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Abstract
Along with advances in video technology in recent years, there is an increasing need for adding tactile sensation to it. Many

researches on models for estimating appropriate tactile information from images and sounds contained in videos have been
reported. In this paper, we propose a method named VibVid that uses machine learning for estimating the tactile signal from
video with audio that can deal with the kind of video where video and tactile information are not so obviously related. As an
example, we evaluated by estimating and imparting the vibration transmitted to the tennis racket from the first-person view
video of tennis. As a result, the waveform generated by VibVid was almost in line with the actual vibration waveform. Then we
conducted a subject experiment including 20 participants, and it showed good results in four evaluation criteria of harmony,
fun, immersiveness, and realism etc.

CCS Concepts
•Human-centered computing → Haptic devices; •Theory of computation → Models of learning; •Hardware → Haptic
devices;

1. Introduction

Due to recent developments in video cameras and the emergence
of VR technology, various images and videos have been widely
spread. In particular, first-person view videos taken with small ac-
tion cameras [gop] or omnidirectional images supposed to be seen
with HMD (Head Mount Display) enables to follow another per-
son’s experience. Adding tactile stimulus to such videos makes a
viewing experience more immersive and realistic. There are already
many reports that the results of subject experiments improved by
actually adding tactile sensation to the videos [DFC∗12].

An emerging challenge under such a background is to create the
haptic signal from the recorded video automatically. In the previous
research of [GNKT17], an attempt to automatically generate tactile
signals from first-person view videos on a ride was conducted. This
is a system that estimates the speed and acceleration of the vehicle
itself and reproduces the vibration stimulus from the vehicle to the
hand holding a handle.

In this research, we extend the tactile stimulus reproduction from
video and sound into a case where the relationships between videos
and appropriate tactile stimulus are not so obvious as in the case of
the above [GNKT17]. As an example, we focus on the shot feeling
at tennis. We, in advance, learn the relation among video, sound,
and the acceleration data of tennis racket by applying the latest ma-
chine learning tools. Then, by using the model learned from such
datas, we produce shot feelings at tennis matching the situation
only from video and audio. Since we adopts a machine learning
to generate vibration estimation model, that is, we have no assump-

tions about vibration reproduction of tennis, it can be applied to
other kinds of videos.

2. Related Works

As mentioned in the previous section, it is reported that the quality
of experience is improved by adding appropriate tactile stimuli to
music or videos [HC14] [DFC∗12].

There are some methods for generating tactile vibrations from
image frames only. Kim et al. proposed a system in which a char-
acteristic place in an image frame can be felt on user’s back using
nine transducers spatially arranged in 3×3 [KLC12]. It can be ap-
plied not only to artificial images but also to natural images, and
it was reported that the results of questionnaires were improved
in a subject experiment. Also, Gongora et al. proposed a method
of estimating the motion of the camera horizontally and vertically
based on the phase correlation of the continuous image frames, and
converting them into vibratory stimulations [GNKT17]. The model
converts vertical motion into vertical shock vibration and horizon-
tal motion into steady vibration moving left and right. It enhances
the fitness of the model to videos by limiting the target of the model
to the first-person view videos on the vehicle such as ski, bike, and
bicycle.

As a method of converting to the vibration by using the sound
included in the video, Lee et al. proposed a method using the two
values of the sound, loudness and roughness [LC13]. This method
converts these two numerical values to the intensity and roughness
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Figure 1: System overview.

of vibration stimuli. The model shows particularly good results in
games that emit specific strong sounds. But when the video con-
tains rough sounds such as rock music or people’s voice, this model
might create undesired vibrations. These problems can be consid-
ered as limitations in the tactile estimation method based only on
sound.

All of these conventional methods were proposals and stud-
ies based on heuristically designed model without using machine
learning.

3. System Overview

The outline of the proposed system is shown in Figure 1. We use
actually measured acceleration data to create the model. Image
frames are recorded with a video camera, and sound and accel-
eration data are recorded with a linear PCM (Pulse-Code Modula-
tion) recorder. Those image frames, sound, and acceleration data
are synchronized later. Next, we create a model that estimates vi-
brations (acceleration data) from image frames and sounds. Before
the estimation, we downsample the image frames in order to reduce
the computational load, convert sounds and acceleration data to the
frequency domain using STFT (Short Time Fourier Transform) to
extract the feature at certain short time. In order to treat informa-
tion by image and sound equally, the sound data is divided with the
time corresponding to one image frame as one block.

3.1. Recording Acceleration Data

As mentioned above, it is necessary to measure the acceleration
data together with the video in this method. There mainly two
requests for recording this acceleration data. The first is that the
recording device should be compact and wearable to avoid offend-
ing natural actions. The other is to have a sufficient sampling fre-
quency. Generally, it is said that the frequency of tactile vibration
that human can feel strongly enough is about 300 Hz or less, but it
is recently reported that a sufficient refresh rate more than that is
necessary to present various tactile stimuli such as hardness. Aka-
hane et al. reported that a refresh rate of about 10k Hz is necessary
to present rich tactile stimuli [AHKS05].

Figure 2: Circuit diagram for recording acceleration and sound
data.

Therefore, in order to record acceleration data at a high frame
rate, we use an analog output accelerometer and an audio recorder
(linear PCM recorder). The circuit diagram is shown in Figure 2.
In this circuit, a low pass filter for noise reduction, a capacitor for
cutting the plug-in power voltage of the recording equipment, and
an amplifier to obtain a zero average signal are integrated. Also, in
order to perform wearable measurement, all the power is supplied
with button batteries. By mounting the circuit board which is shown
in gray in the Figure 2 in a wearable form such as a wristband, the
player can record acceleration and sound while moving actively.
The accelerometer circuit board and the wearable (supposed to be
mounted on the player’s body) circuit board are connected with two
pole shielded wire, and the wearable circuit board and the sound
terminal are connected with one pole shielded wire and one RCA
pin plug. Since linear PCM recorder can record stereo sounds, one
side is used for recording acceleration data and the other side is for
recording sound by using monaural microphone. With this configu-
ration, acceleration and sound recording are performed simultane-
ously.

3.2. Synchronization of Sound, Acceleration, and Image
Frames

Since video and sound, acceleration data are separately recorded in
this method, the synchronization is necessary. We can assume that
the sound and acceleration data are synchronized because they are
simultaneously recorded by a linear PCM recorder. Therefore, we
synchronize sound and the image frame here. As shown in Figure 3,
we use two conductive metal rods and a LED. A circuit is fabricated
so that the LED emits light by contacting the bars with each other.
Collision sound is detected from the recorded sound data, and LED
light is detected from the image frame taken by the video camera.
By making the detected metallic sound and the light from a LED at
the same time, we can correct the deviation at the start of recording
and synchronize all the measured data.
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Figure 3: Synchronization method overview.

3.3. Estimation by Neural Network

In this method, we incorporate recorded sound, acceleration and
image frames into machine learning inputs and labels in order to
generate the acceleration estimation model. Therefore, a neural net-
work is constructed whose inputs are sound data and image frames,
and the output or the label is a corresponding acceleration. The out-
line of the proposed neural network is shown in Figure 4. For sound
data, Fourier transform of audio samples for one image-frame time
is used as the input of one block. Image data is downsampled into
32 × 32pixels square before being used for the input [TFF08a].
Since we used Fourier transform of acceleration data within a time
corresponding to one image frame in the frequency domain as the
label, those outputted by this model were also in frequency domain.
Therefore, it is necessary to convert the outputted acceleration back
to the time domain, which will be described later.

We propose two methods of model generation in this paper,
Sound-image method and Sound-only method. In Sound-image
method we use both sound data and image data for the inputs, and
in Sound-only method we use only only sound data for the inputs.
Since images and sounds are different in both the number of data
and the amount of information, as shown in Figure 4, convolution
layers and max pooling layers are added for image inputs, and the
sound inputs are added later from multilayer perceptron to the neu-
ral network. By dividing the inputs like this, it is possible to re-
duce the enormous amount of information of the image to only the
necessary feature quantity effectively [TFF08b]. In the Sound-only
method, only the portion shown in yellow in Figure 4 is used.

We use the sounds and image frames in a time range wider (or
the same) than one block which corresponds to one image frame to
estimate acceleration in one block. Then as shown in Figure 4, the
inputs include N blocks in time of sounds and image frames, and
the output acceleration always includes one block in time (just the
middle timing of the inputs of N blocks).

The back propagation method is used to advance learning of
this neural network [MKB∗10], and we use Adam as an opti-
mizer [KB14] in this paper.

3.4. Conversion to Time Domain Waveform

What is estimated by the model is the power spectrum of the short-
time acceleration data. Therefore, as shown in Figure 4, it is nec-

essary to convert the output result into the time domain. Suppose a
one-dimensional vector

v = (v1,v2, · · ·vi, · · ·vM) (1)

represents the power spectrum of the acceleration data for dis-
crete frequency,

fi = ∆ f i. (2)

In the proposed method, the time domain signal was created from
v as

V (t) =
M

∑
i=0

vi × sin(2π fit) (3)

neglecting the phase information. In the experiment, we set the
maximum frequency fM = 1080Hz where ∆ f = 120Hz.

4. Implementation

Figure 5 shows the prototypes of acceleration, video and sound
recording devices. By mounting the circuit on the wristband as
shown in A, B and C in Figure 5, the photographer is able to record
acceleration simultaneously with active movements. This time we
measured and reproduced the vibration transmitted to the tennis
racket. The attachment of the accelerometer to the racket is shown
in Figure 5 D, and the implementation for presenting vibration to
the racket is shown in Figure 5 E.

This time ADXL001-70 (ANALOG DEVICES) is used for the
accelerometer, and MM3C-LF (TactileLabs) is used as an vibrator
to present vibrotactile stimuli to a person holding the grip. GoPro
HERO5 Session (Woodman Labs) was used for the video camera,
and LS-P2 (Olympus) was used as a linear PCM recorder for sound
and acceleration recording

5. Experiment and Results

In order to evaluate the model generated by this method, we actu-
ally recorded a first-person view video of playing tennis and con-
ducted an evaluation experiment on the reproduction of vibration.
Evaluation experiments include the evaluation by reproducing the
waveform and the evaluation by questionnaire when presenting the
estimated vibrotactile stimuli to the subject.

A person hitting a ball and concurrently a photographer wore the
devices as shown in Figure 6 A. The video taken at this time was
1280 × 720 pixels, 120 fps, and lasted for about two minutes. It
included only forehand strokes, and the ball type was three kinds,
top spin, slice, and lob shots. About ten seconds (all top spin) of
this video was left for testing, and the other parts was used for the
learning of the model.
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Figure 4: Neural network overview. In the sound-only method, we used the part of the neural network shown in yellow. N in the figure
represents the number of frames we use for the input of the model.

Figure 5: A, B, C: acceleration circuit board implemented on a
wristband, D: accelerometer on a tennis racket, and E: vibrator on
a tennis racket grip.

Figure 6: A: a picture of wearing devices to record image frames,
sounds, and accelerations in tennis, and B: a subject during the
experiment.

5.1. Vibration Reproduction

We applied the above video to the proposed method and learned the
estimation model. Figure 7 and Figure 8 shows the learning curve
during learning acceleration data in sound-only method and in
sound-image method. The vertical axis represents the mean squared
error, and the horizontal axis represents the epoch number. The blue
line shows the error of the video used for learning, and the green
line shows the error of the other part in the video for a verification
of learning result. The part used for learning contains about 134
seconds, and the part used for the verification (not used for learn-
ing) contains about 9 seconds.

In both figures, since the video for testing is shorter than that
for training, the variation of error for each epoch of the video for
testing looks large. However, in the two lines appears to be de-
scending in the same way. Similarly in both the sound-only method

Figure 7: Learning curve in Sound-only method.

Figure 8: Learning curve in sound-image method.

and the sound-image method, the error value converges to about
1.0 × 10−6, but these stabilities look different. It seems that the
error converges more stably in sound-image method than in sound-
only method.

The results of rendered wave forms of the acceleration data by
the learning are shown in Figure 9 and Figure 10. The video for
these estimation uses the part not used for learning. First, the black
line shows the actual (measured) acceleration data. Next, the gray
line indicates the restored data by Eq.(2) from the power spectrum
of the measured data (the wave’s phase information is lost for each
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block as mentioned in previous section). The blue line represents
the recorded raw sound data. The remaining four are estimated
wave forms. The yellow and the green one are estimated by sound-
only method, and the orange and the red one are by sound-image
method. The yellow and the orange one are the results of 10 epochs
of the learning, and the green and the red one are of 40 epochs of
the learning.

From the Figure 9, in the recorded sound (blue line), it seems that
small waves like some noises when compared with the spike waves
are larger than the others. This is conceivable to be due to the fact
that sound waves are recorded by a linear PCM recorder up to high
frequency bands such as human voices and wind sounds, whereas
the acceleration sensor cannot record vibrations whose frequency
is too high.

As for the learning, when comparing the results at 10 epochs
(yellow and orange lines) and the results at 40 epochs (green and
red lines) for both of the two estimation methods, it seems that
the attenuation of the wave is better reproduced at the time of 40
epochs.

From the Figure 10, the start timing of the spike seems to be
slightly earlier in the recorded acceleration and sound (black and
blue line) than the other five. This is due to the fact that the phase in-
formation within one block is discarded when performing a Fourier
transform for each one block.

Also, it is particularly noticeable around t = 0.3 in Figure 10 that
the continuity of waves seen at actual acceleration was lost in the
estimation result, because this method can not guarantee continuity
of waves of each block in waveform generation.

The influence of these differences on people’s senses will need
to be verified by the subject experiments.

5.2. User Experiment

In order to evaluate vibrations estimated by this method as human
senses, the following subject experiment was conducted.

5.2.1. Experiment Overview

20 persons participated in the experiment, and their information is
shown in Table 1. Each participant was paid about 5 USD.

We assigned five vibrations from seven shown in Figure 9 or
Figure 10 to the video. In the experiment, subjects firstly watched
videos with a display and a headphone while being presented the
vibrotactile stimuli as shown in Figure 6 B. The videos has 20 com-
binations of the above-described five kinds of vibrations (real, real-
converted, sound-image method, sound-only method, and recorded
sound) and four scenes (top spin shots NOT used for learning, top
spin shots used for learning, slice shots used for learning, and lob
shots used for learning), and the order was randomized for each
participant. Before watching 20 videos for the experiment, sub-
jects watched five videos including all the vibration patterns as a
practice. After watching each video, the subject answered the fol-
lowing questionnaire: Harmony-“Did the vibrations match to the
video?”; Fun / Satisfaction-“Did the vibrations makes the video
fun?”; Immersiveness-“Did the vibrations help you be immersed

Table 1: Subject’s information

ID Sex Age Tennis experience Dominant hand
A Female 24 None Right
B Male 23 None Right
C Female 20 None Right
D Male 26 2 years Right
E Male 20 1- year Right
F Female 20 None Right
G Male 23 5+ years Right
H Male 23 None Right
I Male 21 None Right
J Male 24 5+ years Right
K Male 23 5+ years Right
L Male 24 None Right
M Female 23 5+ years Right
N Female 21 1- year Right
O Male 24 5+ years Right
P Male 24 5+ years Right
Q Male 23 5+ years Right
R Male 22 None Right
S Male 25 3 years Right
T Female 21 3 years Right

in the video?”; Comfortableness / Fatigue-“Did the vibrations feel
comfortable to enjoy the video?”; and Realism-“Did the vibrations
played back with the video seem consistent with your real-world
experiences?” To answer these questions, we adopted a method of
having an answer from the position in the straight line segment,
and thereby obtained a continuous value. The opposite expressions
were labeled on both ends of the line segment. For example, there
was“very comfortable” at the right end of the line segment, “very
uncomfortable” at the left for comfortableness.

5.2.2. Results

The average of the evaluation points of 20 subjects and their stan-
dard errors are shown in Figure 11, 12, 13, 14. In addition, mul-
tiple comparison was performed by Tucky’s HSD tests, and signif-
icant parts were marked with “*” at the 5% significance level, and
“**” at the 1% significance level. The two horizontal lines in the
upper and lower parts in the graph indicate the positions of both
ends that were the range of the answer, and one horizontal line in
the middle indicates the middle of the line segment (the answer
sheet).

First, when comparing Figure 11 and Figure 12, the results of top
spin shots, there was hardly any difference between the video used
for learning and the remaining video. In the video of top spin, the
evaluation of the real-converted vibration tends to be the highest in
almost all results, and the vibrations generated by our method were
then the second most favorable. Finally, the evaluation of recorded
sound was the lowest. Also, the three vibrations of real-converted,
sound-image method, and sound-only method did not show a sig-
nificant difference from the case where truly measured (real) vibra-
tion was presented.

In the results of the slice shots in Figure 13, they were
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Figure 9: Results of acceleration wave forms estimated by the system.
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Figure 10: Enlarged view of a single shot waveform for each method.
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not significantly different among the four methods of real, real-
converted, sound-image method, and sound-only method. The re-
sult of recorded sound (vibration following the recorded sound
data) was significantly low similarly as the case of topspin.

As common features in Figure 11, 12, and 13, there was no
significant difference among the five vibration patterns with the in-
dex of “Comfortableness”, but in the other indices, the evaluation
of recorded sound was statistically significantly lower.

Looking at the results of lob shots in Figure 14, unlike other
results, the evaluation of recorded sound was significantly lower in
all indices including Comfortableness.

6. Discussion and Future Work

In the reproduction of the tennis vibration waveform, it can be said
that we could estimate the result that is close to the measured value
by this method if the generated waveform is visually evaluated.
However, the problem of wave discontinuity for each block also re-
mains. So there is a possibility that the component of the frequency
derived from the frame rate of the video influences the generated
waveform. As a solution to this problem, we can mainly think of
two. One is to match the amplitude position (and its derivative) of
the waveform of each block, and the other is to add estimation re-
sults over multiple blocks through window functions while shifting
them one by one. However in the latter case, if the Fourier trans-
form of a long section is performed with the method of missing the
phase information, it is conceivable that the deviation of the tim-
ing of a peak wave becomes large. Therefore, when Fourier trans-
form is performed with a block of a longer time interval, there is a
possibility that data used for learning also needs to include phase
information.

Looking at the decrease in errors per epoch number of the learn-
ing, the error of the video used for learning and that of the video
which is not so seemed to be almost the same from the viewpoint
of converging value. Also in the subject experiments, there were no
significant differences between the results of videos used for learn-
ing and those of videos not so. This means that, though the videos
were all taken on the same day at the same place, they were able
to respond to videos with a certain level of comprehension capabil-
ity by machine learning. It is necessary to investigate how accurate
acceleration can be estimated for unknown (unlearned) videos by
increasing video data in the future.

In subject experiments, we performed comparative evaluation on
five vibrations of real, real-converted, sound-image method, sound-
only method, recorded sound. According to this, the evaluation of
recorded sound was lower than others entirely. The reason for this
may be that the waveform recorded up to the high frequency com-
ponent by the microphone was applied to the vibrator that greatly
vibrates at low frequency, resulting in only weak vibrations pre-
sented. So, only in evaluation criteria of Comfortableness, there
was only one video where recorded sound was significantly lower.

Statistically significant differences were not observed for the
four vibrations of real, real-converted, sound-image method, and
sound-only method. However, the real tended to be slightly lower
than the other three vibrations. Although this is an unexpected re-

Figure 11: Top Spin Shots NOT Used for Learning

Figure 12: Top Spin Shots Used for Learning

Figure 13: Slice Shots Used for Learning

Figure 14: Lob Shots Used for Learning
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sult, the following three factors can be the reason for it by the pro-
cessing such as Fourier transform included in our method: (1) phase
information is lost, (2) the waves are discontinuous per a block, and
(3) high frequency components have been removed. We will find
out which factors have improved the evaluation by further compar-
ison experiments. However, as a result of this experiment, it can be
said that the present method can realize a viewing experience equal
to or slightly higher than presenting actually measured acceleration
as vibrotactile stimuli.

In addition, a reason why statistically significant difference was
NOT found between the sound-image method and the sound-only
method, seems that the video selected this time was noiseless clean
tennis. In the video of tennis, the relationship between vibration
and image is not so obvious, but it seems to be highly correlated
with sound. As a result of that, we think that sufficient oscillation
was generated even with the estimation result by only sound. If we
compare them in the genre where vibration is not correlated with
the image alone or the sound alone, we consider the results may
change. Or, if noise is contained in the sound with high correlation
between sound and vibration, there is a possibility that it can be
made robust to noise by using not only sound but also image as
input.

The difference due to the tennis ball type was hardly seen, but
only in the lob shots, the recorded sound had a lower Comfortable-
ness than the other. It is conceivable that this value is not low but
Comfortableness against other vibrations has increased. The rea-
son for this is that since the shot feeling contained in the image was
soft, the degree of visual fatigue to the viewer may have been small.

The results of this experiment also seems to have a consider-
able influence of visual and auditory information, which is often
called cross modal. In such a viewpoint, although we applied vi-
brotactile sense to ordinary videos this time, it is very meaningful
to investigate the improvement of the immersive feeling by apply-
ing vibration to the 360-degree video for HMD. Also, we adopted
the vibratory presentation method to vibrate only the grip part of
the tennis racket this time, but if we can conduct the experiment
while actually swinging the grip, some participants of the experi-
ment said, that the result may improve more. It can be realized with
a wireless and high power vibration device using a small battery
and amplifier.

7. Conclusion

We proposed a method VibVid that estimates vibrotactile stimuli
from the existing videos with sounds, using machine learning. As
an example of that, we implemented and evaluated a video of first-
person view playing tennis. As a result, we succeeded in gener-
ating a waveform close enough to the desired acceleration wave-
form. Also in a subject experiment, estimated waveform obtained
comparable scores to the measured data especially in harmony,
fun, immersiveness, and realism. There were statistically signif-
icant difference between those estimated acceleration waveforms
and recorded-raw-sound vibrations in the tactile presentation ex-
periment.

Theoretically, this method can be applied not only to first-person

view videos of tennis but also to other genres’ videos. This is be-
cause the method does not include the explicit assumption that the
video is captured from first-person view or that the photographer
holds the racket in the video.

In the future, we aim to expand the genres of videos applicable
by the method and to generate higher quality vibrotactile wave-
forms. Also, this method may be applied not only to vibrations but
also to another type of haptic sensation such as movements and in-
clinations with lower frequencies. In order to explore the scope of
applicability of this method, we further such tactile measurement
and presentation.
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