Chapter 2:
Geometry with Clifford
Algebra
Gerik Scheuermann
University of Kaiserslaute
University of Kaiserslautern
Germany

2.1 Projections and Reflections

The product

$$
a b=a \bullet b+a \wedge b
$$

contains all the information about the relative directions of a and b .
A division by b gives

$$
=(a \bullet b) b^{-1}+(a \wedge b) b^{-1}
$$

$$
a=a_{\|}+a_{\perp} .
$$

This is a separation of the parallel and orthogonal part of a with respect to b .

If we take a 2-blade
$B=b_{1} \wedge b_{2}$
 all $a=a_{\|}+a_{\perp}$.

The corresponding figure is

Another important linear operation is the reflection of vectors on a plane. We describe the plane by a bivector B and assume $|B|=1$ because we are only interested in the direction. We set

$$
x^{\prime}=B x B
$$

We have

$$
x^{\prime}=B x B .
$$

$$
\begin{aligned}
& \text { We have } \\
& \qquad x=x_{\| \|}+x_{\perp}=(x \bullet B) B^{-1}+(x \wedge B) B^{-1} \\
& \text { and the equations }
\end{aligned}
$$

$$
\text { and the equations } \quad x_{\|} B=B x_{\|},
$$

$$
\begin{aligned}
& \|_{\|^{D}}=D x_{\|}, \\
& x_{\perp} B=-B x_{\perp}
\end{aligned}
$$

We get
$x^{\prime}=B x B=B\left(x_{\|}+x_{\perp}\right) B=x_{\|} B B-x_{\perp} B B=x_{\|}-x_{\perp}$
so x^{\prime} is the reflection
of x on B .

2.2 The Exponential Function

For a multivector A the exponential is defned by

$$
\exp A=e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

One might remember the matrix models for the Clifford algebra to see that this is well defined and similar to the use in the theory of ordinary linear differential equations.
We have the relations

$$
\begin{gathered}
e^{0}=1 \\
e^{A+B}=e^{A} e^{B} \quad \text { if } A B=B A .
\end{gathered}
$$

The hyperbolic cosine and sine functions are defined as

$$
\begin{aligned}
& \cosh (A)=\sum_{k=0}^{\infty} \frac{A^{2 k}}{(2 k)!}=1+\frac{A^{2}}{2!}+\frac{A^{4}}{4!}+\ldots, \\
& \sinh (A)=\sum_{k=0}^{\infty} \frac{A^{2 k+1}}{(2 k+1)!}=A+\frac{A^{3}}{3!}+\frac{A^{5}}{5!}+\ldots
\end{aligned}
$$

so we have the usual relation
$e^{A}=\cosh (A)+\sinh (A)$

With he exponential function of the previous section, we find the relation

$$
\hat{a} \hat{b}=e^{\theta}=e^{i|\theta|}=\cos (|\theta|)+i \sin (|\theta|)
$$

$$
\hat{a} \bullet \hat{b}=\cos (|\theta|)
$$

$$
\hat{a} \wedge \hat{b}=i \sin (|\theta|)
$$

2.3 Angles

We describe one-dimensional directions by unit vectors. An angle ,edion directions, so we defit emagnitude of he angle between w. unit vectors \hat{a} and b as the log \hat{b}. he arc on the unit circle from
$a \hat{a}$ to b. Since the angle is measured in
the plane spanned by the two unit vectors,
represent the angle as a bivector
$\theta=|\theta| i \quad i=\frac{\hat{a} \wedge \hat{b}}{|\hat{a} \wedge \hat{b}|}$

Elementary geometry shows
$\frac{\text { area of sector }}{\text { arc length }}=\frac{\text { area of circle }}{\text { circumference }}$
arc lengh circumference $\frac{S}{\text { Al }}=\frac{\pi i}{2 \pi}$ $S=\frac{|\Delta|}{2} i=\frac{1}{2} \theta$
This gives an interpretation
of the angle as directed plane
segment, i. e. bivecto.
shown in the figure.

14

A multiplication with u^{-1} gives

$M u^{-1}=(x \wedge u) u^{-1}=x-(x \bullet u) u^{-1}$
and with
$\alpha=x \bullet u$,

we get the parametric line description

$x=(M+\alpha) u^{-1}$

2.4 Lines in 3D

Let $u \in G_{3}$ be a vector. The equation
describes a line through the origin in direction \hat{u}. The figure on the right shows that for $x \wedge u=0$
x is on the line and that x is on the line and that
for $y \wedge u \neq 0, \mathrm{y}$ is not on the line.

A line with direction \hat{u} through a point a is given by
$(x-a) \wedge u=0$.
This is an implicit description of the ine it can be rewritten by introducing the bivector moment M defined as

We get

$$
x \wedge u=M .
$$

$$
d \bullet u=\langle d u\rangle_{0}=\left\langle M u^{-1} u\right\rangle_{0}=\langle M\rangle_{0}=0
$$

so dis orthogonal to u
Therefore, it holds

$$
|x|^{2}=x^{2}=d^{2}+\alpha u^{-2}
$$

and d is the distance of the line from the origin.

With the vector
$d=M u^{-1}=x \wedge u \wedge u^{-1}+M \bullet u^{-1}=M \bullet u^{-1}$
we get the Hesse form
$x=d+\alpha u^{-1}$.

One may describe a line also by two points. The equation
$(x-a) \wedge u=0$
says that the chords x -a is parallel to u . For two points a,b, we can define a line as all points x with the chords x -a and b -a parallel.

$$
(x-a) \wedge(x-b)=0
$$

From here, we get
$(x-a) \wedge b-(x-a) \wedge a=0$
$x \wedge b-a \wedge b-x \wedge a+a \wedge a=0$
$\frac{1}{2}(a \wedge b)=\frac{1}{2}(a \wedge x)+\frac{1}{2}(x \wedge b)$

We set

$$
\begin{aligned}
& B=\frac{1}{2}(a \wedge x)=|B| i \\
& A=\frac{1}{2}(x \wedge b)=|A| i
\end{aligned}
$$

where i is the unit bivector of
the plane spanned by a and b. As the figure on the right show B and A represent triangles in this plane.

21

2.5 Planes, Spheres and Conic Sections in 3D

gives the distance $|d|$ of the plane from the origin.

A plane with bivector direction U through a point a is given by

$$
(x-a) \wedge U=0
$$

The moment of a plane is the trivector
$T=a \wedge U$.
Like the line case, the vector

$$
d=T U^{-1}
$$

$-d=T U$

With the Jacobi identity

$(a \wedge b) \bullet x+(b \wedge x) \bullet a+(x \wedge a) \bullet b=0$

$$
a \wedge b \wedge x=0
$$

we have

$$
\begin{gathered}
(a \wedge b) x+(b \wedge x) a+(x \wedge a) b=0 \\
(A+B) x+A a+B b=0 \\
x=\frac{A}{A+B} a+\frac{B}{A+B} b,
\end{gathered}
$$

$$
\begin{aligned}
& A+B \quad A+B \\
& \text { which describes } \mathrm{x} \text { by barycentric coordinates. }
\end{aligned}
$$

This description in barycentric coordinates uses really just scala
$x=\frac{|A| i}{|A| i+|B| i}{ }^{a+} \frac{|B| i}{|A| i+|B| i} b=\frac{|A|}{|A|+|B|}{ }^{a}+\frac{|B|}{|A|+|B|} b$

A sphere with radius r and center c is defined as the set of all points $x \in \mathfrak{R}^{3}$ with

$$
|x-c|=|r| \quad \Leftrightarrow \quad(x-c)^{2}=r^{2}
$$

A circle with radius r and center c lying in the plane given by the bivector i is given by the pair of equation

$$
(x-c)^{2}=r^{2} \quad(x-c) \wedge i=0 .
$$

A parametric equation for the A parametric equation
circle can be given by
$x-c=r e^{i|\theta|}$
With $|i|=1$, we need $\theta \mid \in(0,2 \pi]$ for a unique description of all points.

A geometric definition of a conic section is given by the property
that every point has a fixed ratio (eccentricity) $|\varepsilon|$ between its dis tance to a fixed point (focus) and its distance to a fixed line (directrix). We call the vector from the focus to a point x on the conc section. We find from the figure with the focus at the origin

27

With
$\varepsilon=|\varepsilon| \hat{\varepsilon} \quad l=|\varepsilon||d|$
we get

$$
\begin{aligned}
\frac{|r|}{|d|-r \bullet \hat{\varepsilon}} & =|\varepsilon| \\
|r| & =|\varepsilon|(|d|-|r| \hat{r} \bullet \hat{\varepsilon}) \\
|r|(1+\hat{r} \bullet \hat{\varepsilon}) & =|\varepsilon||d| \\
|r| & =\frac{l}{1+\hat{r} \bullet \hat{\varepsilon}} .
\end{aligned}
$$

The standard classification of conics in two dimensions and conicoids in three dimensions is given by the following table
Table : Classification of concis and conicoids

Eccentricity	Conic	Conicoid
$\|\varepsilon\|>1$	hyperbola	hyperboloid
$\|\varepsilon\|=1$	parabola	paraboloid
$0<\|\varepsilon\|<1$	ellipse	ellipsoid
$\|\varepsilon\|=0$	circle	sphere

2.6 Complex numbers

A multivector in G_{2} consists of a scalar, vector and a bivector part The subset without vector part builds a subalgebra, since we have $z^{\prime} z=\left(x_{1}^{\prime}+i x_{2}^{\prime}\right)\left(x_{1}+i x_{2}\right)$
$=\left(x_{1}^{\prime} x_{1}-x_{2}^{\prime} x_{2}\right)+i\left(x_{1}^{\prime} x_{2}+x_{2}^{\prime} x_{1}\right)$
$=z^{\prime \prime}$
where i is the unit pseudoscalar of the euclidean plane

The formulas

$$
\begin{gathered}
z^{\dagger}=x_{1}-i x_{2} \\
x_{1}=\frac{z+z^{\dagger}}{2} \\
x_{2}=\frac{z^{\dagger}-z}{2 i} \\
\text { en as complex nu } \\
|z|=\sqrt{x_{1}^{2}+x_{2}^{2}}
\end{gathered}
$$

show that they can be seen as complex numbers

The magnitude
also coincides with the usual definition for complex numbers.

We can describe a relation between complex numbers and vectors
by the following simple operation

$$
x=x_{1} e_{1}+x_{2} e_{2}=\left(x_{1}+i x_{2}\right) e_{1}=z e_{1} .
$$

We will use this in the applications to analyze vector fields by anayzing the complex number z

2.7 Quaternions and Clifford Algebra in 3D

A multivector

$$
A=\alpha+a+i(b+\beta
$$

in G_{3} contains parts with grade $0,1,2$ and 3 . One may divide it in two parts of odd ande even grade.
$A=\langle A\rangle_{-}+\langle A\rangle_{+}$
$\langle A\rangle_{-}=\langle A\rangle_{1}+\langle A\rangle_{3}=a+i \beta$
$\langle A\rangle_{.}=\langle A\rangle_{0}+\langle A\rangle_{2}=\alpha+i b$

Then, one can define the set of all odd parts G_{3} and the set of all even parts G_{3}^{+}. This second set is closed under multiplication, as may be seen from
$\langle A\rangle_{+}\langle B\rangle_{+}=(\alpha+i b)(\gamma+i d)=(\alpha \gamma-b \bullet d)+i(\alpha d+\gamma b)$
This algebra of dimension four has the basis elements
$\left\{1, e_{1} e_{2}, e_{3} e_{1}, e_{2} e_{3}\right\}$.
By
$\mathrm{i}=-\left(e_{2} e_{3}\right) \quad \mathrm{j}=-\left(e_{3} e_{1}\right) \quad \mathrm{k}=-\left(e_{1} e_{2}\right)$, one gets the quaternions invented by Hamilton.

