Chapter 5:

Vector Field Design

Hans Hagen
University of Kaisersla
University of Kaiserslautern
Germany

It is the index of v at a, where S_{ε}^{1} is a circle with radius ε around a.The following figure shows the geometric meaning of the index.

Let us start with a vector field
$v: \Re^{2} \rightarrow \Re^{2}$
$x_{1} e_{1}+x_{2} e_{2} \rightarrow v_{1}\left(x_{1}, x_{2}\right) e_{1}+v_{2}\left(x_{1}, x_{2}\right) e_{2}$.
For the analysis of its topology it is necessary to analyse its zeros (critical points). An important invariant of these critical points is the Poincaré-Hopf index. Let $a \in \Re^{2}$ be a zero of v i. e.
$v(a)=0$. Then we define

$$
\text { ind }_{a} v=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i} \int_{S_{\varepsilon}} \int_{S_{\varepsilon}^{1} \wedge d v}^{v^{2}}
$$

We write now

$$
\begin{aligned}
& v: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2} \\
& r=e_{1} z \rightarrow v(r)=E\left(z, z^{+}\right) e_{1}
\end{aligned}
$$

where E is a complex function depending on z . In general, E will not be analytic and the notation explicitly emphazises this by including z^{+}
The interpretation of this formulation is that the vector field is now described as a rotation by some angle θ and a dilation by an amount $\left|E\left(z, z^{+}\right)\right|$of the unit base vector e_{1}.

For our description of the field, we regard ias the generator of the
rotations of the plane. We have

$$
z=e_{1}\left(x_{1} e_{1}+x_{2} e_{2}\right)=x_{1}+i x_{2}
$$

and therefore

$$
\begin{aligned}
& x_{1}=\frac{1}{2}\left(z+z^{+}\right) \\
& x_{2}=\frac{1}{2 i}\left(z^{+}-z\right)
\end{aligned}
$$

For the transformation between the cartesian description and the
new description one gets new description one get
$E\left(z, z^{+}\right)=v_{1}\left(\frac{1}{2}\left(z+z^{+}\right), \frac{1}{2 i}\left(z^{+}-z\right)\right)-i v_{2}\left(\frac{1}{2}\left(z+z^{+}\right), \frac{1}{2 i}\left(z^{+}-z\right)\right)$
and

$$
v_{1}\left(x_{1}, x_{2}\right)=\operatorname{Re}\left(E\left(x_{1}+i x_{2}, x_{1}-i x_{2}\right)\right)
$$

$v_{2}\left(x_{1}, x_{2}\right)=-\operatorname{lm}\left(E\left(x_{1}+i x_{2}, x_{1}-i x_{2}\right)\right)$.
A few examples may demonstrate the effect of this different notation.

9

There are also examples with several zeros possible.

$v(r)=(z-2) z^{+} e_{1}$

$v(r)=i z^{+}(z-2 i)\left(z^{+}-1\right) e_{e_{1}}$

For a comparison, we may look at the last example in cartesis

 coordinates:$v(r)=i z^{*}(z-2 i)\left(z^{+}-1\right)$
$=i(x-i y)(x+i y-2 i)(z x-i y-1) e_{1}$
$=\left(2 x^{2}-2 x+x^{2} y-2 y^{2}+y^{3}\right) e_{1}+\left(x^{3}-x^{2}-4 x y+x y^{2}+2 y-y^{2}\right) i e_{1}$
$=\left(2 x^{2}-2 x+x^{2} y-2 y^{2}+y^{3}\right) e_{1}+\left(-x^{3}+x^{2}+4 x y-x y^{2}-2 y+y^{2}\right) e_{3}$

A rigorous analysis of this examples leads to the following results.

$$
v(r)=\left(a z+b z^{+}+c\right) e_{1}
$$

be a linear vector field.
(1) For $|a| \nmid \nmid\left|\mid\right.$, v has a unique zero at $z_{0} e_{1} \in \mathscr{K}^{2}$. (2) For $|a|>|b|, z_{0} e_{1}$ is a saddle point with index -1. (3) For $|a|<|b|, z_{0} e_{1}$ is a critical point with index +1 .

The critical points of index +1 can be further distinguished by the llowing rules completing the conventional classification
(3a) If $\operatorname{Re}(b)=0, z_{0} e_{1}$ will be a circle.
(3b) If $\operatorname{Re}(b) \neq 0$ and $|a|>|\operatorname{Im}(b)|, z_{0} e_{1}$ will be a node.
(3c) If $\operatorname{Re}(b) \neq 0$ and $|a|<|\operatorname{Im}(b)|, z_{0} e_{1}$ will be a spiral.
(3d) If $\operatorname{Re}(b) \neq 0$ and $|a|=|\operatorname{Im}(b)|, z_{0} e_{1}$ will be a focus.

It may be further noticed that $z_{0} e_{1}$ is a sink for $\operatorname{Re}(b)<0$ and a source for $R e(b)>0$ in the cases (3b), (3c) and (3d).

Then, let the vector fields

$$
w_{k}: \Re^{2} \rightarrow \Re^{2}
$$

$$
r \rightarrow F_{k}(r) e_{1}
$$

have isolated zeros z
he indices we have

$$
\text { ind }_{z_{j}} v=\sum_{k=1}^{m} \text { ind }_{z_{j}} w_{k}
$$

This result is only a reformulation of the standard classification in our Clifford algebra notation. The following result allows then the solution of our vector field design problem.
Let

$$
v(r)=\left(\prod_{k=1}^{n} F_{k}\left(z, z^{+}\right)\right) e_{1}
$$

be our vector field and the F_{k} be factors of E.

Let us now solve our design problem.

Let positions $a_{1}, \ldots, a_{m} \in \mathscr{R}^{2}$ be given where we want to have critical points with index $i_{1}, \ldots, i_{m}<0$. Let further positions
$b_{1}, \ldots, b_{n} \in \Re^{2}$ be given where we want to have critical points with index $j_{1}, \ldots, j_{n}>0$. Then we use the vector field

$$
v(r)=\prod_{k=1}^{m}\left(e_{1} z-a_{k}\right)^{i_{k}} \prod_{l=1}^{n}\left(z^{+} e_{1}-b_{l}\right)^{i_{l}} e_{1}
$$

It can be shown that the vector field

$$
v_{k}(r)=\left(e_{1} z-a_{k}\right)^{i_{k}} e_{1}
$$

has only one zero at a_{k} and the index is i_{k} by our previous considerations. The same arguments show that

$$
w_{k}(r)=\left(z^{+} e_{1}-b_{l}\right)^{j_{l}} e_{e_{1}}
$$

has only one zero at b_{l} with index j_{l}. If we put all the factors together we get the desired result if all the a_{k}, b_{l} are different.

