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Abstract
Cross-compatibility of virtual reality devices is limited by the difficulty of alignment and fusion of data between systems. In this
paper, a plugin for ambiently aligning the reference frames of virtual reality tracking systems is presented. The core contri-
bution consists of a procedure for ambient calibration. The procedure describes ambient behaviors for data gathering, system
calibration and fault detection. Data is ambiently collected from in-application self-directed movements, and calibration is
automatically performed between dependent sensor systems. Sensor fusion is then performed by taking the most accurate data
for a given body part amongst all systems. The procedure was applied to aligning a Kinect v2 with an HTC Vive and an Oculus
Rift in a variety of common virtual reality scenarios. The results were compared to alignment performed with a gold standard
OptiTrack motion capture system. Typical results were 20cm and 4◦ of error compared to the ground truth, which compares
favorably with the accepted accuracy of the Kinect v2. Data collection for full calibration took on average 13 seconds of in-
application, self-directed movement. This work represents an essential development towards plug-and-play sensor fusion for
virtual reality technology.

CCS Concepts
•Computing methodologies → Tracking; Camera calibration; •Computer systems organization → Real-time system archi-
tecture; •Software and its engineering → Software libraries and repositories;

1. Motivation and Problem Definition

The rapidly improving quality and availability of head mounted
displays (HMDs) has seen a large increase in public interest in
virtual reality (VR). HMDs allow for a wide variety of immer-
sive experiences unavailable to other display platforms. However,
HMDs typically block out the real world, leaving the user feeling
disembodied in the virtual space. Without tracking of the user’s
body and hands, interactions within the environment are limited.
Furthermore, without visual body and hand representation within
the virtual environment, states of presence and immersion are im-
peded [CB16, SNB∗17]. If the virtual environment is multi-user,
communication can also be impeded by inaccurate or limited body
or hand tracking [GWFM17].

Tracking systems for achieving high fidelity body and hand
tracking are prohibitively expensive. For example, OptiTrack, Vi-
con, and similar gold-standard motion capture systems can have
costs in the range of thousands to hundreds of thousands of US dol-
lars. Many low cost devices exist as alternatives, but often do not
provide the required tracking quality and range for many purposes.
Some examples include Leap Motion, Microsoft Kinect, Perception
Neuron, Oculus Rift, HTC Vive and PlayStation VR. These devices
cost from one hundred to a few thousand US dollars, but suffer from

issues such as limited tracking volume, occlusion, drift and low ac-
curacy (for example, see [RGTR16] for details on the Kinect v2).
This paper presents work towards creating highly accessible fusion
software which allows for the combination of low cost tracking sys-
tems. The objective is to bridge the quality gap between commod-
ity and gold-standard tracking systems. By minimizing the need for
user configuration, the software aims to decrease required techni-
cal expertise and increase access to high-quality tracking for busi-
nesses, research laboratories and hobbyists.

The contributions of this paper revolve around the design of a
state machine for ambient calibration, including:

1. A method for managing calibration data with minimal compu-
tational overhead

2. A method for determining calibration tasks between tracking
systems with dependent sensors

3. Stable fault detection for when a calibration no longer describes
the setup accurately

An evaluation was performed on the task of aligning the skeleton
tracked by a Microsoft Kinect v2 with a user’s true body pose for
avatar representation and interaction within a VR system. The term
‘VR system’ will be used in this paper to mean a HMD with tracked
controllers for each hand such that each of the head and hands is
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tracked with 6 degrees of freedom (6DoF; position and rotation).
The VR systems tested were the Oculus Rift with Touch controllers
and the HTC Vive with wand controllers. The proposed method re-
quires only in-application self-directed movement from the user to
achieve alignment. This is shown with an experiment simulating
three common virtual reality scenarios. Section 2 outlines previous
work in sensor fusion and alignment for virtual and augmented re-
ality technologies. Section 3 describes the central contributions of
this paper. Section 4 details an experiment performed to evaluate
accuracy, speed and computation requirements.

2. Related Work

Alignment of two 3D sensor systems S and Q involves determin-
ing the transform Y : Q→ S. It is typically assumed that the two
systems are affine representations of the real world and that Y only
has rotational and translational components. Scale components are
assumed to be known and corrected for before transformation by
Y. In this case, we say Y is in the 3 dimensional Special Euclidean
Group, or Y ∈ SE(3). The solution to this problem has many solu-
tions, but in this work Arun et al.’s technique is used [AHB87]. The
complete model for two 6DoF tracking systems is given by

AtX = YBt (1)

Here, St and Qt are the coordinate frames measured at time t by the
sensor systems S and Q respectively. Each measurement yields a re-
sult At ∈ SE(3) for S and Bt ∈ SE(3) for Q. There are two unknown
elements of SE(3) to determine, X : Qt → St ,Y : Q→ S represent-
ing the sensor rigid connection and the reference frame relationship
respectively [FS16]. This type of system can be solved with the
well established hand-eye calibration developed for robotics sys-
tems [Sha13].

2.1. Homogeneous Depth Camera Co-Registration

Müller et al. [MIGL17] demonstrated a gait analysis system con-
sisting of six fused Kinect v2 cameras networked across several
computers. Registration of the Kinect v2 sensors was performed us-
ing mutually visible fiducial markers and Procrustes analysis. This
process of explicit calibration achieves high accuracy such that the
point clouds from each Kinect can also be unified. The result was
a system which performed comparably to a gold standard motion
capture system for the purpose of analyzing walking gaits. How-
ever, this alignment procedure requires a custom designed visual
marker and a manual procedure which requires time and expertise.
Additionally, this method cannot be used with systems which can-
not track the marker, such as the HTC Vive which uses laser based
tracking. Even for systems which could track the marker, such as
the camera based tracking of the Oculus Rift or Playstation VR,
custom software would need to be written for each system to ac-
count for lens distortion and other camera properties.

Rietzler et al. presented a real time framework for combin-
ing skeleton tracking data extracted from multiple depth cam-
eras [RGTR16]. Their work is available as open source software
called FusionKit. The software allows for multiple networked com-
puters to send skeleton data from the Microsoft Kinect v2 to a
central computer for registration and fusion. Identification of sen-

sor dependencies is performed on a per-user basis, with skele-
tons matched before registration by joint configuration and length,
or matched after registration by distance in the global coordinate
frame. Registration is performed ambiently using Iterative Closest
Point (ICP) algorithm performed on the skeleton joints generated
by movement of a user within the mutual tracking space of two
sensors. Our approach extends this approach to include inhomoge-
neous cases such as depth cameras with a VR system.

2.2. Inhomogeneous Tracking System Alignment

Czesak et al. created a system for full body tracking using three
commodity tracking devices (Oculus Rift DK2, Leap Motion,
Kinect v2) [CMC∗16]. However, the system performed no closed-
loop calibration and simply used each sensor system to track mu-
tually exclusive body sections. There is ample room for improve-
ment over this model. Destelle et al. demonstrates a procedure for
fusing inertial measurement unit (IMU) data with optical data from
the Microsoft Kinect v1 to produce a hybrid skeletal tracking solu-
tion with accuracy rivaling that of expensive gold standard optical
tracking solutions [DAO∗14]. However, part of the fusion process
involves meticulous alignment of the IMU reference frames with
one another, and alignment of the IMUs with respect to the Kinect
reference frame. We aim to automate such procedures.

2.3. Ubiquitous Tracking

Ubitrack is an open source software system for modular fused real
time 6DoF tracking for the purpose of augmented and virtual re-
ality (AR/VR) applications [PHW∗11]. Ubitrack features network
infrastructure for modular sensor systems distributed across multi-
ple computers. Ubitrack uses a Sensor Relation Graph (SRG) for
data queries. This involves user configuration of sensor relation-
ships to enable graph-search based queries for data in a given ref-
erence frame. However, calibration is not ambient and the user is
required to perform specific motions with calibration objects. The
configuration of Ubitrack is difficult and aimed exclusively at re-
searchers and experts. The Ubitrack system is complex, containing
code for numerous hardware drivers as well as the core fusion al-
gorithms. This can be undesirable for rapid development due to
increased complexity.

Society of Devices Toolkit (SoD-Toolkit) [SAC∗15] is another
open source ubiquitous tracking platform supporting a wide array
of devices such as Microsoft Kinect and Leap Motion. However,
the system does not provide high quality articulated body tracking,
but rather focuses on providing coarse scale multi-user information
with multiple tablet devices. Jester is an open source human skeletal
sensor fusion layer for virtual environments [Sch14]. Jester defines
a middle-ware architecture for abstracting the hardware and soft-
ware layers in a virtual environment, while also providing support
for fusion of sensors with support for basic per-joint filters such
as the Kalman filter. Jester also requires explicit calibration of sys-
tems.

The work in this paper aims to improve accessibility and ease
of use compared to the discussed systems by ambiently aligning
sensors systems during typical use. Changes in the state of sensor
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systems is common due to the trade off between stability and recon-
figurability in sensor installation. Fault detection allows the system
to function continuously without the need for manual re-calibration
if a sensor drifts or is displaced. This is all done in real time. The
following section describes our implementation and techniques.

3. Implementation of Ambient Calibration

We addressed the shortcomings of the systems discussed in Sec-
tion 2 by developing a lightweight plugin for skeleton fusion target-
ing modern game engines. By using the game engine as a middle-
ware, the proposed plugin does not handle device drivers and hard-
ware configuration. By offloading driver and hardware abstraction,
we were able to develop a focused system which can be easily in-
tegrated into other C++ compatible software platforms. Presently,
only Unreal Engine 4 is supported, with future support for other
game engines planned. This section describes our central contribu-
tion: calibration procedures with fault detection to allow for am-
bient fusion of inhomogeneous tracking data. The proposed pro-
cedures calibrate sensor systems automatically based on ambiently
aquired sensor data. The advantage of the proposed system over
conventional methods is that no setup is required by the user. Also,
if the system configuration is disturbed, recovery is automatic and
doesn’t require effort from the user. This is all done in real time at
VR compatible timescales.

3.1. Software Implementation

The plugin is written in C++ using only the standard C++11 li-
braries and the Eigen mathematics library [GJ10]. Figure 1 sum-
marizes the structure of the system. There are two central software
modules within the system - the Calibrator and the Fusion Graph.
The Calibrator is responsible for aligning different sensor systems
and detecting faults in calibration, representing the major contribu-
tions of this paper. More information on the calibrator is given later,
in Section 3.2. The Fusion Graph models an articulated skeleton
with support for sensor fusion. It is structured as a directed graph
with nodes representing 3D affine transformations. Each node in-
herits the transform of its parent and is updated based on the fu-
sion of the latest measurements assigned to the node. Currently, the
Fusion Graph simply uses pre-defined priorities to select the best
tracking result available for each node in the fusion step. However,
more sophisticated fusion will be implemented in the future.

3.2. The Calibrator

For each iteration of the application, the Calibrator might receive a
number of measurements. Each measurement corresponds to a sen-
sor from a single sensor system. More than one measurement from
a single sensor can be collected each frame. The Calibrator stores
new measurements for a pair of connected sensors only if both of
their measurements differ from their previous recorded measure-
ments such that the sum of the position change (m) and the angu-
lar change (rad) is greater than r = 0.075. That is, if the position
difference is more than 7.5cm or the angular difference is more
than about 4.3◦ for both connected sensors. This reduces redun-
dant information and removes the dependency of the calibration on
the timing of the user’s movements. Calibration between S and Q

is then performed when M measurement pairs (St ,Qt) are avail-
able. The evaluation in this paper uses M = 100. The values for M
and r used were determined by trial and error to trade off calibra-
tion quality against the time taken to collect data. Larger M values
monotonically result in longer data gathering and calibration com-
putation times, but give higher accuracy and reliability. Smaller r
values monotonically result in faster gathering times, but lower data
variety and hence lower quality.

The Calibrator determines which systems can be aligned from
the sensor measurements available to it. This is done continuously
in real time using a data structure called the system-node table. A
system is a label corresponding to a single reference frame. For ex-
ample, Vive, Rift, Kinect, OptiTrack, etc. A node is a label corre-
sponding to a real world object, such as ‘Left Hand’, ‘Right Hand’,
‘Head’, ‘Box 1’, etc. A sensor is a label corresponding to a sin-
gle sensor within a given system, usually simply an integer. Each
sensor is tagged with exactly one node and one system, but each
system and node can have many sensors and corresponding mea-
surements. The system-node table maps one system and one node
to their corresponding sensors, and the measurements correspond-
ing to those sensors.

Each frame, the Calibrator decides if calibration is viable be-
tween each unordered pair of systems (S,Q). Calibration is per-
formed as follows:

1. For each node (row in the system-node table):

a. Check if S and Q have corresponding measurements
b. If there are more than m corresponding measurements for the

node, store them for calibration later

2. If more than M measurements stored in total, perform calibra-
tion as described in [AHB87, Sha13, PHBK06]

3. Clear measurements which will not be used for further calibra-
tion

In this way, the measurements are sorted and analyzed in real time
with only a small overhead. Typical values for the parameters M
and m were M = 100 and m = 4. The update frame-rate is set
in configuration. The algorithm operates asynchronously relative
to each sensor system. Interpolation is used to synchronize mea-
surements sampled at times with small differences. However, two

Figure 1: Software architecture of the fusion plugin.
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measurements received at the same time are naively considered
synchronous. We leave ambient latency compensation techniques
(e.g. [HSK09]) to future work since it is easily implemented as a
pre-processing step to improve overall performance of the system.

3.3. Calibration State Machine

The calibration of each pair of systems occupies one of three cali-
bration states:

• Uncalibrated (U) - no calibration information available. The
system is either still gathering data regarding the two tracking
systems or the systems cannot be calibrated because they share
no dependent data.

• Refinement (R) - partial data is available for the calibration.
The system will continue to refine the result until convergence
is achieved.

• Calibrated (C) - the calibration has converged and the system
is no longer adjusting calibration. Fault detection is now running
to detect a systematic error between the two systems.

A state machine is maintained for each pair of systems (S,Q). Ev-
ery time a calibration is performed between two systems, their cal-
ibration state is updated according to the state transition diagram in
Figure 2.

The transition conditions are computed from the mean validation
error E of the latest calibration. Computation of E depends on the
type of calibration. For example, E = 1

N ∑
N
t=1 ||AtX−YBt || with

the Frobenius norm for a complete 6DoF hand-eye calibration or
E = 1

N ∑
N
t=1 ||Ybt − at || for position only point cloud alignment.

Additionally, a quality measure q : R→ [0,1] is computed from the
error value to create a bounded metric of calibration performance

q(E) =
1

1+(E/s)2 (2)

where s is a tunable scale parameter, fixed at runtime. For 6DoF cal-
ibration error, s = 1 was used, while s = 0.05 was used for position
only calibration error. This accounts for the different magnitudes

Figure 2: State machine for calibration between two systems.
States: Uncalibrated (U), Refining (R), Calibrated (C).

of the different norms. The quality measure q(E) is monotonically
decreasing with E, with q(E) = 1 indicating a perfect solution.

The state of the calibration of (S,Q) is defined by the tuple
(Y,E,N,q) ∈ SE(3)×R×N× [0,1]. Here, Y is the 4×4 homo-
geneous matrix Y : S→ Q, E is the mean validation error, N is the
number of samples which have been used to obtain Y and q is the
quality of the calibration. After each calibration operation, the cali-
bration state (Y,E,N,q) is updated using the new calibration result
(Y′,E′,N′,q(E′)) by interpolation weighted by N and N′:

Y ← slerp
(

Y,Y′, N′

N +N′

)
(3)

E ← NE +N′E′

N +N′
(4)

q ← Nq+N′q(E′)
N +N′

(5)

N ← N +N′ (6)

Here, slerp(X,Y,α) ∈ SE(3) is the spherical linear interpolation of
RX to RY by α and the linear interpolation from x to y by α∈ [0,1].
This type of interpolation update guarantees eventual convergence
of the results, leading to a stable calibration result while accurately
weighting any erroneous results. Table 1 describes the transition
logic which is followed whenever a new calibration result is com-
puted. Here, the signed change in quality ∆q(E) is defined as the
change in quality which occurred due to the update in Equation 5.
The state diagram in Figure 2 is used to update the state of the cal-
ibration.

Table 1: Transition conditions for the state machine shown in Fig-
ure 2. Each of the hard-coded values here are configurable in real-
ity - these are the values that were found to work well.

Transition name Condition
Initial calibration q(E)> 0.5
Calibration failed q(E)≤ 0.5
Error stabilized (∆q(E)< 0.01)∧ (q(E)> 0.90)
Improving error ∆q(E)> 0.01
Error diverges ¬(Error stabilized) ∧ ¬(Improving error)
Fault detected See Section 3.4
Tracking data agrees ¬(Fault detected)

3.4. Fault Detection

Fault detection is responsible for detecting a change in configura-
tion in the sensor network, such as movement or drift of a reference
frame. When the Calibrator is in the Calibrated state, new calibra-
tions are performed as usual (Section 3.2). However, the update step
given by Equations 3-6 is not performed. Instead a background cal-
ibration result YB ∈ SE(3) is tracked. The background calibration
result is updated in two steps based on each new calibration result
Y′. First, a decay step:

Yβ := slerp
(
YB,I4,4,β

)
(7)

where I4,4 is the 4×4 identity matrix and β∈ [0,1] is the decay rate
(β = 0.1 was used in the evaluation). Secondly, an exponential filter

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

4



J. Fountain & S. Smith / Real-time Ambient Tracking Fusion

step is used to compute the new value of YB

YB← slerp
(
Yβ,Y

′,γ
)

(8)

where γ ∈ [0,1] was the exponential gain (γ = 0.25 was used in the
evaluation). After each calibration, YB is compared to the calibra-
tion result Y computed just before transitioning from the Refining
state to the Calibrated state. If Y−1

B Y describes a rotation of angle
greater than θ or displacement more than d, a fault is considered to
be detected, and calibration is reset. In the evaluation, θ = 5◦ and
d = 10cm was used. This system is designed to be robust to noise
and false positives. The cost of this design is that fault detection
can take longer than calibration from the Uncalibrated state.

4. Evaluation

To evaluate the proposed solution, the plugin was used to calibrate
a Kinect v2 skeleton tracking camera with two different VR sys-
tems. The VR systems track the users hands and head with 6DoF
while the Kinect measured just body joint positions. The systems
tested were the HTC Vive with wand controllers and the Oculus
Rift with Touch controllers. The Kinect v2 provides measurements
of the user’s entire body, but at a coarse scale compared to the VR
tracking systems. The mean error in Kinect v2 tracking compared
to ground truth of gold standard tracking has been reported to be
around 23cm for the hands and 5cm for the head [RGTR16]. This
error should be kept in mind when considering the results in the
following sections.

4.1. Method

The Kinect was placed approximately 1.5 meters off the ground.
A user performed tasks modeled around modern room scale VR
applications. For example, walking, handling virtual objects and
shooting (pointing) at distant virtual targets. The actions were per-
formed while facing the body no further than 90◦ away from the
Kinect. After around 10-50 seconds (depending on the task), the
system computed the alignment as described in [AHB87]. The re-
sulting transform Y was then compared to the actual location of the
Kinect as measured by an OptiTrack motion capture system. The
actions performed to collect the data included the following VR
tasks:

• Sorting (Figure 3a,b) - the user is tasked with picking up virtual
items from a shelf walking a short distance to place them on a
virtual platform of the same color. This simulates applications
such as Job Simulator by Owlchemy Labs.

• Pointing (Figure 3c) - the user is tasked with pointing at targets
placed up to 90◦ either side of the user and up to 90◦ elevation.
This task simulates applications where the user stands still but
uses their hands, such as Robo-Recall by Epic Games.

• Walking (Figure 3d) - the user walked around the tracking space
while facing toward the Kinect while moving arms slowly up and
down. This represents an ‘ideal’ calibration scenario with large
amounts of movement around the tracking space.

4.2. Results

For each movement type, the task was performed until the Cali-
brated state was reached. The error was then recorded before re-

setting calibration and starting again. Each trial was repeated 10
times and the results are shown in Figure 4 and summarized in
Table 2. The durations required to gather data for calibration are
also noted in Table 2. Errors were computed based on ground truth
Kinect pose measured using a gold-standard OptiTrack motion cap-
ture system (see Figure 5). The OptiTrack system was used to com-
pute a mapping from the VR tracking space to the Kinect tracking
space. First, the mapping V ∈ SE(3) was computed using a hand-
eye calibration [Sha13] between an OptiTrack rigid body marker
and a VR controller. Next, a marker was placed on the Kinect and
calibrated such that it coincided in orientation and position to the
true center and orientation of the Kinect. The OptiTrack system
then measures the mapping K ∈ SE(3) between the OptiTrack sys-
tem and the marker on the Kinect. If the transform between the
marker on the Kinect and the Kinect tracking space is I ∈ SE(3),
the system equation is found by forming a loop in Figure 5 giv-
ing IKV = Y. We make the approximation that I is equal to the
identity transform, and thus the calibration error is given by the
matrix E(Y) := KVY−1. The error matrix E(Y) will be equal to
the identity when the calibration Y is perfectly accurate. The final
error values reported in Table 2 are decomposed into the magnitude
of the translation of E(Y) and the magnitude of the angle of E(Y)
when decomposed into angle-axis form.

4.3. Discussion

The mean error in Kinect v2 tracking compared to ground truth of
gold standard tracking has been reported to be around 23cm for
the hands and 5cm for the head [RGTR16]. The calibration results
(Figure 4 and Table 2) compare favorably with the expectation of
the hand tracking error, but not the head tracking error. This is likely
explained by the fact that less data from the user’s head is used in
calibration than data from the arms simply because people tend to
move their arms more than their head. This is a limitation with the
problem of ambient calibration itself - you cannot control the user’s
actions. Future work will improve performance in this domain by
incorporating prior information about relative reliability of differ-
ent sensors, as is well established in the literature (e.g. [RGTR16]).
Subjectively, the skeleton tracked by the Kinect matches well with
the real body position, even with 22.2cm and 5.25◦ error. Figure 6
shows such a typical calibration result visualized from first person
and third person perspectives. The avatar aligns well with the real
body seen through the Vive’s pass-through camera. It should be
noted that the pass-through camera is offset slightly below and in
front of the user’s eyes, and this introduces some error in where
the body appears with the pass-through camera. More distant ob-
jects are less affected by this error, such as the feet. Our method is
agnostic to device and tracking method, though it does not achieve
the same level of accuracy as Müller et al., who use time consuming
and fault sensitive fiducial based calibration [MIGL17].

Worse results were observed in the pointing task. This is ex-
pected since a smaller variety of data is collected compared to the
other tasks. In particular, the head remained mostly stationary and
thus the hand trackers recorded the majority of data for calibration.
The walking task and the sorting task performed similarly, suggest-
ing that it is important to utilize the more accurate head tracking of
the Kinect. However, it is necessary to use the hand data to sam-
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(a) Sorting Task (pick-up) (b) Sorting Task (placement)

(c) Pointing Task (d) Walking Task

Figure 3: The three tasks used to assess the performance of the ambient calibration. In the sorting task, the user must sort the cubes (a) into
their respective colors (b) on the platforms a few steps away. In the pointing task, the user must point to a series of targets while standing
in place (c). The walking task involves the user stepping around the tracking space while facing the Kinect and slowly raising and lowering
their arms (d).

(a) Oculus Rift (b) HTC Vive
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Figure 4: Distributions of errors for Rift (a) and Vive (b) for three different ambient calibration scenarios. Confidence ellipses (95%) are
shown as visual aids.

ple outside the plane the head usually moves within (crouching of
the user is rare). The walking task likely performed best due to the
lower redundancy in data collected.

Figure 7 demonstrates an instance of ambient calibration, fault
detection and recovery. The ground truth pose of the Kinect is
shown as a function of time alongside the positional and rotational
calibration error of the system compared to ground truth. The cal-
ibration states of the system are indicated by background color of
the graph. A fault of about 8◦ in the yaw position of the Kinect is
detected and corrected within 40 seconds. Calibration remains sta-
ble otherwise. The time taken to calibrate and detect faults is well
within the desired range for ambient calibration. The actual mean
computation time required for the calibration operations was mea-

sured to be at most 2.64 (± 0.30) ms. Analysis was performed on a
Windows 10 PC with an Intel Xeon E5-1650 v3, 3.50GHz, 6 cores.
However, this amount of compute time was only required on the
frames where calibration was triggered, or once every 5 seconds or
so. This amount is much less than the typical render budget of 11ms
allocated for an application running at 90Hz. Also, multi-threading
could be used to perform the calibration during the span several
frames if necessary. During data collection, for 3 systems (Kinect,
OptiTrack and a VR system) computation requirements were mea-
sured to be about 0.3ms for processing measurements and updating
the Fusion Graph state (see Section 3.1 and Figure 1).

The Kinect cannot distinguish between the cases of the user fac-
ing the device and facing away from the device. The proposed tech-
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Table 2: Summary statistics for errors of ambient calibration pro-
cedure compared to ground truth. Values are reported in ‘mean ±
standard deviation’ format.

Position Angle Time
Error (cm) Error (◦) (sec)

Walking Rift 15.7 ± 4.7 3.65 ± 1.8 13 ± 2
Vive 19.9 ± 2.8 5.15 ± 0.9 11 ± 2

Sorting Rift 17.5 ± 2.7 2.93 ± 0.9 13 ± 3
Vive 24.3 ± 1.7 3.47 ± 0.7 15 ± 3

Pointing Rift 27.34 ± 6.4 4.07 ± 1.4 34 ± 4
Vive 35.8 ± 5.4 4.2 ± 0.9 40 ± 16

Figure 5: To measure the accuracy of the ambient calibration Y
between the Kinect and the VR systems, an external gold-standard
OptiTrack motion capture system was used to measure K.

nique does not take into account this shortcoming and so calibra-
tion can only be performed facing the Kinect. In future work, this
could be overcome by breaking symmetry using the VR system.
Additionally, the calibration model doesn’t account for the non-
zero rigid transform which naturally must exist between two rigidly
linked sensors. The Kinect tracks the wrist position, whereas the re-
ported center position of the controller is not on the wrist position,
but rather on the controller itself. A similar model describes the
head: the VR headset center is not the same point as the head point
measured by the Kinect. These offsets vary depending on the de-
vices involved and the physiology and behaviour of the user, but
could be considered constant over a session of usage. Therefore the
approach of configuring offsets manually is highly inconvenient.
Point cloud alignment used in this paper doesn’t account for these
differences and instead assumes the same point is measured from
both reference frames [AHB87]. This explains the discrepancy in
results between the Rift and the Vive seen in Figure 4. The Vive
wand controllers are much larger than the Touch controllers, and
so are more likely to have a larger rigid offset from the Kinect posi-
tion. This problem of automatically determining individual offsets
requires further research. The Rift results (Figure 4a) feature signif-
icant correlation between rotational error and positional error. This
is due to the technique used for calibration; calculation of the rota-
tion transform is performed first, and the positional error depends
on the accuracy of the resulting transform. The Vive shows less cor-
relation in angular and positional error, likely due to the previously
described rigid link factor which masks the correlation.

Figure 6: An example of the typical results for calibration with
walking activity. An outline of the user’s real body from the Vive’s
passthrough camera is shown on the right, overlayed with the vir-
tual scene rendered from user perspective. This calibration took 16
seconds, and had an error of 22.2cm and 5.25◦.

Figure 7: An example calibration trace with calibration states
(Figure 2) overlayed in color (Red = ‘Uncalibrated’, Yellow = ‘Re-
fining’, White = ‘Calibrated’). The kinect is moved at the 55 second
mark, giving it a rotation 8 degrees from its original configuration.
The error is corrected after about 35 seconds.

4.4. Future Work

Motion capture of an articulated system such as the human hand
or human body can utilize inverse kinematics and contextual con-
straint information to infer the poses of untracked joints. Early
examples of such research have applied inverse kinematics tech-
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niques to estimate arm pose given hand pose [TB96]. Hand tracking
can be performed by tracking the wrist position and each fingertip
provided appropriate constraints are applied [AL10]. By searching
within prior learned manifold of plausible human poses, markerless
motion capture from a single camera is possible, though not in real
time [PMBG∗11]. Future work will incorporate these ideas.

Other future work will involve improving the accuracy and us-
ability of the ambient calibration algorithms. A method for ac-
counting for rigid offsets will be investigated. Methods for ambi-
ently compensating for latency will be needed for improved accu-
racy. Methods for identification of dependencies amongst sensors
will be incorporated into the system to further reduce the config-
uration requirements [FS16]. For example, the Kinect symmetry
problem could be resolved by matching hand motions to left and
right controller motions. More sophisticated skeleton fusion meth-
ods will be investigated. On the software side, we hope to simplify
the interface, supply example support for more devices and create
an open source code release soon. For now, the code can be viewed
at http://www.github.com/JakeFountain/Spooky.

5. Conclusion

A method for ambient calibration of sensor systems is presented
with open-source code available for Unreal Engine 4. The central
contribution is a state machine for gathering data, calibration and
fault detection. An evaluation was performed to calibrate two ex-
ample VR systems with the Kinect v2. It was demonstrated that the
resulting calibration has accuracy on the order of what is expected
given the accuracy of the Kinect. Typical accuracy was demon-
strated to be 20cm and 4◦ compared to the ground truth with only
around 20 seconds of in-application user-directed movement. This
work is an important step toward ambient calibration and fusion of
real-time sensor systems.
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