Introduction to Information Theory

Tutorial on Information Theory in Visualization

Mateu Sbert University of Girona, Spain

Tianjin University, China

Overview

- Introduction
- Information measures
 - entropy, conditional entropy
 - mutual information
- Information channel
- Relative entropy
- Mutual information decomposition
- Inequalities
- Information bottleneck method
- Entropy rate
- Continuous channel

Introduction (1)

- Claude Elwood Shannon, 1916-2001
- "A mathematical theory of communication", Bell System Technical Journal, July and October, 1948
- The significance of Shannon's work
- Transmission, storage and processing of information
- Applications: physics, computer science, mathematics, statistics, biology, linguistics, neurology, computer vision, etc.

Introduction (2)

- Certain quantities, like entropy and mutual information, arise as the answers to fundamental questions in communication theory
- Shannon entropy is the ultimate data compression or the expected length of an optimal code
- Mutual information is the communication rate in presence of noise
- Book: T.M. Cover and J.A. Thomas, Elements of Information Theory, Wiley, 1991, 2006

Introduction (3)

- Shannon introduced two fundamental concepts about "information" from the communication point of view
 - information is uncertainty
 - information source is modeled as a random variable or a random process
 - probability is employed to develop the information theory
 - information to be transmitted is digital
 - Shannon's work contains the first published use of "bit"
- Book: R.W. Yeung, Information Theory and Network , Springer, 2008

Information Measures (1)

• Random variable X taking values in an alphabet $\mathbf X$

X: { $x_1, x_2, ..., x_n$ }, $p(x) = \Pr{X = x}, p(X) = {p(x), x \mid X}$

• Shannon entropy *H*(*X*), *H*(*p*): uncertainty, information, homogeneity, uniformity

$$H(X) = - \mathop{\text{a}}_{x \hat{i}} p(x) \log p(x) \circ - \mathop{\text{a}}_{i=1}^{n} p(x_i) \log p(x_i)$$

information associated with x: -log p(x); base of logarithm:
2; convention: 0 log 0 = 0; unit: bit: uncertainty of the toss of an ordinary coin

EUROGRAPHICS 🥁

Information Measures (2)

For example, the entropy of a fair coin toss is $H(X) = -(1/2)\log(1/2) - (1/2)\log(1/2) = \log 2 = 1$ bit. For the toss of a fair die with alphabet $\mathcal{X} = \{1, 2, 3, 4, 5, 6\}$ and probability distribution $p(X) = \{1/6, 1/6, 1/6, 1/6, 1/6, 1/6\}$, the entropy is $H(X) = \log 6 = 2.58$ bits.

- Properties of Shannon entropy
 - $0 \notin H(X) \notin \log |\mathbf{X}|$
 - binary entropy: $H(X) = -p \log p (1 p) \log(1 p)$

•
$$H(p_1, p_2, p_3) = H(p_1, p_2 + p_3) + (p_2 + p_3)H\left(\frac{p_2}{p_2 + p_3}, \frac{p_3}{p_2 + p_3}\right)$$

١

UdG

Mateu Sbert

Information Measures (3)

Mateu Sbert

EUROGRAPHICS 🥁

6 Judg

Information Measures (4)

• Discrete random variable *Y* in an alphabet Y

$$\mathbf{Y}: \{y_1, y_2, ..., y_n\}, p(y) = \Pr\{Y = y\}$$

• Joint entropy *H*(*X*, *Y*)

$$H(X,Y) = - \mathop{\text{a}}_{x^{\uparrow}} \mathop{\text{a}}_{Xy^{\uparrow}} p(x,y) \log p(x,y)$$

• Conditional entropy *H*(*Y*|*X*)

$$H(Y | X) = \mathop{\text{a}}_{x^{\uparrow} X} p(x) H(Y | x) = -\mathop{\text{a}}_{x^{\uparrow} X} p(x) \mathop{\text{a}}_{y^{\uparrow} Y} p(y | x) \log p(y | x)$$
$$= -\mathop{\text{a}}_{x^{\uparrow} Xy^{\uparrow} Y} \mathop{\text{a}}_{y} p(x) \log p(y | x)$$

Mateu Sbert

EUROGRAPHICS 🥁

Information Channel

• Communication or information channel $X \rightarrow Y$

Mateu Sbert

EUROGRAPHICS 🥁

Information Measures (5)

• Mutual information *I*(*X*; *Y*): shared information, correlation, dependence, information transfer

$$I(X;Y) = H(Y) - H(Y | X) = \mathop{\text{a}}_{x^{\uparrow} Xy^{\uparrow} Y} \mathop{\text{a}}_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
$$= \mathop{\text{a}}_{x^{\uparrow} X} p(x) \mathop{\text{a}}_{y^{\uparrow} Y} p(y | x) \log \frac{p(y | x)}{p(y)}$$

EUROGRAPHICS 🥁

UdG

Information Measures (6)

• Relationship between information measures

Yeung's book: Chapter 3 establishes a one-to-one correspondence between Shannon's information measures and set theory. A number of examples are given to show how the use of information diagrams can simplify the proofs of many results in information theory.

Mateu Sbert

EUROGRAPHICS 🕁

Information Measures (7)

As an example, we consider the joint distribution p(X, Y) represented in Fig. 1.3.*left*. The marginal probability distributions of X and Y are given by $p(X) = \{0.25, 0.25, 0.5\}$ and $p(Y) = \{0.375, 0.625\}$, respectively. Thus, $H(X) = -0.25 \log 0.25 - 0.25 \log 0.25 - 0.5 \log 0.5 = 1.5$ bits, $H(Y) = -0.375 \log 0.375 - 0.625 \log 0.625 = 0.954$ bits, and $H(X, Y) = -0.125 \log 0.125 - 0.125 \log 0.125 - 0.125 \log 0.25 - 0 \log 0 - 0 \log 0 - 0.5 \log 0.5 = 1.75$ bits.

p(X, Y)		\mathbf{v}		p(X)						
		<i>y</i> 1 <i>y</i> 2				p(Y X)		\mathcal{Y}		$H(Y x \in \mathcal{X})$
	x_1	0.125	0.125	0.25				<i>y</i> 1	<u> </u>	
\mathcal{X}		0.25	0	0.25 0.5	X	x_1	0.5	0.5	$H(Y x_1) = 1$	
	x_2	0.25	0			Xa	1	0	$H(Y x_2) = 0$	
	x_3	0	0.5			NZ		1	$\frac{\Pi(\Pi \mathcal{N}_2) = 0}{\Pi(W \mathbf{n}_2)} = 0$	
n(Y)		0.375	0.625			x_3	0	1	$H(Y x_3) = 0$	
$P(\mathbf{I})$		0.375	0.025			H(Y X) = 0.25				
H(X, Y) = 1.75										

$$H(Y|X) = \sum_{i=1}^{3} p(x_i)H(Y|X = x_i)$$

= 0.25 $H(Y|X = x_1) + 0.25 H(Y|X = x_2) + 0.5 H(Y|X = x_3)$
= 0.25 × 1 + 0.25 × 0 + 0.5 × 0 = 0.25 bits.

Mateu Sbert

EUROGRAPHICS 🥁

Information Measures (8)

Normalized mutual information: different forms

• Information distance

$H(X \mid Y) + H(Y \mid X)$

Mateu Sbert

EUROGRAPHICS 🥁

Relative Entropy

 Relative entropy, informational divergence, Kullback-Leibler distance D_{KL}(p,q): how much p is different from q (on a common alphabet X)

$$D_{KL}(p,q) = \mathop{\text{a}}_{x \uparrow X} p(x) \log \frac{p(x)}{q(x)}$$

- convention: $0 \log 0/q = 0$ and $p \log p/0 = \infty$
- $D_{KL}(p,q) \ge 0$
- it is not a true metric or "distance" (non-symmetric, triangular inequality is not fulfilled)
- $I(X;Y) = D_{KL}(p(X,Y),p(X)p(Y))$

EUROGRAPHICS 🥁

Mutual Information

$$I(X;Y) = H(Y) - H(Y | X) = \mathop{a}_{x^{\hat{1}} Xy^{\hat{1}} Y} \mathop{a}_{y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
$$= \mathop{a}_{x^{\hat{1}} X} p(x) \mathop{a}_{y^{\hat{1}} Y} p(y | x) \log \frac{p(y | x)}{p(y)}$$
$$D_{KL}(p,q) = \mathop{a}_{x^{\hat{1}} X} p(x) \log \frac{p(x)}{q(x)}$$
$$I(X;Y) = D_{KL}(p(X,Y), p(X)p(Y))$$

Mateu Sbert

EUROGRAPHICS 🐳

Mutual Information Decomposition

• Information associated with x

Mutual Information Decomposition

$$I(X;Y) = H(Y) - H(Y | X) = H(Y) - \mathop{\stackrel{\circ}{a}}_{x^{\top} X} p(x)H(Y | x) = \mathop{\stackrel{\circ}{a}}_{x^{\top} X} p(x) (H(Y) - H(Y | x))$$

$$= \mathop{\stackrel{\circ}{a}}_{x^{\top} Xy^{\top} Y} \mathop{\stackrel{\circ}{a}}_{y^{\top} Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} = \mathop{\stackrel{\circ}{a}}_{x^{\top} X} p(x) \mathop{\stackrel{\circ}{a}}_{y^{\top} Y} p(y | x) \log \frac{p(y | x)}{p(y)}$$

$$I_{1}(x;Y) = \mathop{\stackrel{\circ}{a}}_{y^{\top} Y} p(y | x) \log \frac{p(y | x)}{p(y)}$$

$$I_{2}(x;Y) = H(Y) - H(Y | x)$$

Mateu Sbert

EUROGRAPHICS 🥁

Inequalities

• Data processing inequality: if $X \rightarrow Y \rightarrow Z$ is a Markov chain, then

No processing of Y can increase the information that Y contains about X, i.e., further processing of Y can only increase our uncertainty about X on average

Jensen's inequality: a function f(x) is said to be convex over an interval (a,b) if for every x₁, x₂ in (a,b) and 0<=λ<=1

$$f(/x_1 + (1 - /)x_2) \neq /f(x_1) + (1 - /)f(x_2)$$

EUROGRAPHICS

Jensen-Shannon Divergence

• From the concavity of entropy, Jensen-Shannon divergence

$$JS(\pi_{1},...,\pi_{N};p_{1},...,p_{N}) = H\left(\sum_{i=1}^{N}\pi_{i}p_{i}\right) - \sum_{i=1}^{N}\pi_{i}H(p_{i}) \ge 0$$
[Burbea]
$$JS(\pi_{1},...,\pi_{N};p_{1},...,p_{N}) = \sum_{i=1}^{N}\pi_{i}D_{KL}\left(p_{i},\sum_{i=1}^{N}\pi_{i}p_{i}\right)$$

$$JS(p(x_{1}),...,p(x_{n});p(Y | x_{1}),...,p(Y | x_{n})) = I(X;Y)$$

Mateu Sbert

EUROGRAPHICS 🥁

Information Channel, MI and JS

• Communication or information channel $X \rightarrow Y$

$$JS(p(x_1),...,p(x_n);p(Y | x_1),...,p(Y | x_n)) = I(X;Y)$$

Mateu Sbert

EUROGRAPHICS 🥁

G UdG

Information Bottleneck Method (1)

- Tishby, Pereira and Bialek, 1999
- To look for a compressed representation of X which maintains the (mutual) information about the relevant variable Y as high as possible

Mateu Sbert

EUROGRAPHICS 🥁

Information Bottleneck Method (2)

- Agglomerative information bottleneck method: clustering/merging is guided by the minimization of the loss of mutual informati $I(X;Y) \stackrel{3}{\rightarrow} I(\hat{X};Y)$
- Loss of mutual information

$$I(X;Y) - I(\hat{X};Y) = p(\hat{x})JS(p(x_1)/p(\hat{x}),...,p(x_m)/p(\hat{x});p(Y | x_1),...,p(Y | x_m))$$
[Slonim]
where $p(\hat{x}) = \mathop{\text{a}}_{k=1}^{m} p(x_k)$

• The quality of each cluster \hat{x} is measured by the Jensen-Shannon divergence between the individual distributions in the cluster

EUROGRAPHICS 😼

Information Channel and IB

• Communication or information channel $X \rightarrow Y$

Mateu Sbert

EUROGRAPHICS 🥁

Example: Entropy of an Image

• The information content of an image is expressed by the Shannon entropy of the (normalized) intensity histogram

EUROGRAPHICS

UdG

• The entropy disregards the spatial contribution of pixels

Example: Image Partitioning (1)

 Information channel X → Y defined between the intensity histogram and the image regions

 b_i = number of pixels of bin *i*; r_j = number of pixels of region *j* N = total number of pixels

EUROGRAPHICS 🥁

Example: Image Partitioning (2)

information bottleneck method

information gain

at each step, increase of I(X;Y) = decrease of H(X|Y)

H(X) = I(X;Y) + H(X | Y)

Mateu Sbert

EUROGRAPHICS 🥁

2016 Judg

Example: Image Partitioning (3)

$$MIR = \frac{I(X;Y)}{I(X;Y)}$$
; number of regions; % of regions

1; 234238; 89.35

0.9; 129136; 49.26

0.8; 67291; 25.67

0.7; **34011**; **12.97**

0.6; 15316; 5.84

Mateu Sbert

Mateu Sbert

Entropy Rate

Joint entropy

Shannon entropy

$$H(X^L) = -\sum_{x^L \in \mathcal{X}^L} p(x^L) \log p(x^L)$$

 Entropy rate or information density

$$h = \lim_{L \to \infty} \frac{H(X^L)}{L}$$
$$= \lim_{L \to \infty} (H(X^L) - H(X^{L-1}))$$

Continuous Channel

• Continuous entropy

$$H^{c}(X) = - \dot{0}_{S} p(x) \log p(x) dx$$

$$\lim_{\Delta \to 0} H(X^{\Delta}) \neq H^{c}(X)$$

EUROGRAPHICS

UdG

Continuous mutual information

$$I^{c}(X,Y) = \dot{0}_{S} \dot{0}_{S} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy$$

$$\lim_{\Delta \to 0} I(X^{\Delta}, Y^{\Delta}) = I^{c}(X, Y)$$

- $I^{c}(X, Y)$ is the least upper bound for I(X, Y)
- refinement can never decrease *I*(*X*, *Y*)

Viewpoint metrics and applications

Tutorial on Information Theory in Visualization

Mateu Sbert University of Girona, Spain

Tianjin University, China

- Automatic selection of the most informative viewpoints is a very useful focusing mechanism in visualization
- It can guide the viewer to the most interesting information of the scene or data set
- A selection of most informative viewpoints can be used for a virtual walkthrough or a compact representation of the information the data contains
- Best view selection algorithms have been applied to computer graphics domains, such as scene understanding and virtual exploration, N best views selection, image-based modeling and rendering, mesh simplication, molecular visualization, and camera placement
- Information theory measures have been used as viewpoint metrics since the work of Vazquez et al. [2001], see also [Sbert et al. 2009]

Mateu Sbert

EUROGRAPHICS

The visualization pipeline

Direct volume rendering

Direct volume rendering (DVR)

• Volume dataset is considered as a transparent gel with light travelling through it

- classification maps primitives to graphical attributes
- shading (illumination) models shadows, light scattering, absorption...
 - usually absorption + emission optical model
- compositing integrates samples with optical properties along viewing rays

Both realistic and illustrative rendering

Transfer function definition

Local or global illumination

Mateu Sbert

34

- Takahashi 2005
 - Evaluation of viewpoint quality based on the visibility of extracted isosurfaces or interval volumes.
 - Use as viewpoint metrics the average of viewpoint entropies for the extracted isosurfaces.

$$E_i^{iso}(v) = \frac{-1}{\log(m_i + 1)} \sum_{j=0}^{m_i} \frac{A_{ij}}{S} \log \frac{A_{ij}}{S}$$

$$E^{iso}(v) = \sum_{i=1}^{n} \frac{E_i^{iso}(v)}{n}$$

Mateu Sbert

EUROGRAPHICS

• Takahashi et al.2005

Best and worst views of interval volumes extracted from a data set containing simulated electron density distribution in a hydrogen atom

Mateu Sbert

EUROGRAPHICS

- Bordoloi and Shen 2005
 - Best view selection: use entropy of the projected visibilities distribution

$$H(v) = -\sum_{i=1}^{n} q_i(v) \log q_i(v)$$

 Representative views: cluster views according to Jensen-Shannon similarity measure

$$JS(\frac{1}{2}, \frac{1}{2}; q(v_1), q(v_2)) = H(\frac{1}{2}q(v_1) + \frac{1}{2}q(v_2)) - H(q(v_1)) - H(q(v_2))$$

Mateu Sbert

EUROGRAPHICS

• Bordoloi and Shen 2005

Best (two left) and worst (two right) views of tooth data set

Four representative views

Mateu Sbert

38

EUROGRAPHICS 🥁

G UdG

- Ji and Shen 2006
 - Quality of viewpoint v, u(v), is a combination of three values

 $u(v) = \beta_1 opacity(v) + \beta_2 color(v) + \beta_3 curvature(v)$

Mateu Sbert

- Mühler et al. 2007
 - Semantics-driven view selection. Entropy, between other factors, used to select best views.
 - Guided navigation through features assists studying the correspondence between focus objects.

EUROGRAPHICS

Visibility channel

• Viola et al. 2006, Ruiz et al. 2010

$p(v) = \overline{\Sigma}$	vis(v) vis(i)	$p(z v) = \frac{vis(z v)}{vis(v)}$				
p(V)		p(Z V)				
$p(v_1)$ $p(v_2)$ \vdots $p(v_n)$	$p(z_1 v_1)$ $p(z_1 v_2)$ \vdots $p(z_1 v_n)$	$p(z_2 v_1)$ $p(z_2 v_2)$ \vdots $p(z_2 v_n)$	···· ··· ··	$p(z_m v_1)$ $p(z_m v_2)$ \vdots $p(z_m v_n)$		
p(Z)	$p(z_1)$	$p(z_2)$		$p(z_m)$		
		p(z) =	$\sum_{v \in \mathcal{V}} i$	p(v)p(z v)		

EUROGRAPHICS

UdG

- How a viewpoint sees the voxels
- Mutual information

$$I(V;Z) = \sum_{v \in \mathcal{V}} p(v) \sum_{z \in \mathcal{Z}} p(z|v) \log \frac{p(z|v)}{p(z)} = \sum_{v \in \mathcal{V}} p(v)I(v;Z)$$

Viewpoint mutual information (VMI)

$$I(v;Z) = \sum_{z \in \mathcal{Z}} p(z|v) \log \frac{p(z|v)}{p(z)}$$

Mateu Sbert

Reversed visibility channel

• Ruiz et al. 2010

		p(v z	$r) = \frac{1}{2}$	$\frac{p(v)p(z v)}{p(z)}$
p(Z)		p(V Z)	
$p(z_1)$ $p(z_2)$ \vdots $p(z_n)$	$p(v_1 z_1)$ $p(v_1 z_2)$ \vdots $p(v_1 z_n)$	$p(v_2 z_1) \\ p(v_2 z_2) \\ \vdots \\ p(v_2 z_n)$	···· ··· ···	$p(v_m z_1)$ $p(v_m z_2)$ \vdots $p(v_m z_n)$
p(V)	$p(v_1)$	$p(v_2)$		$p(v_m)$

EUROGRAPHICS 🥁

UdG

How a voxel "sees" the viewpoints

p(V)

viewpoints

Mutual information

$$I(Z;V) = \sum_{z \in \mathcal{Z}} p(z) \sum_{v \in \mathcal{V}} p(v|z) \log \frac{p(v|z)}{p(v)} = \sum_{z \in \mathcal{Z}} p(z)I(z;V)$$

Voxel mutual information (VOMI)

$$I(z; V) = \sum_{v \in \mathcal{V}} p(v|z) \log \frac{p(v|z)}{p(v)}$$

Mateu Sbert

p(Z)

voxels

VOMI map computation

Visibility channel

- Viola et al. 2006
- Adding importance to VMI for viewpoint navigation with focus of interest. Objects instead of voxels

$$I(v; O) = D_{KL}(p(O|v)||p(O))$$
$$I'(v; O) = D_{KL}(p(O|v)||p'(O)) = \sum_{o \in \mathbb{O}} p(o|v) \log \frac{p(o|v)}{p'(o)}$$

EUROGRAPHICS

G UdG

VOMI applications

- Interpret VOMI as ambient occlusion
 - $AO(z) = 1 \overline{I(z;V)}$
 - Simulate global illumination
 - Realistic and illustrative rendering
 - Color ambient occlusion
 - $CAO_{\alpha}(z; V) = \sum_{v \in \mathcal{V}} \left(p(v|z) \log \frac{p(v|z)}{p(z)} \right) \left(1 C_{\alpha}(v) \right)$
- Interpret VOMI as importance
 - Modulate opacity to obtain focus+context effects emphasizing important parts
- "Project" VOMI to viewpoints to obtain informativeness of each viewpoint
 - $INF(v) = \sum_{z \in \mathcal{Z}} p(v|z)I(z;V)$
 - Viewpoint selection

EUROGRAPHICS 🥁

VOMI as ambient occlusion map

Mateu Sbert

VOMI applied as ambient occlusion

• Ambient lighting term

Additive term to local lighting

Color ambient occlusion

CAO map

CAO map with contours

CAO maps with contours and color quantization

EUROGRAPHICS 🥪 2016 🚾 📰 🚺

Opacity modulation

• VMI versus Informativeness

Max INF

Min INF

Max VMI

References

- T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley, 1991, 2006
- R.W. Yeung. Information Theory and Network. Springer, 2008
- M.R. DeWeese and M. Meister. How to measure the information gained from one symbo., Network: Computation in Neural Systems, 10, 4, 325-340, 1999
- D.A. Butts. How much information is associated with a particular stimulus?. Network: Computation in Neural Systems, 14, 177-187, 2003
- J. Burbea and C.R. Ra. On the convexity of some divergence measures based on entropy functions. IEEE Transactions on Information Theory, 28, 3, 489-495, 1982
- Noam Slonim and Naftali Tishby. Agglomerative Information Bottleneck. NIPS, 617-623, 1999

Mateu Sbert

References

- Imre Csiszár and Paul C. Shields. Information Theory and Statistics: A Tutorial. Communications and Information Theory, 1, 4, 2004
- Pere P. Vazquez, Miquel Feixas, Mateu Sbert, and Wolfgang Heidrich. Viewpoint selection using viewpoint entropy. In Proceedings of Vision, Modeling, and Visualization 2001, pages 273-280, Stuttgart, Germany, November 2001.
- M. Sbert, M. Feixas, J. Rigau, M. Chover, I. Viola. Information Theory Tools for Computer Graphics. Morgan and Claypool Publishers, 2009
- Bordoloi, U.D. and Shen, H.-W. (2005). View selection for volume rendering. In IEEE Visualization 2005, pages 487-494
- Ji, G. and Shen, H.-W. (2006). Dynamic view selection for timevarying volumes. Transactions on Visualization and Computer Graphics , 12(5):1109-1116

Mateu Sbert

References

- Mühler, K., Neugebauer, M., Tietjen, C. and Preim, B. (2007). Viewpoint selection for intervention planning. In Proceedingss of Eurographics/ IEEE-VGTC Symposium on Visualization, 267-274
- Ruiz, M., Boada, I., Feixas, M., Sbert, M. (2010). Viewpoint information channel for illustrative volume rendering. Computers & Graphics, 34(4):351-360
- Takahashi, S., Fujishiro, I., Takeshima, Y., Nishita, T. (2005). A feature driven approach to locating optimal viewpoints for volume visualization. In IEEE Visualization 2005, 495-502
- Viola, I, Feixas, M., Sbert, M. and Gröller, M.E. (2006). Importancedriven focus of attention. IEEE Transactions on Visualization and Computer Graphics, 12(5):933-940

Thanks for your attention!

