
International Conference on Artificial Reality and Telexistence
Eurographics Symposium on Virtual Environments (2023)
J.-M. Normand, M. Sugimoto, and V. Sundstedt (Editors)

GAV-VR: An Extensible Framework for Graph Analysis and
Visualisation in Virtual Reality

W. Kerle-Malcharek1 and S. P. Feyer1 and F. Schreiber1,2 and K. Klein1

1University of Konstanz, Germany
2Monash University, Australia

Figure 1: The framework allows the user to specify the mapping of data characteristics to visual variables. In this picture, color coding is
used to map the vertex degree and vertices above a certain degree threshold have a cubic shape. The representation of the environment can
be altered as well. Here, the walls were chosen to have a chequered pattern.

Abstract
The investigation of interactive graph visualisation in stereoscopic 3D has recently gained increasing attention due to promis-
ing initial results and the broad availability of required hardware such as Virtual Reality (VR) headsets. While various software
frameworks and libraries for (interactive) graph visualisation in 2D exist, there is a lack of corresponding frameworks support-
ing VR. This hampers the exploration of design choices and the comparison of approaches, especially for the benefits of virtual
environments, slows down the development of novel methods, and requires additional effort from researchers to perform these
investigations. We present GAV-VR, a framework for interactive visualisation and analysis of graphs in VR. GAV-VR has a mod-
ular architecture to support easy integration of visualisation and analysis method implementations. In this work, we elaborate
on the framework’s architecture and showcase possible use cases.

CCS Concepts
• Human-centered computing → Visualization toolkits; Virtual reality;

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egve.20231321 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0001-3415-1136
https://orcid.org/0009-0004-8574-0741
https://orcid.org/0000-0002-9307-3254
https://orcid.org/0000-0002-8345-5806
https://doi.org/10.2312/egve.20231321


W. Kerle-Malcharek & S. P. Feyer & F. Schreiber & K. Klein / GAV-VR

1. Introduction

Interactive visualisation of graphs in stereoscopic 3D - such as
in virtual reality (VR) environments - has shown the potential to
support the understanding of a graph’s structure and to facilitate
analysis tasks in a variety of settings and applications [CDK∗16,
GPK12, KS14, KFS∗22, KEK∗21, SS17, WM05]. The large design
space for graph representation in 3D and corresponding interac-
tion provides ample opportunities for improvement of the analy-
sis process. The exploration of this potential through the investiga-
tion of visualisation and interaction methods as well as of virtual
environment designs thus has received a tremendous increase in
research activity recently, highlighting benefits and disadvantages
alike [DCW∗18,HPY23,JJS∗22,SKA22,SWKA19,FPK∗23b]. The
design, implementation, and evaluation of visualisation and inter-
action approaches for VR and their comparison to established 2D
approaches are facilitated by the broad availability of high-quality
VR hardware. Software frameworks and libraries for graph visu-
alisation in 2D exist and allow quick prototyping and compari-
son of methods, such as OGDF [CGJ∗13], Graphviz [EGK∗02],
Tulip [AAB∗17], Vanted [JKS06] or Cytoscape [SMO∗03]. How-
ever, there are little corresponding software frameworks for interac-
tive graph visualisation in VR. Rapid prototyping and the wish for
experiment reproducibility and replicability require the availability
of flexible and free open-source implementations.

To fill this gap, we present Graph Analysis and Visualisation in
VR (GAV-VR), a framework for interactive visualisation and analy-
sis of graphs in VR. GAV-VR has a modular architecture regarding
VR-HMDs, data formats, analysis and visualisation methods and
supports the easy integration of new functionalities. It provides the
basis for prototyping and method comparison and it also facilitates
the interactive analysis process.

Immersive environments – in particular VR – support stereo-
scopic 3D visualisation of graphs, user tracking, (spatial) immer-
sion of the analyst, and direct interaction like grabbing, rotating and
moving objects around the scene. A major research challenge is to
investigate how these features can be utilised for designs of graph
analysis environments in order to provide a better understanding of
the data, faster and higher quality analysis results, and better mem-
orability.

With GAV-VR, we aim to support these investigations by provid-
ing a framework that spares the researcher from (re)implementing
basic functionality from scratch. We assume that with GAV-VR re-
searchers and analysts will be able to focus on their core tasks such
as the implementation of new methods, comparison of approaches,
and data analysis.

Contribution. We provide GAV-VR to the community, an ex-
tensible framework and interactive application for graph visual-
isation and analysis in VR. GAV-VR allows easy prototyping of
graph algorithms, visualisations, layout methods and environments
by a modular architecture. Pre-implemented modules of GAV-VR
already contain common algorithms and methods for graph analy-
sis, graph layouts, navigation and environments to provide a low
usage threshold and enable developers and analysts to focus on
their core tasks. GAV-VR is fully embedded in the Unity C# en-
vironment, reducing the amount of additional software required,

and supports all VR-HMDs which are supported by SteamVR. Cur-
rently, GAV-VR and its documentation are available on the RDM
system Zenodo [KMFKS23] and will be moved to a dedicated web-
site after publication. In this repository, GAV-VR is available as a
Unity project and as a standalone build as an executable, which is
configured to operate with Valve Index controllers.

To our knowledge, the approach of GAV-VR providing a frame-
work for researchers and developers to quickly prototype use-case
specific environments while maintaining a low availability thresh-
old in terms of software and hardware is unique and leads to signif-
icant time-saving. We believe that this framework will be an asset
to the community.

2. Related Work

There are many interactive systems for graph visualisation, which
support various use-cases and applications in classical 2D desk-
top setups, e. g. [AAB∗17,BHJ09,EGK∗02,JKS06,SMO∗03], par-
tially also with 3D projections [FHP∗22]. Furthermore, there are
several libraries and frameworks that provide graph algorithm and
method implementations [CGJ∗13, EGK∗02]. More recently, ac-
cess to and support for stereoscopic 3D visualisation (S3D), in-
cluding VR, has increased considerably [LRL∗21,PMI∗21,RM20].
After a long period of hesitation in investigations of the effective-
ness of 3D graph visualisation, the wide availability of high-quality
hardware with S3D capabilities sparked a series of research on its
benefits and disadvantages. There are publications that provide ini-
tial evidence for increased task performance in virtual reality for a
variety of tasks like navigation, visualisation or graph-related tasks
e. g. [BVD19,CDK∗16,GPK12,HPY23,JJS∗22,KFS∗22,KEK∗21,
SKA22,SAK∗21,VSVDZS∗10,WF94,WM05,WML94]. In this re-
search it is a broad consensus that the proper utilisation of S3D will
provide improvements in various aspects of graph analysis regard-
ing task performance, understanding of structure, and perception.
Consequently, frameworks supporting S3D also encourage further
research on those topics.

There are little graph-related frameworks supporting S3D.
CellexalVR [LRL∗21] is a VR-based tool for graph visualisation
and analysis of single-cell gene expression data. The focus of
CellexalVR is on specialised graphs for cell selection and visibility,
but not on general graphs. VRNetzer [PMI∗21] utilises VR to view
and analyse 3D graphs with a focus on the exploration and analy-
sis of large graphs. VRNetzer provides an underlying database for
the graphs, a Python interface for the analysis, a VR environment
driven by Unreal Engine [Epi19], and a web interface to administer
the analysis methods. Therefore, VRNetzer could also be seen as a
hybrid between a desktop and a VR environment.

In contrast to VRNetzer, GAV-VR is a framework to develop
tools similar to VRNetzer with the help of modules of various types
(see Section 3.2) to fit needs related to specific research questions.
Therefore, our framework is not limited to the purpose of graph
analysis. Extending GAV-VR with modules, and thus functionality,
is simpler compared to VRNetzer, as it only requires the implemen-
tation of an abstract class of the corresponding module. Instead of
using different platforms for analysis and visualisation, GAV-VR is
completely embedded in a Unity C# environment, making it easy
to set up, use and extend.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

132



W. Kerle-Malcharek & S. P. Feyer & F. Schreiber & K. Klein / GAV-VR

The novelty of GAV-VR lies in its goal to be an easily extensible
framework for graph exploration and analysis in virtual reality that
facilitates the development of research question-specific function-
ality for an extensive range of graph-related domains.

3. The GAV-VR System

GAV-VR’s concept considers two types of users: analysts and con-
tributors. As this framework is considered to be an aid in develop-
ing environments for graph analysis and visualisation, oftentimes a
contributor will have to switch to an analyst role and back to verify
the validity of their newly added content. For our system design,
we considered the two roles as distinct, to address the different re-
quirements they have, respectively.

Analysts use the system as-is. They want to use it to investigate,
explore, or analyse graphs with a given set of features and methods.
They might also want to investigate the impact of available meth-
ods or features in the context of graphs and virtual reality. Analysts
should be able to use our framework without writing code. There-
fore, we provide a ready-to-use build. This build includes a set of
pre-implemented features (see Section 3.2.1 and 3.2.2) ready to be
applied on graphs, and a small set of example graphs for an easy
start.

Contributors enrich GAV-VR with features with the help of the
modular system provided by the framework. They develop and de-
sign with the help of our systems modules to provide new features,
methods, or visualisations to analysts. Contributors benefit from
the fact that GAV-VR is completely embedded in a Unity C# en-
vironment. It utilises a combination of abstract classes, pre-defined
routines and data structures to ease the integration of new features
without compromising the general functionality of the whole envi-
ronment. Therefore, no complete understanding of the framework
is required to extend the framework with new features. The knowl-
edge about how the interfaces of GAV-VR work and basic program-
ming skills are sufficient to implement basic new features.

3.1. Architecture

The software architecture of GAV-VR consists of two major com-
ponents: the core and the modules, compare Fig. 2. The core of
GAV-VR provides the core functionality and manages the frame-
works modular features. The core provides the user interface for
analysts to interact with the virtual environment and the objects
therein. Such objects in our context typically are graphs, edges,
vertices, or the UI itself and can be extended by developers with
e. g. position markers. The core also contains the controller classes
which manage the module interfaces, input controls, movement,
user interface, visualisations, file input and output, or the scene in
general.

The modules represent the second major component of GAV-
VR’s architecture and are the set of instances that utilise the dif-
ferent module interfaces. They serve as the entry point for contrib-
utors. Modules provide the abstract classes and interfaces required
to declare new instances of a majority of our modules. The others
are file-based modules, see Section 3.2.2. Furthermore, modules are

the part of GAV-VR contributors are implementing to add new fea-
tures. Those modules are interchangeable and can be made accessi-
ble to analysts. Instances of those modules can be self-implemented
or just included as existing libraries. Consequently, modular con-
tent can be shared between contributors and used in individual con-
figurations of the framework. The instances of modules are auto-
matically integrated into the UI by the core, from where they can
be used by a ray-casting interaction approach. The framework of-
fers a set of prepared modules, to ensure basic functionality, and
also serve as example implementation.

Figure 2: Basic architecture of GAV-VR: core and modules. The
core handles the automatisms such as loading modules or the UI,
and the modules are the custom content provided by contributors.

3.2. Types of Modules

Modular content describes a set of features that use the frame-
work’s pre-defined classes and routines. Those modules can be
analysis methods, layout methods, visualisations, environments, in-
teractions, file input and output or representations. There are two
types of modules: script-based modules (Section 3.2.1) and file-
based modules (Section 3.2.2).

3.2.1. Script-Based Modules

Script-based modules make use of the provided C# abstract classes
and interfaces and typically represent methods that either alter
graphs in some way, produce analysis results, initiate interaction,
or read/write files to and from the system. The framework provides
a variety of script-based modules which give contributors plenty
of ways to enrich the framework. The Pipe abstract class is used
to translate outputs of parsers to a format that the framework can
understand. With pipes, contributors can include various parsers
to the framework to be able to load graphs from any required file
format. A pipe has only a small amount of functions to ease its us-
age for contributors. If multiple pipes for the same file format are
available, the UI will ask the analyst to choose from the different
options when trying to parse a graph of the corresponding format.
GAV-VR natively contains a reader for graphml files and csv files
as edge lists. Pipes are extensions of the file input interface, the
IReaderModule. If different reader classes are required, this inter-
face can be used to realise them. The file output is realised using
the IWriterModule and is used for storing information in the local
file system.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

133



W. Kerle-Malcharek & S. P. Feyer & F. Schreiber & K. Klein / GAV-VR

An implementation of the IWriterModule is the GraphWriter
class which can be used to implement new file formats to store
graphs. We provide a simple writer to store graphs as edge lists in
CSV format, and also for our own GAV-VR file format, see Sec-
tion 3.5. The IWriterModule is also used to store results of analysis
methods to the local file system, if required.

GAV-VR offers different movement modes. This is also a mod-
ule that can be extended by contributors through the respective in-
terface class which lets them define which controller button will
trigger which action. This mapping eases the introduction of new
movement schemes such that developers do not need to have a deep
understanding of how the used SteamVR plugin works. GAV-VR
comes with two instances for this module, which is continuous mo-
tion and one-handed flying, based on the work of Drogemuller et
al. [DCW∗18]. The movement mode can be chosen in the options
tab of the UI. If a another brand of controllers has to be supported,
the contributor can adjust the setup through the SteamVR input
plugin.

Custom Methods is a script-based module, which is used for
multi-purpose methods that are intended to be applied to graphs.
They range from visualisation manipulation of the graphs to anal-
ysis methods. We implemented a set of example functions for
this module: a version of the Ortmann-Brandes counting triangles
framework [OB14](see Fig.6), calculating the degree distribution,
finding the shortest path between two selected vertices using Dijk-
stra’s algorithm [Dij59] and animating the process, and an animated
version of the Fruchterman Reingold algorithm [FR91].

Layout Methods can be considered a special case of the custom
methods. It is a module which is applied to graphs at the last step
of the parsing pipeline to modulate their embedding in their local
space according to the implementation. GAV-VR comes with an
example of a Layout Method which maps the vertices of a graph to
a sphere.

3.2.2. File-Based Modules

File-based modules alter the representation of objects in the scene
and usually require no code writing. Unity per default realises these
representations in the form of prefab files. Those files store the val-
ues to visualise objects in a Unity scene and are used by GAV-VR,
too. Integral items to represent in the context of node-link graphs
are vertices and edges. GAV-VR allows contributors to include de-
pictions of vertices and edges as required, by including the respec-
tive prefab files in the intended directories. The framework will
recognise these files and include them in its pipeline, making them
selectable in the UI. For vertices, we added spheres and cubes with
different shaders. For edges, we added a cylindrical representation.

GAV-VR offers the possibility to view details about selected ob-
jects or graphs. This detailed information is shown in a dedicated
UI segment in the form of a scrollable list. Contributors can di-
rectly influence what is shown and how it is shown in that UI
segment with the corresponding file-based module DetailWindow.
These can either be configured to just list details as a table, or be
completely customised with pictures, logos, UI elements like but-
tons etc.. For this module, we hand out a simple table representation
of information about selected vertices and graphs. The framework

also provides labels which can hover in proximity to vertices. These
are generally considered to be used for showing vertices’ details, or
their names and are customisable, as well. We added two different
alternatives for that, either just showing the name or showing the
vertices’ name and degree.

The virtual environment the analyst is located in, is a file-based
module, too, thus can be altered by a contributor. The environ-
ment in this context means the virtual environment representation
in which an analyst is situated and the corresponding class of that
virtual environment is called Room. Our framework comes with
three different rooms. It has a small grey plane with a black back-
ground, a small room with walls that have a tiled texture (see Fig.1),
and a big white room with a blue circle in its centre (see Fig3).

3.2.3. Integrating Script-Based Modules

To integrate a script-based module, a contributor creates a new C#
file in the project’s directory, preferably in the dedicated project
folder. The C# file has to implement a class that corresponds to the
type of script-based module it is intended to extend, for example the
pipe class. The implemented abstract class requires the contributor
to define a small set of variables as well as the actual functional-
ity. The variables of the abstract class mostly consist of booleans,
which tell the system whether the method produces a report, or if
they use the Unity internal IEnumerator class. The variables can
also be strings that for example define which file extension a pipe
is supposed to recognise. The module is then available through an
automatically generated UI element (e.g. a button). The function-
ality of the module instance is executed when a user interacts with
the respective UI component (see Fig. 3).

Figure 3: The UI which contains the available custom methods.
These can be applied to a graph which has been selected. Selected
graphs appear highlighted while the others are greyed out. The ver-
tices have been coloured for better visibility.

3.2.4. Integrating File-Based Modules

The framework integrates custom objects that are stored in the de-
fined project directories. These objects are detected by the frame-
work upon start and then integrated into the UI (e.g. as drop-down
list). This design ensures a convenient way to add additional ap-
pearances of supported elements, such as vertices or edges (see Fig.
4).

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

134



W. Kerle-Malcharek & S. P. Feyer & F. Schreiber & K. Klein / GAV-VR

Figure 4: Different vertex and edge appearances in the same
graph. The vertices in this graphic have either the shape of a sphere
or the shape of a cube. The edges have a green-red colouring in
their centre, which has a higher portion coloured green if their
weight is bigger.

3.3. Visualisation

GAV-VR visualises graphs in node-link representation, consisting
of vertices and edges. These vertices are static spheres per de-
fault but can be changed to look and behave differently. Edges are
cylindrical and are adjusting their positions on demand, but can be
changed to look and behave differently, too. The embedding of a
graph can be obtained from the source files and then transformed,
or calculated in a completely different way, with or without consid-
ering the pre-implemented layout.

The elements of graphs, e.g. vertices, can be coloured indepen-
dently with dedicated colour attributes to produce mappings of dif-
ferent characteristics, such as weights for edges or vertex degrees.
The UI is realised as a floating screen with an adjustable set of
colours. The colours of it are divided into groups and can be influ-
enced by contributors. The UI has a separate log window attached,
which can optionally be used to view log output in situ to ease de-
velopment for contributors. Environments, are located at the centre
of each scene and typically consist of at least a floor to ease ori-
entation for users. The default environment has a light grey square
on the floor in its centre and a black background. The main tool
for interaction, the raycast, changes its colour depending on what it
points at: objects, UI, and everything else.

3.4. Interaction

The main interaction method for GAV-VR is the user interface.
Users have the option to either attach the UI as a smaller version to
the left controller or to let it hover as a big version in front of them.
If the "big UI" mode is selected, the UI can also be displaced to
be located in a more comfortable position. It is still attached to and
following the user. The UI is interactable by using the raycast inter-
action paradigm which is a point-and-click type of interaction (see
Fig.6) that mimics the way we typically interact with 2D interfaces.

The UI has multiple tabs like file browser, load graphs, reports,

or options which contain UI elements that can trigger specific ac-
tions e. g. buttons. The "File Browser" and "Load Graphs" tabs dis-
play graphs that have supported file formats. Further modules im-
ported by contributors will automatically appear in dedicated tabs,
like custom methods or vertex appearances which are located in a
tab for graph customisation. Further interactions include the direct
manipulation of graphs. Users can grab them with their controllers
to rotate or translate them, as well as re-scaling them. The same
holds for vertices, for example. When reaching into a graph, it will
light up to indicate that it is being interacted with. Since it can cause
problems while working with spacious graphs, GAV-VR also offers
the possibility to create a cube agent for selected graphs (see Fig.5).
Cube agents represent the graph that is currently selected and can
be grabbed instead of the actual graph to rotate, translate, or rescale
the graph itself with the same set of interactions.

Figure 5: A cuboid which is the agent for the currently selected
graph. Through hovering over it with the controller, the user can
interact with the graph through the execution of the configured grab
action. The cuboid lightens up in yellow when interacted with.

Figure 6: GAV-VR user interface (bottom). The raycast points at
a button to apply the custom method count triangles to the graph.
The detected triangles are highlighted in red.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

135



W. Kerle-Malcharek & S. P. Feyer & F. Schreiber & K. Klein / GAV-VR

3.5. Data Handling and Analysis

The majority of data traverses the core at some point. Because of
this, it has a high responsibility in terms of data validation to en-
sure that no side effects are caused through module integration. For
example, it validates the supported file extensions or the unique-
ness of graphs. The core also controls the application of changed
options. When the framework is loaded, the saved options are ap-
plied where the respective optional content has to be set. GAV-VR
offers various options to customise the analysts’ experience, such
as the dropdown for available appearances of the environment the
user is placed in or if a window with further information about se-
lected graphs will be permanently displayed. Contributors can add
new options by adding optional fields in the UIs options window
to allow further customisation of the experience in the virtual envi-
ronment. All these options can also be saved.

Additionally, saving and loading of graphs is done with the cus-
tom file format of GAV-VR: ".gavvr". The ".gavvr" file format has a
human-readable text format. It contains only basic information with
a focus on static attributes. This includes the position, colour, size
of vertices, the width and weight of edges, and more. The purpose is
to have a quickly iterable, simple-to-manipulate file format which
contains all relevant information on the basic appearance of graphs
and their content. Apart from saving and loading, graphs can also
be copied. This functionality can be found in the Graph Actions
tab and is one of the native methods which do not belong to the
modules, but are part of the core. Besides copying, a graph can be
deleted. Another useful functionality is the generation of a random
graph for testing purposes with the build-in graph generator. To
calculate graph measures (e.g. centralities) and other characteris-
tics, contributors can resort to typical data structures and attributes
of graphs and graph elements which are automatically maintained.
These include adjacency lists or the in- and out-degree of vertices.
Also, we added a Dijkstra SSSP algorithm for two selected vertices
as well as a method to count connected components.

3.6. Performance

The framework has been developed and tested with a basic VR-
ready system with an NVIDIA GeForce GTX1660 Ti graphics
card, an AMD Ryzen 5 3400G processor and 16 GB RAM on a
Windows 10 system together with an Oculus Rift S. Additionally,
it has been tested successfully with the Meta Quest 2, the Valve
Index, Varjo Aero, Varjo XR-2, and the HTC VIVE Pro 2. The
visualisation of graphs as node-link diagrams in the framework’s
current state supports two different modes - the interactive and the
non-interactive mode. In the interactive mode, all vertices can be
grabbed, dragged around, and rotated interactively (i.e. by hand).
Therefore, the graphs can actively be manipulated. This interaction
mode requires objects to execute small routines at all times which
has a toll on the performance, capping the maximum amount of ob-
jects in the scene (e.g. vertices or edges) for this hardware-minimal
setup to roughly 2,000 objects to keep the number of frames per
second (FPS) for a stereoscopic rendering above 60. The non-
interactive mode combines the meshes of all objects of a graph
if possible. Direct interaction with vertices is not possible in this
mode, but the amount of objects that can be rendered with 60+ FPS

in this setup is increased to approximately 20,000. Better hardware
will provide corresponding improvements in performance.

3.7. Licensing

The framework is licensed under GNU Affero General Public Li-
cense V3, which allows free usage of the whole software as long as
it is non-commercial. This holds for the framework’s "as-is" state
and does not include the different modular contents that can be
added in the future.

4. Use Cases and Benefits

GAV-VR’s use cases naturally have different manifestations, de-
pending on which user role they refer to. Analysts face use cases
where they do not add content to the framework. This includes but
is not limited to, the exploration of a graph or answering questions
in the form of a study where the questions refer to the graph(s) or
the form of navigation of a user. A contributor’s use cases focus
on the addition of new modular content, the adaptation of existing
content, or configuring the frameworks’ environment for a partic-
ular use. Such cases could be the deployment of new ways how to
navigate through the scene and new methods that analyse or alter
graphs or representations of objects in the scene.

4.1. Graph Exploration

A basic use case of GAV-VR is that an analyst explores a graph
or investigates how an algorithm impacts the layout of a graph. To
explore a graph, the analyst uses the UI to open the file browser
and selects the graph in question. After selecting the graph, the
analyst parses the graph with the corresponding button. Once the
graph is parsed, the graph is rendered into the scene. The analyst is
interested to see the vertices with the highest degrees in the graph.
First, the analyst activates the vertex labels, to see the names of the
vertices. Then, the analyst applies a custom method which layouts
the graph so that the higher degree vertices are more in the centre of
the graph, while the lower degree vertices are pushed outside. Since
the analyst is facing a high-density graph the analyst now initiates
a degree-based colour mapping with random colours. While this is
in process, the analyst wants to compare the result with an actual
heat map which is based on colours. Therefore, the analyst creates
a copy of the graph and places it next to its original. Then, the
analyst applies a heat map colouring to the copy (see Fig.7). The
analyst is now able to compare both graphs visually but decides
that due to their high density, that the graphs have to be re-scaled.
The analyst puts a controller into the graph and pushes a button
on the controller to resize the graphs. Finally, the analyst has two
graphs with an identical layout and up-scaled, with different colour
mappings, both showing the desired outcome.

4.2. Developing Graph Algorithms

A researcher is about to develop a novel method to layout a graph
in 3D space. For a better understanding of the algorithm, the re-
searcher uses GAV-VR to visualise how the layout evolves over
time. To do so, the researcher uses the custom method module. The
researcher (who is now a contributor) opens the project, navigates

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

136



W. Kerle-Malcharek & S. P. Feyer & F. Schreiber & K. Klein / GAV-VR

Figure 7: Two graphs are rendered next to each other to compare
them. The right graph has a colour mapping ranging from red to
green to indicate the degree of centrality.

to the respective folder and creates a new C# file. In this file, the
researcher implements the CustomMethod abstract class. This re-
quires the researcher to set variables, which specify if the method
is shown and usable in the UI, if a report of the outcome should
be created, how such a report should look like, and if the method
is supposed to make use of the IEnumerator class of Unity, to al-
low an execution over time. The researcher decides, that no report
is needed but an execution over time is required to be able to see
the visualisation of the algorithm. After the researcher has finished
the first version of the method, the researcher starts the system and
tries the new method. The researcher (now in the role of an analyst)
parses and places a graph which seems well-suited for testing pur-
poses. Then, the researcher selects the graph and navigates to the
Custom Methods panel which automatically has the new method in-
tegrated and triggers the execution of the new method (see Fig. 6).
The researcher observes how the algorithm alternates the graph,
which provides valuable insights for further developing of the al-
gorithm. After several iterations the researcher shares the newly
developed algorithm with a colleague by sending the C# file to that
colleague, who can just paste it into the project and use it on own
graphs.

4.3. Studies on Graphs in VR

Due to its high extensibility, GAV-VR is predestined to be used
for studies on graphs in virtual reality. GAV-VR’s wide range of
module types allows high customisation of the framework, facil-
itating an extensive range of studies to conduct: impact of visual
elements like the virtual environment, vertex and edge appearance,
or comparison of layout methods, analysis methods or navigation
methods.

As example, in 2022 an experiment was conducted with GAV-
VR to investigate the effectiveness of 2D, 2.5D, and 3D layer ar-
rangements of multilayer networks (a graph where the vertices are

located on layers) [MRA∗21] in stereoscopic virtual reality set-
tings, see Figure 8. This work has been published in IEEE Transac-
tions on Visualization & Computer Graphics in 2023 [FPK∗23a].

Prior to the experiment, graphs were externally generated in the
graphml file format. Layers were contained as parent vertices for all
vertices which are part of that layer. The IReaderModule read the
graph from the file system and the corresponding pipe (see Section
3.2.1) module was then written to process these graph files. For the
parsing process, the framework has been configured to use a layout
method module which only re-scales the graph as the layout has
already been calculated and integrated into the graphml file. Cus-
tomised vertices and edges were provided by file-based modules.
For instance, the edges between layers were coloured in yellow.
Regarding the virtual environment, a custom 5x5 meters dark blue
room was added via a file-based module. Routines for enclosing
single layers in grey transparent boxes have been added as well as
annotations of those layers with letters. Furthermore, a panel was
added to a wall of the virtual environment to navigate through the
experiment. On the panel, the current task was displayed, the ren-
dering of the graph could be initiated, and the solution to the task
was captured. The measurements of the experiment were logged
and stored to the file system. To avoid unintentional interactions
with the framework, the controller-based movement was disabled
and the UI was hidden. Only pointing with the ray-cast, pressing
GUI buttons and navigating through body motion were allowed.
GAV-VR proved to be a suitable tool for conducting experiments
for graphs in virtual reality in this experiment.

Figure 8: Study on multilayer network visualisations in VR. GAV-
VR is extended by a panel at the wall to guide through the study,
a custom room, layers as substructures of a graph including layer
labels, specialised parser and pipes translated the multilayer net-
work into the virtual environment

4.4. Benefits for Research

As described in Section 4.3, GAV-VR leads to a novel approach
towards designing virtual spaces for studies, since researchers are
spared the implementation and design of those to a considerable ex-
tent. In the field of S3D research, this can help in numerous applica-
tions, such as evaluating navigation techniques in VR. Drogemuller
et al. [DCW∗18] who evaluated different navigation paradigms,
could have used GAV-VR as their foundation and expanded on it

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

137



W. Kerle-Malcharek & S. P. Feyer & F. Schreiber & K. Klein / GAV-VR

by including their navigation paradigms and some of their own vi-
sualisations. Works like from Joos et al. [JJS∗22] who investigated
different information encodings in the form of networks could have
benefitted from the possibility of including such encodings, without
the need to design a whole graph structure, interaction or the envi-
ronment. Other, more complex works like VRNetzer or CellexalVR
[PMI∗21, LRL∗21], which support visualisation and analysis tasks
on networks, could have benefitted from the possibility to prototype
their ideas or use some of the core architecture to structure their net-
works and modules. Further exemplary fields which could benefit
from our framework are the visualisation of interaction networks
in the field of collective behaviour, researching user interfaces in
3D, how multi-modal representation impacts data understanding, or
whether a problem which traditionally requires spatial information,
such as molecular interactions, can be analysed more efficiently in
VR.

5. Conclusion and Future Work

GAV-VR is designed as a framework that aims to remove the bar-
riers for researchers to implement and perform graph visualisation
and run graphs analysis algorithms in a customised VR environ-
ment. The design supports using the framework without program-
ming as well as extending it to create an environment which fits
specific needs connected to a research question. The architecture
has a modular design in a plug-and-play fashion to allow further
implementations to extend existing functionality. The modularity
is realised with abstract classes and Unity’s prefabs. To automati-
cally integrate new methods into the framework as interactable UI
components, those methods have to implement the respective ab-
stract classes and to meet a small set of requirements. The prefabs
are prefabricated objects which only have to be placed in the re-
spective project folders to be available. Entire digital rooms can be
built and different navigation concepts can also be integrated and
provided as options to existing modules, which yields the potential
to enable contributors to exchange implementations they made by
simply sharing one file.

Since we intend to maintain GAV-VR as a long-term develop-
ment we also plan to integrate contributions by the community into
the main version of the framework. As an extension to that, we
plan to provide further instances of our modules as well as new
module types together with exemplary implementations. Such new
modules will be alternative representations for graphs, for exam-
ple. Furthermore, we plan to improve the performance with respect
to the framerate as well as the usability from the perspective of
developers and analysts. To improve the usability, input from the
community will be collected in the form of a usability study, since
such a study is currently missing for GAV-VR.

Additionally, we plan to integrate further features, such as sup-
port to conduct studies with GAV-VR on e. g. visualisation meth-
ods. The study support will come in the form of customisable and
interactive UI elements, which can be used to use file I/O to upload
question sheets and save answer sheets where answers can be con-
nected to the UI or to objects in the virtual environment. The seam-
less integration of the Open Graph Drawing Framework [CGJ∗13]
as a source for graph and layout algorithms is planned, too.

Lastly, we plan on supporting multiple users in one session to

allow for collaborative graph analysis or multi-user studies either
co-located or completely remote.

GAV-VR still has room for improvement, as this is the nature of
such a framework. But still, the existing features provide a strong
baseline for quickly building a range of different environments to
test an idea, investigate a graph or even conduct a study. This makes
GAV-VR a multipurpose tool to ease graph analysis and visualisa-
tion in virtual reality which we gladly want to share with the VR
community.

Supplemental Materials

All supplemental materials are released under the GNU AGPL V3
license and can be accessed at Zenodo https://doi.org/10.
5281/zenodo.8289512 (version 2) for the persistent submis-
sion version. We provide the full documentation, an open-source
project version and a ready-to-use build version.

Acknowledgments

We acknowledge funding by DFG, under Germany’s Excel-
lence Strategy – EXC 2117 – 422037984, and DFG project ID
251654672 – TRR 161

References

[AAB∗17] AUBER D., ARCHAMBAULT D., BOURQUI R., DELEST M.,
DUBOIS J., LAMBERT A., MARY P., MATHIAUT M., MELANÇON G.,
PINAUD B., RENOUST B., VALLET J.: TULIP 5. In Encyclopedia of So-
cial Network Analysis and Mining, Alhajj R., Rokne J., (Eds.). Springer,
2017, pp. 1–28. URL: https://hal.science/hal-01654518.
2

[BHJ09] BASTIAN M., HEYMANN S., JACOMY M.: Gephi: an open
source software for exploring and manipulating networks. In Proc. In-
ternat. AAAI Conference on Web and Social Media (2009), vol. 3(1),
pp. 361–362. 2

[BVD19] BÜSCHEL W., VOGT S., DACHSELT R.: Augmented reality
graph visualizations. IEEE Computer Graphics and Applications 39, 3
(2019), 29–40. 2

[CDK∗16] CORDEIL M., DWYER T., KLEIN K., LAHA B., MARRIOTT
K., THOMAS B. H.: Immersive collaborative analysis of network con-
nectivity: CAVE-style or head-mounted display? IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2016), 441–450. 2

[CGJ∗13] CHIMANI M., GUTWENGER C., JÜNGER M., KLAU G. W.,
KLEIN K., MUTZEL P.: The Open Graph Drawing Framework (OGDF).
In Handbook on Graph Drawing and Visualization, Tamassia R., (Ed.).
Chapman and Hall/CRC, 2013, pp. 543–569. 2, 8

[DCW∗18] DROGEMULLER A., CUNNINGHAM A., WALSH J.,
CORDEIL M., ROSS W., THOMAS B.: Evaluating navigation
techniques for 3D graph visualizations in virtual reality. In Proc. Inter-
nat. Symp. Big Data Visual and Immersive Analytics (BDVA) (2018). 2,
4, 7

[Dij59] DIJKSTRA E. W.: A note on two problems in connexion with
graphs. Numerische mathematik 1, 1 (1959), 269–271. 4

[EGK∗02] ELLSON J., GANSNER E., KOUTSOFIOS L., NORTH S. C.,
WOODHULL G.: Graphviz—open source graph drawing tools. In
Proc. Graph Drawing (GD 2001) (2002), Springer, pp. 483–484. 2

[Epi19] EPIC GAMES: Unreal Engine, 2019. last accessed 2023-04-25.
URL: https://www.unrealengine.com. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

138

https://doi.org/10.5281/zenodo.8289512
https://doi.org/10.5281/zenodo.8289512
https://hal.science/hal-01654518
https://www.unrealengine.com


W. Kerle-Malcharek & S. P. Feyer & F. Schreiber & K. Klein / GAV-VR

[FHP∗22] FREEMAN T. C., HORSEWELL S., PATIR A., HARLING-LEE
J., REGAN T., SHIH B. B., PRENDERGAST J., HUME D. A., ANGUS
T.: Graphia: A platform for the graph-based visualisation and analysis
of high dimensional data. PLoS Computational Biology 18, 7 (2022),
e1010310. 2

[FPK∗23a] FEYER S. P., PINAUD B., KOBOUROV S., BRICH N.,
KRONE M., KERREN A., BEHRISCH M., SCHREIBER F., KLEIN K.:
2d, 2.5d, or 3d? an exploratory study on multilayer network visualisa-
tions in virtual reality. IEEE Transactions on Visualization and Computer
Graphics (2023), 1–11. doi:10.1109/TVCG.2023.3327402. 7

[FPK∗23b] FEYER S. P., PINAUD B., KOBOUROV S. G., BRICH N.,
KRONE M., KERREN A., BEHRISCH M., SCHREIBER F., KLEIN K.:
2D, 2.5D, or 3D? an exploratory study on multilayer network visualisa-
tions in virtual reality. IEEE Transactions on Visualization & Computer
Graphics, 01 (2023), 1–11. doi:10.1109/TVCG.2023.3327402.
2

[FR91] FRUCHTERMAN T. M., REINGOLD E. M.: Graph drawing by
force-directed placement. Software: Practice and Experience 21, 11
(1991), 1129–1164. 4

[GPK12] GREFFARD N., PICAROUGNE F., KUNTZ P.: Visual commu-
nity detection: An evaluation of 2D, 3D perspective and 3D stereoscopic
displays. In Proc. Graph Drawing (GD 2011) (2012), pp. 215–225. 2

[HPY23] HUANG H. H., PFISTER H., YANG Y.: Is embodied interaction
beneficial? a study on navigating network visualizations. Proc. Informa-
tion Visualization (2023), 14738716231157082. first published online.
2

[JJS∗22] JOOS L., JAEGER-HONZ S., SCHREIBER F., KEIM D. A.,
KLEIN K.: Visual comparison of networks in VR. IEEE Transaction
on Visualization and Computer Graphics 28, 11 (2022), 3651–3661. 2,
8

[JKS06] JUNKER B. H., KLUKAS C., SCHREIBER F.: Vanted: a system
for advanced data analysis and visualization in the context of biological
networks. BMC Bioinformatics 7, 1 (2006), 1–13. 2

[KEK∗21] KUZNETSOV M., ELOR A., KURNIAWAN S., BOSWORTH
C., ROSEN Y., HEYER N., TEODORESCU M., PATEN B., HAUSSLER
D.: The immersive graph genome explorer: navigating genomics in im-
mersive virtual reality. In Proc. IEEE Intl. Conf. on Serious Games and
Applications for Health (SeGAH) (2021), pp. 1–8. 2

[KFS∗22] KRAUS M., FUCHS J., SOMMER B., KLEIN K., ENGELKE
U., KEIM D. A., SCHREIBER F.: Immersive analytics with abstract 3D
visualizations: A survey. Computer Graphics Forum 41, 1 (2022), 201–
229. 2

[KMFKS23] KERLE-MALCHAREK W., FEYER S. P., KLEIN K.,
SCHREIBER F.: GAV-VR: an extensible framework for graph analysis
and visualisation, 2023. doi:10.5281/zenodo.8289512. 2

[KS14] KERREN A., SCHREIBER F.: Why Integrate InfoVis and SciVis?
An Example from Systems Biology. IEEE Computer Graphics and Ap-
plications 34, 6 (2014), 69–73. 2

[LRL∗21] LEGETTH O., RODHE J., LANG S., DHAPOLA P., WAL-
LERGÅRD M., SONEJI S.: CellexalVR: A virtual reality platform to
visualize and analyze single-cell omics data. iScience 24, 11 (2021),
103251. 2, 8

[MRA∗21] MCGEE F., RENOUST B., ARCHAMBAULT D., GHONIEM
M., KERREN A., PINAUD B., POHL M., OTJACQUES B., MELANÇON
G., VON LANDESBERGER T.: Visual Analysis of Multilayer Net-
works. Morgan & Claypool Publishers, 2021. doi:10.2200/
S01094ED1V01Y202104VIS012. 7

[OB14] ORTMANN M., BRANDES U.: Triangle listing algorithms: Back
from the diversion. In 2014 Proc. Sixteenth Workshop on Algorithm En-
gineering and Experiments (ALENEX) (2014), pp. 1–8. 4

[PMI∗21] PIRCH S., MÜLLER F., IOFINOVA E., PAZMANDI J., HÜT-
TER C. V. R., CHIETTINI M., SIN C., BOZTUG K., PODKOSOVA I.,
KAUFMANN H., MENCHE J.: The VRNetzer platform enables interac-
tive network analysis in Virtual Reality. Nature Communications 12, 1
(2021). 2, 8

[RM20] ROSSI L., MAXIM L.: Multilayer network exploration tool
in virtual reality, 2020. URL: http://leonardmaxim.com/
mnetvr/index.html. 2

[SAK∗21] SORGER J., ARLEO A., KÁN P., KNECHT W., WALDNER
M.: Egocentric network exploration for immersive analytics. Computer
Graphics Forum 40, 7 (2021), 241–252. 2

[SKA22] SCHRÖDER K., KOHL S., AJDADILISH B.: Netimmerse - eval-
uating user experience in immersive network exploration. In Digital
Human Modeling and Applications in Health, Safety, Ergonomics and
Risk Management. Health, Operations Management, and Design (2022),
Duffy V. G., (Ed.), Springer, pp. 391–403. 2

[SMO∗03] SHANNON P., MARKIEL A., OZIER O., BALIGA N. S.,
WANG J. T., RAMAGE D., AMIN N., SCHWIKOWSKI B., IDEKER T.:
Cytoscape: a software environment for integrated models of biomolecu-
lar interaction networks. Genome Research 13, 11 (2003), 2498–2504.
2

[SS17] SOMMER B., SCHREIBER F.: Integration and virtual reality ex-
ploration of biomedical data with CmPI and VANTED. it – Information
Technology 59, 4 (2017), 181–190. 2

[SWKA19] SORGER J., WALDNER M., KNECHT W., ARLEO A.: Im-
mersive analytics of large dynamic networks via overview and detail nav-
igation. In Proc. IEEE Internat. Conf. on Artificial Intelligence and Vir-
tual Reality (AIVR) (2019), pp. 144–1447. 2

[VSVDZS∗10] VAN SCHOOTEN B. W., VAN DIJK E. M., ZUDILOVA-
SEINSTRA E., SUINESIAPUTRA A., REIBER J. H.: The effect of stere-
oscopy and motion cues on 3D interpretation task performance. In
Proc. Internat. Conf. on Advanced Visual Interfaces (2010), pp. 167–
170. 2

[WF94] WARE C., FRANCK G.: Viewing a graph in a virtual reality
display is three times as good as a 2D diagram. In Proc. IEEE Symposium
on Visual Languages (1994), IEEE, pp. 182–183. 2

[WM05] WARE C., MITCHELL P.: Reevaluating stereo and motion cues
for visualizing graphs in three dimensions. In Proc. Symposium on Ap-
plied Perception in Graphics and Visualization (2005), pp. 51–58. 2

[WML94] WICKENS C. D., MERWIN D. H., LIN E. L.: Implications
of graphics enhancements for the visualization of scientific data: Dimen-
sional integrality, stereopsis, motion, and mesh. Human Factors 36, 1
(1994), 44–61. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

139

https://doi.org/10.1109/TVCG.2023.3327402
https://doi.org/10.1109/TVCG.2023.3327402
https://doi.org/10.5281/zenodo.8289512
https://doi.org/10.2200/S01094ED1V01Y202104VIS012
https://doi.org/10.2200/S01094ED1V01Y202104VIS012
http://leonardmaxim.com/mnetvr/index.html
http://leonardmaxim.com/mnetvr/index.html



