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• Continuous channel 
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Introduction (1) 

• Claude Elwood Shannon, 1916-2001 

• "A mathematical theory of communication", Bell System 
Technical Journal, July and October, 1948  

• The significance of Shannon's work 

• Transmission, storage and processing of information 

• Applications: physics, computer science, mathematics, 
statistics, biology, linguistics, neurology, computer vision, 
etc. 
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Introduction (2) 

• Certain quantities, like entropy and mutual information, 
arise as the answers to fundamental questions in 
communication theory 

• Shannon entropy is the ultimate data compression or the 
expected length of an optimal code 

• Mutual information is the communication rate in presence 
of noise 

 

• Book: T.M. Cover and J.A. Thomas, Elements of 
Information Theory, Wiley, 1991, 2006  
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Introduction (3) 

• Shannon introduced two fundamental concepts about 
"information" from the communication point of view 
• information is uncertainty  

• information source is modeled as a random variable or a 
random process 

• probability is employed to develop the information theory 

• information to be transmitted is digital  

• Shannon's work contains the first published use of "bit"  

 

• Book: R.W. Yeung, Information Theory and Network , 
Springer, 2008 

 

Mateu Sbert 5 



Information Measures (1) 
• Random variable X taking values in an alphabet X 

 

 

 

• Shannon entropy H(X), H(p): uncertainty, information, 
homogeneity, uniformity  

 

 
 

 

• information associated with x: -log p(x); base of logarithm: 
2; convention: 0 log 0 = 0; unit: bit: uncertainty of the toss of 
an ordinary coin  

 
   

H(X) = - p(x)
xÎX

å log p(x) º - p(xi)
i=1

n

å log p(xi)

  

X : x1,x2,..., xn{ }, p(x) = Pr{X = x}, p(X) = {p(x),x Î X}
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Information Measures (2) 

• Properties of Shannon entropy 

•   

•  binary entropy: 
 

•   
  

0 £ H(X) £ log X

  

H(X) = -plog p - (1- p)log(1- p)
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Information Measures (3) 

H(0.010, 0.020, 0.030, 0.800, 0.080, 0.030, 0.020, 0.010) = 1.211 

H(0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125) = 3.000 

H(0.001, 0.002, 0.003, 0.980, 0.008, 0.003, 0.002, 0.001) = 0.190 

H(0.200, 0.050, 0.010, 0.080, 0.400, 0.010, 0.050, 0.200) = 2.314 

2 3 4 5 6 7 8 1 

1 

0 

0.5 

p 

x 
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Information Measures (4) 
• Discrete random variable Y in an alphabet Y 

 

 

• Joint entropy H(X,Y) 

 

 

 

• Conditional entropy H(Y|X)  

   

H(Y | X) = p(x)H(Y | x)
xÎX

å = - p(x) p(y | x)log p(y | x)
yÎY

å
x ÎX

å

= - p(x,y)log p(y | x)
yÎY

å
xÎX

å

   

H(X,Y) = - p(x,y)log p(x,y)
yÎY

å
xÎX

å  

Y: y1,y2,..., yn{ }, p(y) = Pr{Y = y}
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Information Channel 
• Communication or information channel X → Y 

X Y 

  

p(x,y) = p(x)p(y | x) = p(y)p(x | y)

   

p(x1)

p(x2)

...

p(xn )

   

p(y1 | x1) p(y2 | x1) ... p(ym | x1)

p(y1 | x2) p(y2 | x2) ... p(ym | x2)

... ... ... ...

p(y1 | xn ) p(y2 | xn ) ... p(ym | xn )

  

    p(y1)       p(y2)  ...      p(ym)  

   

p(y) = p(x)p(y | x)
xÎX

å

   

p(y | x)
xÎX

å =1

  p(X)    p(Y|X)  

  p(Y)  

  p(X)    p(Y)  

  p(Y|X)  

Bayes' rule 

  p(Y|x)  
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Information Measures (5) 
• Mutual information I(X;Y): shared information, correlation, 

dependence, information transfer  

 

 

 

 

 

 

 

   

I(X;Y ) = H(Y) - H(Y | X) = p(x, y)
y ÎY

å
x ÎX

å log
p(x,y)

p(x)p(y)

= p(x) p(y | x)
y ÎY

å
xÎX

å log
p(y | x)

p(y)
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Information Measures (6) 
• Relationship between information measures  

 

 

 

 

 

 

 

H(X|Y) 

I(X;Y) 

H(Y|X) 

H(X) H(Y) 

H(X,Y) 

  

0 £ H(X |Y) £ H(X)

  

H(X,Y) = H(X) + H(Y | X)

  

H(X,Y) = H(X) + H(Y) - I(X;Y)

  

I(X;Y) = I(Y;X) ³ 0

  

I(X;Y) £ H(X)

Yeung's book: Chapter 3 establishes a one-to-one correspondence between Shannon's 
information measures and set theory. A number of examples are given to show how the 
use of information diagrams can simplify the proofs of many results in information theory. 
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Information Measures (7) 
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Information Measures (8) 
• Normalized mutual information: different forms 

 

 

 

 

 

 

 

 

 

• Information distance  

 

   

I(X;Y )

H(X,Y )

   

I(X;Y)

max{H(X),H(Y )}

   

I(X;Y)

min{H(X),H(Y)}

   

I(X;Y)

H(X) + H(Y)

  

H(X |Y) + H(Y | X)

H(X|Y) 

I(X;Y) 

H(Y|X) 

H(X) H(Y) 

H(X,Y) 
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Relative Entropy 
• Relative entropy, informational divergence, Kullback-Leibler 

distance DKL(p,q): how much p is different from q (on a common 
alphabet X) 

 

 

 

• convention: 0 log 0/q= 0 and p log p/0=∞ 

•  DKL(p,q)>=0  

• it is not a true metric or "distance" (non-symmetric, 
triangular inequality is not fulfilled) 

• I(X;Y)=DKL(p(X,Y),p(X)p(Y))  

   

DKL (p,q) = p(x)
xÎX

å log
p(x)

q(x)
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Mutual Information 

   

I(X;Y ) = H(Y) - H(Y | X) = p(x, y)
y ÎY

å
x ÎX

å log
p(x,y)

p(x)p(y)

= p(x) p(y | x)
y ÎY

å
xÎX

å log
p(y | x)

p(y)

   

DKL (p,q) = p(x)
xÎX

å log
p(x)

q(x)

  

I(X;Y) = DKL(p(X,Y), p(X)p(Y))
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Mutual Information Decomposition 
• Information associated with x 

 

 

 

  

 

  

 

  

   

I(X;Y) = p(x) p(y | x)
yÎY

å
xÎX

å log
p(y | x)

p(y)
= p(x)(H(Y) - H(Y | x))

xÎX

å

   

I1(x;Y ) = p(y | x)log
p(y | x)

p(y)
yÎY

å

  

I2(x;Y) = H(Y) - H(Y | x)

   

I3(x;Y) = p(y | x)I2(X;y)
yÎY

å

   

I(X;Y) = p(x)
xÎX

å Ik (x;Y) 

k =1,2,3[DeWeese] 

[Butts] 
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Mutual Information Decomposition 

   

I(X;Y ) = H(Y) - H(Y | X) = H(Y) - p(x)H(Y | x)
xÎX

å = p(x)
x ÎX

å (H(Y ) - H(Y | x))

= p(x,y)
yÎY

å
xÎX

å log
p(x,y)

p(x)p(y)
= p(x) p(y | x)

yÎY

å
x ÎX

å log
p(y | x)

p(y)

   

I1(x;Y ) = p(y | x)log
p(y | x)

p(y)
yÎY

å

  

I2(x;Y) = H(Y) - H(Y | x)
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Inequalities 
• Data processing inequality: if X  Y  Z  is a Markov chain, 

then 

 

 No processing of Y can increase the information that Y contains 
about X, i.e., further processing of Y can only increase our 
uncertainty about X on average 

• Jensen's inequality: a function f(x) is said to be convex over an 
interval (a,b) if for every x1, x2 in (a,b) and 0<=λ<=1  

  

I(X;Y) ³ I(X;Z)

  

f (lx1 + (1- l)x2) £ lf (x1) + (1- l) f (x2)
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Jensen-Shannon Divergence 
• From the concavity of entropy,  Jensen-Shannon divergence 

 

 

 
 

 

•   

 

 

•   

  

JS(p(x1),..., p(xn );p(Y | x1),..., p(Y | xn)) = I(X;Y)

[Burbea] 
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Information Channel, MI and JS 
• Communication or information channel X → Y 

  

JS(p(x1),..., p(xn );p(Y | x1),..., p(Y | xn)) = I(X;Y)
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X Y 

   

p(x1)

p(x2)

...

p(xn )

   

p(y1 | x1) p(y2 | x1) ... p(ym | x1)

p(y1 | x2) p(y2 | x2) ... p(ym | x2)

... ... ... ...

p(y1 | xn ) p(y2 | xn ) ... p(ym | xn )

  

    p(y1)       p(y2)  ...      p(ym)  

  p(X)    p(Y|X)  

  p(Y)  

  p(X)    p(Y)  

  p(Y|X)  

  p(Y|x)  



Information Bottleneck Method (1) 
• Tishby, Pereira and Bialek, 1999  

• To look for a compressed representation of X which maintains 
the (mutual) information about the relevant variable Y as high as 
possible 

   

X

   

ˆ X 

  

p( ˆ x | x)

   

Y

  

p(y | ˆ x )

  

p( ˆ x )

  

minimize I(X; ˆ X )

  

maximize I( ˆ X ;Y)

  

I(X;Y)
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Information Bottleneck Method (2) 
• Agglomerative information bottleneck method: 

clustering/merging is guided by the minimization of the loss of 
mutual information   

 

• Loss of mutual information 

 

 

 
 

 

• The quality of each cluster    is measured by the Jensen-Shannon 
divergence between the individual distributions in the cluster 

   

I(X;Y) - I( ˆ X ;Y) =

p( ˆ x )JS(p(x1) / p( ˆ x ),..., p(xm ) / p( ˆ x ); p(Y | x1),..., p(Y | xm ))

   

where p( ˆ x ) = p(xk )
k=1

m

å

x̂

[Slonim]  

  

I(X;Y) ³ I( ˆ X ;Y)
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Information Channel and IB 
• Communication or information channel X → Y 

   

I(X;Y) - I( ˆ X ;Y) =

p( ˆ x )JS(p(x1) / p( ˆ x ), p(x2) / p( ˆ x ); p(Y | x1), p(Y | x2))

  

p( ˆ x ) = p(x1) + p(x2)
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X Y 

   

p(x1)

p(x2)

...

p(xn )

   

p(y1 | x1) p(y2 | x1) ... p(ym | x1)

p(y1 | x2) p(y2 | x2) ... p(ym | x2)

... ... ... ...

p(y1 | xn ) p(y2 | xn ) ... p(ym | xn )

  

    p(y1)       p(y2)  ...      p(ym)  

  p(X)    p(Y|X)  

  p(Y)  

  p(X)    p(Y)  

  p(Y|X)  

  p(Y|x)  



Example: Entropy of an Image 
• The information content of an image is expressed by the 

Shannon entropy of the (normalized) intensity histogram 

 

 
 

 

• The entropy disregards the spatial contribution of pixels 
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Example: Image Partitioning (1) 
• Information channel X → Y defined between the intensity 

histogram and the image regions 

YX

X Y 
  p(X)    p(Y)  

  p(Y|X)  

bi = number of pixels of bin i; rj = number of pixels of region j  
N = total number of pixels 
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Example: Image Partitioning (2) 

   

Y

information bottleneck method 

   

X

information gain 

  

H(X) = I(X;Y) + H(X |Y)

at each step, increase of I(X;Y) = decrease of H(X|Y) 

  

I(X;Y) - I( ˆ X ;Y) = p( ˆ x )JS(p(x1) / p( ˆ x ), p(x2) / p( ˆ x );p(Y | x1), p(Y | x2))
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Example: Image Partitioning (3) 

0.1; 13; 0.00 

1; 234238; 89.35  0.9; 129136; 49.26 0.8; 67291; 25.67 0.7; 34011; 12.97  0.6; 15316; 5.84  

0.0; 5597; 2.14 0.4; 1553; 0.59  0.3; 330; 0.13  0.2; 64; 0.02  

   

MIR =
I( ˆ X ;Y)

I(X;Y)
 ; number of regions ; % of regions
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Entropy Rate 

 

 

• Shannon entropy 

 

 

• Joint entropy 

 

 

• Entropy rate or 
information density 

x1 x2 x3 x4 x5 x6 x7 

L 

Mateu Sbert 29 



Continuous Channel 
• Continuous entropy 

 

 
• Continuous mutual information 

 

 

 

 
• Ic(X,Y) is the least upper bound for I(X,Y) 

• refinement can never decrease I(X,Y) 

  

H c(X) = - p
S

ò (x)log p(x)dx

   

Ic (X,Y) = p
S

ò
S

ò (x,y)log
p(x,y)

p(x)p(y)
dxdy
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Viewpoint selection 
• Automatic selection of the most informative viewpoints is a very 

useful focusing mechanism in visualization 

• It can guide the viewer to the most interesting information of the 
scene or data set 

• A selection of most informative viewpoints can be used for a virtual 
walkthrough or a compact representation of the information the 
data contains 

• Best view selection algorithms have been applied to computer 
graphics domains, such as scene understanding and virtual 
exploration, N  best views selection , image-based modeling and 
rendering, mesh simplication, molecular visualization, and camera 
placement 

• Information theory measures have been used as viewpoint metrics 
since the work of Vazquez et al. [2001], see also [Sbert et al. 2009] 

Mateu Sbert 32 



The visualization pipeline 

DATA ACQUISITION DATA PROCESSING DATA RENDERING 

Reconstruction 

Classification 

Composition 
Shading 

Voxel model 

Simulation, modeling, scanning Filtering, registration, segmentation 

Direct volume rendering 
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• Volume dataset is considered as a transparent gel with 
light travelling through it 

 

Direct volume rendering (DVR) 

• classification maps 
primitives to graphical 
attributes 

• shading (illumination) 
models shadows, light 
scattering, absorption… 
• usually absorption + 

emission optical model 

• compositing integrates 
samples with optical 
properties along viewing 
rays 

Transfer function 
definition 

Local or global 
illumination 

Both realistic and illustrative rendering 
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• Takahashi 2005 

Viewpoint selection 

  

• Evaluation of viewpoint quality based on the 

visibility of extracted isosurfaces or interval 

volumes. 

• Use as viewpoint metrics the average of viewpoint 
entropies for the extracted isosurfaces. 
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• Takahashi et al.2005 

Viewpoint selection 

  

Best and worst views of interval volumes extracted from a 

data set containing simulated electron density distribution 
in a hydrogen atom 
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• Bordoloi and Shen 2005 

Viewpoint selection 

  

• Best view selection: use entropy of the projected 

visibilities distribution 

 

 

 

 

• Representative views: cluster views according to 
Jensen-Shannon similarity measure 
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• Bordoloi and Shen 2005 

Viewpoint selection 

  

Best (two left) and worst (two right) views of tooth data set 

Four representative views  

Mateu Sbert 38 



• Ji and Shen 2006 

39 

Viewpoint selection 

  

• Quality of viewpoint v, u(v), is a combination of 

three values 
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• Mühler et al. 2007 

Viewpoint selection 

  

• Semantics-driven view selection. Entropy, between 
other factors, used to select best views. 

• Guided navigation through features assists studying 
the correspondence between focus objects. 
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• How a viewpoint sees the voxels 

• Mutual information 

𝐼 𝑉; 𝑍 =  𝑝 𝑣  𝑝 𝑧 𝑣 log
𝑝 𝑧 𝑣

𝑝 𝑧
𝑧∈𝒵𝑣∈𝒱

=  𝑝 𝑣 𝐼 𝑣; 𝑍

𝑣∈𝒱

 

• Viewpoint mutual information (VMI) 

𝐼 𝑣; 𝑍 =  𝑝 𝑧 𝑣 log
𝑝 𝑧 𝑣

𝑝 𝑧
𝑧∈𝒵

 

Visibility channel 

𝑝 𝑣1  𝑝 𝑧1 𝑣1 𝑝 𝑧2 𝑣1 ⋯ 𝑝 𝑧𝑚 𝑣1
𝑝 𝑣2  𝑝 𝑧1 𝑣2 𝑝 𝑧2 𝑣2 ⋯ 𝑝 𝑧𝑚 𝑣2
⋮  ⋮ ⋮ ⋱ ⋮
𝑝 𝑣𝑛  𝑝 𝑧1 𝑣𝑛 𝑝 𝑧2 𝑣𝑛 ⋯ 𝑝 𝑧𝑚 𝑣𝑛
      
  𝑝 𝑧1 𝑝 𝑧2 ⋯ 𝑝 𝑧𝑚

 

𝑝 𝑉  

𝑝 𝑍  

𝑝 𝑍 𝑉  

V Z 
𝑝 𝑉  𝑝 𝑍  

𝑝 𝑍 𝑉  

𝑝 𝑣 =
𝑣𝑖𝑠 𝑣

 𝑣𝑖𝑠 𝑖𝑖∈𝒱

 𝑝 𝑧 𝑣 =
𝑣𝑖𝑠 𝑧 𝑣

𝑣𝑖𝑠 𝑣
 

𝑝 𝑧 =  𝑝 𝑣 𝑝 𝑧 𝑣

𝑣∈𝒱

 

viewpoints voxels 

• Viola et al. 2006, Ruiz et al. 2010 
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• How a voxel “sees” the viewpoints 

• Mutual information 

𝐼 𝑍; 𝑉 =  𝑝 𝑧  𝑝 𝑣 𝑧 log
𝑝 𝑣 𝑧

𝑝 𝑣
𝑣∈𝒱𝑧∈𝒵

= 𝑝 𝑧 𝐼 𝑧; 𝑉

𝑧∈𝒵

 

• Voxel mutual information (VOMI) 

𝐼 𝑧; 𝑉 =  𝑝 𝑣 𝑧 log
𝑝 𝑣 𝑧

𝑝 𝑣
𝑣∈𝒱

 

Reversed visibility channel 

𝑝 𝑧1  𝑝 𝑣1 𝑧1 𝑝 𝑣2 𝑧1 ⋯ 𝑝 𝑣𝑚 𝑧1
𝑝 𝑧2  𝑝 𝑣1 𝑧2 𝑝 𝑣2 𝑧2 ⋯ 𝑝 𝑣𝑚 𝑧2
⋮  ⋮ ⋮ ⋱ ⋮
𝑝 𝑧𝑛  𝑝 𝑣1 𝑧𝑛 𝑝 𝑣2 𝑧𝑛 ⋯ 𝑝 𝑣𝑚 𝑧𝑛
      
  𝑝 𝑣1 𝑝 𝑣2 ⋯ 𝑝 𝑣𝑚

 

𝑝 𝑍  

𝑝 𝑉  

𝑝 𝑉 𝑍  

Z V 
𝑝 𝑍  𝑝 𝑉  

𝑝 𝑉 𝑍  

𝑝 𝑣 𝑧 =
𝑝 𝑣 𝑝 𝑧 𝑣

𝑝 𝑧
 

viewpoints voxels 

• Ruiz et al. 2010 
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VOMI map computation 

Volume 
dataset 

Classified 
data 

Ray casting 

Visibility 
histogram 
for each 

viewpoint 

Probabilities 
computation 

VOMI map 

Transfer 
function 

+ 
 
 
 
 
 
 
0 
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• Viola et al. 2006 

• Adding importance to VMI for viewpoint navigation 
with focus of interest. Objects instead of voxels 

Visibility channel 
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VOMI applications 
• Interpret VOMI as ambient occlusion 

• 𝐴𝑂 𝑧 = 1 − 𝐼 𝑧; 𝑉  
• Simulate global illumination 
• Realistic and illustrative rendering 
• Color ambient occlusion 

• 𝐶𝐴𝑂𝛼 𝑧; 𝑉 =  𝑝 𝑣 𝑧 log
𝑝 𝑣 𝑧

𝑝 𝑧
1 − 𝐶𝛼 𝑣𝑣∈𝒱  

• Interpret VOMI as importance 
• Modulate opacity to obtain focus+context effects emphasizing 

important parts 

• “Project” VOMI to viewpoints to obtain informativeness of 
each viewpoint 
• 𝐼𝑁𝐹 𝑣 =  𝑝 𝑣 𝑧 𝐼 𝑧; 𝑉𝑧∈𝒵  
• Viewpoint selection 
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VOMI as ambient occlusion map 
  

Original Ambient Occlusion, 
Landis 2002 

Vicinity shading, 
Stewart 2003 

Obscurances,  
Iones et al. 98 

VOMI 

Mateu Sbert 46 



• Ambient lighting term 

 

 

 

 

• Additive term to local lighting 

VOMI applied as ambient occlusion 

Original Vicinity shading, 
Stewart 2003 

VOMI 
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Color ambient occlusion 

 

CAO map CAO map 
with contours 

CAO maps with contours 
and color quantization 
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Opacity modulation 

Original Modulated to emphasize skeleton Original Modulated to 
emphasize ribs 
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Viewpoint selection 

Min VMI 

Max VMI Min INF 

Max INF 

Min VMI 

Max VMI Min INF 

Max INF 

• VMI versus Informativeness 
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