natural human motion and often stumbled in encapsulating the nu-
anced and spontaneous nature of genuine these motion. Such short-
comings become particularly stark within the domains of VR and
AR, where immersion is contingent on authentic movement repro-
duction.

Recent advancements in deep learning and sensor technologies
have opened doors to innovative approaches for motion prediction.
Inertial Measurement Units (IMUs) – devices that measure veloc-
ity, orientation, and gravitational forces – have gained traction as
essential tools for capturing and understanding human kinematics.
Synthesised IMUs, in particular, offer a promising avenue by sim-

ulating the properties and benefits of physical IMUs without neces-
sitating cumbersome equipment.

In this paper, we introduce a novel approach for pose recon-
struction and motion prediction. Our method relies on the Natu-
ral Language Processing-inspired transformer’s power of attention
mechanisms, harnessing both spatial and temporal insights to cre-
ate more accurate, fluid, and context-aware avatar movements. By
seamlessly weaving spatial and temporal insights, our approach
promises more precise, context-sensitive, and fluid avatar move-
ments. The intrinsic dual attention framework, encompassing dis-
crete modules for sensor-derived (spatial) and sequential attention,
is architected to emphasize pivotal body joints and crucial time in-
tervals. This focused lens ensures that generated motions resonate
with human-like fluidity while upholding kinematic authenticity.

At the heart of our pose reconstruction and motion prediction
strategy is a sophisticated attention mechanism. Our dual attention
structure comprises:

• Sensor (Spatial) Attention:
This module is dedicated to analyzing data from synthesized
IMUs, emphasizing crucial body joints. By focusing on specific
body parts, this spatial attention ensures the capture of intricate
movements pivotal to human-like motion representation.

• Sequential Attention:
Recognizing that movement is not just a factor of current physi-
cal state but also historical motion, our sequential attention mod-
ule analyzes patterns over time. This aspect focuses on key time
intervals, making it possible to predict subsequent movements
based on historical data.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

International Conference on Artificial Reality and Telexistence
Eurographics Symposium on Virtual Environments (2023)
J.-M. Normand, M. Sugimoto, and V. Sundstedt (Editors)

DOI: 10.2312/egve.20231326 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/egve.20231326


L. Guinot & R. Matsumoto & H. Iwata / Stacked Dual Attention for Joint Dependency Awareness in Pose Reconstruction andMotion Prediction

Combining insights from both spatial and attention modules, our
model generates realistic avatar movements. By considering both
the immediate sensor data and the historical movement patterns,
our approach ensures that the resulting motions are not just accu-
rate but also context-aware, providing a fluid and natural avatar rep-
resentation. Our methodology prioritizes real-time interaction and
responsiveness. This emphasis ensures that while our approach is
deeply rooted in rigorous research and theoretical kinematics, it
translates effectively into practical avatar animation, suitable for
immersive virtual experiences in VR/AR environments.

In essence, our method paints a comprehensive picture, amalga-
mating cutting-edge technology and deep understanding of human
motion to offer a solution that promises both accuracy and practi-
cality in the dynamic world of virtual representation. The overarch-
ing goal of our research is not just to achieve high-fidelity motion
representation but also to facilitate real-time interaction and respon-
siveness in virtual environments. By bridging the gap between the-
oretical kinematics and practical avatar animation, our study offers
a glimpse into the future of immersive virtual experiences.

2. Related Works

2.1. Image-based Motion Prediction

The image-based approach often dominates the motion prediction
arena, primarily due to the vast availability of open-source datasets
and certain constraints when relying solely on sensors. A promi-
nent method within this category is motion capture, which, al-
though widely adopted, is not without its limitations such as the
need for multiple tracking markers, camera calibration, and specific
background requirements. Addressing these issues, a marker-less
strategy employing multiple cameras was proposed [N. 16]. While
offline variants of this method demonstrated promising accuracy
[BTG∗12,BM98,HBL∗17,J. 03], the real-time, online versions are
usually favored in practice [ATS∗08, EdJ∗17, RRR∗15, SHG∗11].
However, challenges like camera calibration persist. Furthermore,
Convolutional Neural Network (CNN) driven techniques employ-
ing a single stationary camera have been explored [CSWS17,CY14,
HGDG17,NYD16,TJLB14,TS14]. Their primary limitation lies in
producing results confined to a two-dimensional coordinate space.

In recent research, both offline [BKL∗16, TMNSF17, ZZL∗15]
and online [MSM∗18, MSS∗17, OLPM∗18] methodologies have
been explored for the estimation of 3D posture from 2D images.
In the context of human posture estimation, the focus has pri-
marily been on predicting current postures. Notably, only two
studies have ventured into the realm of future posture prediction.
The first approach involves forecasting human motion 0.5 seconds
ahead, utilizing detected human body joints from Kinect technol-
ogy [HMS17]. The second approach, conducted using a single
RGB camera, similarly predicts human motion after 0.5 seconds
[WK19]. This second study leverages an Long Short-Term Mem-
ory network for capturing temporal information within images, in-
corporating Residual and Lattice Optical Flow to estimate subse-
quent postures and culminating in 3D reconstruction. It is worth
noting that the domain of research dedicated to predicting future
postures remains relatively under-explored, in stark contrast to the
well-established field of human posture estimation. Furthermore,
all of the discussed methods require a static camera viewpoint, de-
manding unobstructed visibility of the entire human figure. This
limitation poses a challenge for predictions and estimations in sce-
narios with occluded image regions, where portions of the human
subject may be obscured.

2.2. Sensor-based Motion Data Gathering

Contrary to image-centric methods, there are relatively fewer in-
vestigations into motion data techniques anchored entirely around
sensor use. Particularly, there’s a notable paucity of research focus-
ing on harnessing sensor data for motion prediction. Current pose
estimation studies utilizing inertial trackers (IMUs) and synthesiz-
ing accelerometer, gyroscope, and geomagnetic sensor data via a
Kalman filter have been observed. Nevertheless, certain implemen-
tations, such as those described in [RLS09], rely on an extensive
sensor count (up to 17), rendering sensor positioning and subse-
quent adjustments cumbersome. Efforts to diminish sensor counts
have led to hybrid methods, intertwining sparse IMUs with video
imagery [MGT∗17, PBG∗11, PBH∗10, vMPMR16], optical mark-
ers [AHK∗16], or depth cameras [HMST13]. Yet, these approaches
often grapple with data loss during occlusions.

Human motion is inherently a complex kinematic chain
[WAR17], with joint dynamics being interdependent. The collec-
tive movement of joints at any given moment t outlines the broader
human movement trajectory. The position of a joint at one instance
deeply impacts the subsequent poses. Recognizing this intricate in-
terplay, our work posits the importance of perceiving these dynam-
ics as time-series data, instrumental for future posture predictions.

A significant challenge when employing sensors lies in their par-
tial information scope. With sensors offering data only at their spe-
cific placements, information gaps about intermediary body parts
become glaring. For instance, having sensors only at the wrist and
elbow leaves the arm’s motion largely uncharted. This information
scarcity amplifies with sparser sensor arrangements.

Considering these insights, this paper embarks on the mission of
pioneering a motion prediction methodology. Rooted exclusively in
IMU sensors, our approach aspires to holistically appreciate both
the temporal context of human motion and the intricate sensor in-
terdependencies.

3. Data and Environement

3.1. Synthetised data

Our method relies on a learning-based approach, which neces-
sitates a significant dataset for training. While there are numer-
ous datasets for camera or marker-based scenarios, there is a lack
of public datasets that include both IMU data and precise poses.
To our understanding, the sole dataset of this nature is TotalCap-
ture [TGM∗17], which captures standard daily activities. Given
the scarcity of open-source datasets containing IMU sensor-based
motion data, we devised a technique to translate motion capture
data into an IMU-compatible format. In essence, each marker from
motion capture yields data within a three-dimensional coordinate
framework. Tapping into the Archive of Motion Capture as Surface
Shapes (AMASS) repository [MGT∗19], we harnessed motion cap-
ture data from comprehensive datasets like CMU [FdlTB08], Hu-
manEva [SBB10], and JointLimit [AB15] to animate the SMPL
model. The ability to match SMPL parameters with various data
types (like IMUs, marker data) allows us to create a broader and
more detailed training dataset. This is achieved by producing pairs
of IMU readings and corresponding SMPL parameters from di-
verse datasets. To generate synthetic IMU training data, we put
virtual sensors on the SMPL mesh. Using forward kinematics, we
then gather orientation data, and determine accelerations through
finite differences. The transformation to IMU data, encapsulating
the rotation matrix, acceleration, and angular velocity, is achieved
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through the instantiation of "virtual IMUs". These represent ab-
stract renditions of sensors anchored onto the 3D SMPL structure,
mimicking authentic IMU sensors in their data output characteris-
tics in line with the SMPL model’s movement dynamics. Strategi-
cally, these virtual IMUs were positioned at non-intrusive locations:
right ankle, left ankle, waist, both wrists, and head. To synthesize
these virtual sensors, we adhered to the following methodology:

• Acceleration Calculation:
Acceleration, at its core, is deduced from the second derivative of
positional variations. Given the motion capture’s inherent frame
rate of 120Hz, infinitesimal time intervals weren’t feasible. As
a remedy, the finite difference method (refer to Eq. 1) was em-
ployed where for a virtual IMU’s position at time t is pt and the
gap between successive frames is dt, the simulated acceleration
is calculated accordingly.

at =
pt−1 + pt+1 −2× pt

dt2 (1)

• Downsampling:
To ensure compatibility with the minimal IMU sensor sampling
rate (60Hz), the motion capture frames were downscaled by half
prior to the computation.

• Rotation Matrix & Angular Velocity:
Akin to the acceleration, the rotation matrix and angular velocity
derivation adhered to a similar protocol. Angular velocity deter-
mination for each sensor was executed utilizing the finite differ-
ence methodology. Notably, previous studies did not incorporate
angular velocity as a parameter, leaving us without a comparative
benchmark for this computational approach. Let’s denote the po-
sition of a sensor at a specific time instance t as R. The positional
alteration between successive frames can thus be articulated as:

Rdi f f = R−1
t−1Rt+1 (2)

With a conversion between rotation matrix and axis angle Cv(R) :
RotationMatrix →| AxisAngle expressed as:

ω⃗t =
Cv(Rdi f f )

2dt
(3)

This structured approach ensures a seamless conversion, bridg-
ing the gap between motion capture data and the requirements of
IMU-based motion analysis.

3.2. Data

The methodologies embraced in this research are predominantly in-
formed by paradigms in Natural Language Processing (NLP). De-
spite our primary dataset constituting time-series human motion in-
formation procured via IMU sensors, we opted for an NLP-centric
data manipulation, particularly evident during the initial data for-
matting for network input.

For every discrete time instance denoted by t, data from each
IMU sensor yields a 15-dimensional dataset. This encompasses a
rotation matrix with 9 dimensions, an acceleration component of 3
dimensions, and a 3-dimensional angular velocity measure. Thus,
this data can be conveniently abstracted as a 15-dimensional fea-
ture vector. Given our choice of employing 6 IMUs, the resultant
output for each time instance becomes a 90-dimensional matrix,
structured as "IMU count × Features" (Figure 1). Intriguingly, this
matrix bears similarities to the "word embedding size" typically
encountered in NLP contexts.

Figure 1: Isolated IMU Attention (Bottom) and Sequential Atten-
tion (top)

Figure 2: 3D representation of Dual Attention

4. System Design

4.1. Sequential Attention (Self Attention)

Recurrent neural networks (RNNs) have proven adept at feature ex-
traction from time-series data. Yet, over prolonged temporal spans,
they periodically lose retrospective data and encounter growing
challenges in parallel computations. In the realm of Natural Lan-
guage Processing (NLP), the self-attention mechanism (as refer-
enced in [VSP∗17]) has emerged as a solution. It perceives word
sequences within textual data as time-series information, emphasiz-
ing inter-word attention. Given a sentence, the mechanism discerns
the significance of each constituent word. Crucially, this mitigates
the issue inherent to extended time-series analysis, as it removes
the predisposed notion that data at time instance t holds precedence
over that at t-1. In the present project, self-attention was applied to
rate the importance of all IMU data with respect to the time step. In
this paper, this type of attention is referred to as “sequential atten-
tion”(Figure 1).

4.2. IMU Attention

IMU sensor-based posture prediction implies that data on an indi-
vidual’s current posture is confined to the regions adorned with sen-
sors. Given that a posture transition arises from an amalgamation
of diverse basic movements, as substantiated by [GTN18,FCTL18,
GGM15], it becomes imperative to accurately depict this combina-
tion to faithfully represent the posture shift. Consequently, a holis-
tic perspective that encompasses all sensors concurrently is deemed
crucial, as opposed to an isolated examination of each sensor.

Introducing the notion of “IMU attention" we aspire to equip
the system with a cognizance of inter-sensor relationships, empha-
sizing how motion dynamics at a particular point influence other
regions.

4.3. Dual Attention

In this paper, Dual Attention can be seen as an extension of self-
attention. Data used in the present paper is represented as the three
dimensional matrix shown in Figure 2. Dual Attention refers to the
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use of attention both in the “time-series direction” (sequential at-
tention) and the “spatial direction” (IMU attention). The compu-
tational flow of this Dual Attention, comprised in what we call a
“Dual Attention block” drawn in Figure 3 is as follows: First, two
matrices, both for input tensors of 1 are generated:

Iseq ∈ RSequence×(IMUNum×Features) (4)

IIMU ∈ RIMUNum×(Sequence×Features) (5)

Query (Q), key (K) and value (V) vectors for sequential attention
are defined as:

QSeq = ISeqWQSeq (6)

KSeq = ISeqWKSeq (7)

VSeq = ISeqWVSeq (8)

With QSeq,VSeq and KSeq ∈ RSequence×dSeq and WQSeq ,WVSeq and

WKSeq ∈ R(IMUNum×Features)×dSeq . The W is a weight matrix in the
form (dSeq, Embedding size) with dSeq an arbitrary parameter.

Similarly, for IMU attention:

QIMU = IIMUWQIMU (9)

KIMU = IIMUWKIMU (10)

VIMU = IIMUWVIMU (11)

With QIMU ,VIMU and KIMU ∈ RIMUNum×dIMU and WQIMU ,WVIMU

and WKIMU ∈ R(Sequence×Features)×dIMU . Here again, W is a weight
matrix in the form (dIMU , Embedding size) with dIMU an arbitrary
parameter. In the present study, dSeq and dIMU were defined as:

dSeq = IMUNum×Features (12)

dIMU = Sequence×Features (13)

Using the query and key vectors, the attention ratio can be calcu-
lated, once the score has been determined. The later is done by
using the internal product of the query and key vectors.

ScoreSeq = QSeqKT
Seq ∈ RSequence×Sequence (14)

ScoreIMU = QIMU KT
IMU ∈ RIMUNum×IMUNum (15)

After normalizing these scores and with
√

dSeq and
√

dIMU , the
attention ratio (AR) is obtained from the Softmax function, applied
respectively to each row of the matrix.

ARseq = So f tmax

(
ScoreSeq√

dSeq

)
(16)

ARIMU = So f tmax
(

ScoreIMU√
dIMU

)
(17)

The final output is a representation of the degree of relevance of
each row element with respect to other rows - other time steps for
sequential attention, other sensors for IMU attention.

Out putSeq = ARSeqVSeq ∈ RSequence×dSeq (18)

Figure 3: Attention Block (top) and Evaluation Metrics (bottom)

Figure 4: Overall model image

Out putIMU = ARIMUVIMU ∈ RSequence×dIMU (19)

Following these steps, it became possible to extract complex in-
formation about the relationship between each sensor data with re-
spect to the time frame context, and about the spatial relationship
of all sensors with respect to one another.

4.4. Overall model

As depicted in Figure 4, our comprehensive system takes rotation
matrices, acceleration, and angular velocity data from virtual IMU
sensors located at six distinct positions as its input. Positional en-
coding, is exclusively integrated into the sequential attention input.
After processing through numerous multi-dimensional blocks (with
N blocks being superposed) and culminating in a fully connected
layer, the system outputs in the form of SMPL parameters, subse-
quently animating the respective figure.

The incorporation of positional encoding aims to maintain
contextual integrity during the sequential information extraction.
While the attention mechanism can effectively discern the inter-
play between time series and IMU data, it remains agnostic to the
chronological sequence of time steps. In the context of IMU data
and IMU attention, the precise order of the data might be non-
essential as long as the core information is retrievable. However,
when working with time series and sequential attention, any alter-
ation in sequence can lead to a change in the data’s inherent mean-
ing. Consequently, to forestall any unintended contextual modifica-
tions, we applied positional encoding preceding the initial attention
block.

The previous subsection, detailed how the attention ratio is cal-
culated. However, additional operations need to be performed be-
fore data is input to the second layer normalisation (Figure 3). To
avoid confusion, we will name the input of the overall attention
blocks I′seq and I′IMU . First, residual connection is applied to the
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output obtained by equations 18 and 19, to prevent gradient disap-
pearance, a well known recurring issue in deeply connected layers.

Out put′seq = Out putSeq + I′seq ∈ RSequence×dSeq (20)

Out put′IMU = Out putIMU + I′IMU ∈ RIMUNum×dIMU (21)

At the current stage, despite the successful calculation of sums, a
discrepancy remains in the attention matrices’ shapes between se-
quential and IMU attentions. By using dSeq and dIMU , the outputs
were reshaped to:

Out put′Seq ∈ RSequence×(IMU f eatures× f eatures)

→ Out put′′Seq ∈ RSequence×IMUNum× f eatures
(22)

and

Out put′IMU ∈ RIMU×(Sequence× f eatures)

→ Out put′′Seq ∈ RSequence×IMUNum× f eatures
(23)

The Dual Attention mechanism output is as then defined by:

Out putAttention = Out put′′Seq +Out put′′IMU (24)

In the presented study, the loss is determined utilizing the Mean
Squared Error (MSE) as described in Eq. 25. This loss is derived
by contrasting the actual joint positions (y) of the SMPL model
with the network’s predicted joint positions (ŷ). Given the inher-
ent history-based kinematic chain within the SMPL, the positional
error of a specific joint is inherently influenced by its preceding
joint’s value. As a consequence, the frequency with which this error
manifests varies between terminal joints (like the hand) and foun-
dational joints (such as the waist).

MSE =
1
N

N

i=0
(yi − ŷ)2 (25)

For the training process, we utilized the Adam optimizer with
a starting learning rate of 1.0× 10−3. Building upon the insights
of Kaichao et al. [YLJW19], which suggest that adaptive adjust-
ment of the learning rate based on training progression can enhance
learning efficiency, we employed a dynamic learning rate defined
as:

learning rate = lr ∗ γ
epoch (26)

With lr the initial learning rate and γ is the attenuation factor (0.98).
Training of the overall model was performed over an average of 80
epochs with early stopping.

5. Verification Experiment

5.1. Validation of the Proposed Method

• Benchmarking Dual-Attention mechanism:
Our Dual Attention mechanism was critically benchmarked
against prevailing methods, including a Bi-directional Recurrent
Neural Network (BiRNN), as outlined in [HKA∗18] and a se-
quential attention exclusive network (Figure 3, left). Compar-
ative analyses were conducted with varying architectural com-
plexities, specifically attention networks with 1, 3, and 6 layers.

• Effect of IMU Sensor Quantity vs. Attention Layers:

Figure 5: Performance of different models

An in-depth analysis was conducted to understand the perfor-
mance variance resulting from altered IMU sensor counts as op-
posed to the inclusion of multi-dimensional attention layers (Fig-
ure 3, left).

5.2. System Performance Assesment

Synthesisted IMU sensor data, positioned on SMPL models, was
the basis for our evaluation. The chosen BiRNN for this com-
parison stemmed from [HKA∗18], owing to its conceptual and
application-based congruence with our study. A self-attention ex-
clusive network also served as a comparator. Performance metrics,
beyond error rate, encompassed computational overhead and vali-
dation speed.

The data allocation strategy was split with 90% directed towards
training and the residual 10% reserved for validation. Every set of
50 frames fed into the network projected pose estimations for the
subsequent 30 frames. All experimental runs were executed in the
Amazon Web Service P3 environment, leveraging eight Intel Xeon
scalable VCPUs, cumulatively offering 61GB of CPU memory, and
a NVIDIA Tesla V100 16GB GPU.

5.3. IMU Scarcity Analysis

While our model’s foundational design envisaged the use of 6 sen-
sors, we expanded the comparative horizon to 6, 8, 10, and 12
IMUs. Figure 8 illustrates the virtual positions (denoted by the co-
ordinate system origins for each sensor). Adhering to the previ-
ously established methodology, the data partition was maintained
at a 90:10 ratio for training and testing. Trials pivoted around the
BiRNN model from [HKA∗18], expanding the sensor count. Si-
multaneously, a Dual-Attention model with a steady sensor count
(6), but escalating layer quantity, was used. The secondary exper-
imental drive was to emphasize the superior capabilities of multi-
dimensional attention. We aimed to assert that the elevated error
rates observed in competing networks were not merely attributed
to limited data capture points.

6. Results and Discussion

6.1. Model Structure Benchmarking

Figure 5 shows the prediction error results for all three tested neural
networks. As depicted in Figure 5, a comparative error analysis was
conducted across the three evaluated neural networks. It is note-
worthy that models incorporating attention mechanisms, even those
solely based on self-attention, outperformed the BiRNN model. For
analogous sensor configurations and quantities, the integration of
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Figure 6: Error rate comparison

Figure 7: Result example on static SMPL model

even a singular sequential attention layer diminished the average
joint position error by approximately 4 mm. Furthermore, intro-
ducing one layer of multi-dimensional attention yielded a reduction
in average joint position error by an additional 10 mm, in contrast
to the BiRNN results. For a more detailed perspective, Figure 6
presents a juxtaposition of joint position error between the BiRNN
and the 6-layer Dual-Attention attention network during walking
motion predictions.

Moreover, the efficacy of a singular multi-dimensional attention
layer surpassed that of three layers focused solely on sequential
attention. Insights from Table 1 accentuate that the Dual-Attention
attention model not only yielded superior accuracy in terms of joint
position error but also exhibited enhanced result generation fre-
quencies relative to the sequential attention network. As a case in
point, while a 6-layer sequential attention network registered an in-
ference duration of 5.25 milliseconds, accompanied by an average
error of 66.34 mm, a 3-layer Dual-Attention model showcased an
average error of 35.37 mm within a swift 5.16 milliseconds infer-
ence span. Figure 7 shows a comparison of predicted posture with
the ground truth in white and comparison models in green, red and
blue. While discrepancies are visible on all three projections, the
Dual-Attention model returned highest accuracy.

6.2. Sensor Scarcity

Prior research leveraging BiRNN networks for motion prediction
deduced that amplifying the number of data capture nodes did
not necessarily enhance result precision. This inference is further
corroborated by our findings, as illustrated in Figure 8, which
showcased a marginal reduction in joint position discrepancies.
Nonetheless, the negligible variance in error metrics underscores
that a mere augmentation of sensor count fails to rectify the in-
herent limitations of BiRNN. Such findings inevitably gravitate to-
wards the assertion that BiRNN, in isolation, does not suffice for
precise human posture extrapolation. It is worth noting that our
analysis, constrained to 12 sensors, did not identify any ancillary
studies hinting at considerable accuracy improvements with further
sensor count escalations.

Figure 8: Sensor scarcity and Attention layers relevancy

Conversely, when maintaining a stable sensor count, each incre-
mental addition to attention layers positively impacted the fidelity
of ensuing pose predictions. Given our study’s focal intent is on
optimizing a minimalistic data acquisition system, we intentionally
restrained the sensor count. However, considering the intrinsic ob-
jective of multi-dimensional attention—to discern inter-sensor re-
lationships—it is plausible that incorporating a more extensive ar-
ray of IMUs could further ameliorate the joint position estimation
error.

6.3. Limitations

Prior investigations utilizing Bi-directional Recurrent Neural Net-
works (BiRNN) for motion prediction exhibited limited improve-
ments in result accuracy when augmenting the number of data col-
lection points. Surprisingly, our findings, as depicted in Figure 8,
indicated a marginal reduction in joint position error with an in-
creased sensor count. Nevertheless, this subtle decline in error rates
failed to manifest a significant divergence, suggesting that a mere
augmentation in sensor quantity does not effectively address the
deficiencies of the BiRNN model. Consequently, our observations
culminate in the assertion that a straightforward BiRNN framework
inadequately supports precise human posture prediction. Notably,
this study terminated its experimentation after evaluating perfor-
mance with 12 sensors, as no extant literature was encountered to
suggest substantial benefits in accuracy through further augmenta-
tion of IMUs.

Conversely, by maintaining a consistent sensor count, each in-
crement in the number of attention layers yielded enhanced accu-
racy in future pose predictions. Given the overarching objective of
this study to design a minimally data-intensive system, we delib-
erately constrained the sensor quantity. However, it is reasonable
to extrapolate that employing an expanded array of IMUs could
further diminish joint position estimation errors when leveraging
the Dual-Attention mechanism [DCLT18,RWC∗19]. This assump-
tion aligns with the essence of Dual-attention, which is tailored to
elucidate the intricate relationships interwoven among diverse sen-
sors, thereby potentially facilitating the augmentation of IMUs to
achieve heightened accuracy.

7. Conclusion

The domain of motion prediction and pose reconstruction has
seen considerable evolution, with various techniques ranging from
image-based methodologies to sensor-driven strategies. However,
each approach comes with its own set of challenges and limitations,
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Table 1: Joint position error comparison

BiRNN Sequential Dual Attention
layers 1 3 6 1 3 6

error (mm) 78.20 74.97 71.73 66.34 70.40 65.37 59.21
Standard Deviation 37.92 31.39 29.43 25.75 31.10 28.27 25.55

Inference (ms) 2.23 1.31 2.75 5.25 2.03 5.16 9.70

often requiring a compromise either in terms of accuracy, real-time
applicability, or practicality.

In this paper, we introduced a pioneering method that harnesses
a dual attention mechanism to reconstruct the human body pose
in real-time using 6 Inertial Measurement Units (IMUs). This ap-
proach not only addresses the inherent under-constrained nature of
pose parameters due to sparse IMUs but also circumvents the prac-
tical challenges posed by image-based methodologies.

By meticulously synthesizing insights from both image-based
motion prediction studies and sensor-based research, our method
offers a harmonious blend of accuracy, real-time performance, and
user convenience. Our emphasis on the interdependencies among
body joints and the temporal dynamics of human motion, as de-
picted in time-series data, offers a more comprehensive under-
standing of human movements. The novelty of using dual attention
mechanisms – sequential and IMU attentions – provides a distinct
edge in capturing these intricate dynamics over traditional methods.

While our work sets a promising precedent, it also opens doors
for future research, especially in refining sensor placements, opti-
mizing attention mechanisms for even sparser configurations, and
potentially merging the strengths of image-based and sensor-driven
approaches. As VR/AR technologies and other real-time applica-
tions continue to advance, the potential implications and applica-
tions of our work are vast, promising a more immersive and accu-
rate user experience.

Our journey through this research has solidified our belief that
while challenges in the realm of motion prediction are manifold,
with innovative approaches and a keen understanding of the under-
lying mechanics, solutions are within reach.
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