Chapter 1:

Clifford Algebra

Hans Hagen
University of Kaiserslaut
University of Kaiserslautern
Germany
Germany

With a suitable choice of the remaining basis matrices we get
$v w=\left(v_{1} w_{1}+v_{2} w_{2}\right)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left(v_{1} w_{2}-v_{2} w_{1}\right)\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

In euclidean 3-space, we may use as description

If we would use square matrices, we could take
We start our considerations in the euclidean plane.
We start our considerations in the euclidean plane.
In an orthonormal basis $\left\{e_{1}, e_{2}\right\}$, we may describe a vector
$v \in \Re^{2}$ as

With the standard description as column vectors we get

$$
v=v_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+v_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

$v=v_{1}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]+v_{2}\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=\left[\begin{array}{ll}v_{2} & v_{1} \\ v_{1} & -v_{2}\end{array}\right]$

This allows a multiplication of vectors

$$
v w=\left[\begin{array}{ll}
v_{2} & v_{1} \\
v_{1}-v_{2}
\end{array}\right]\left[\begin{array}{ll}
w_{2} & w_{1} \\
w_{1}-w_{2}
\end{array}\right]=\left[\begin{array}{ll}
v_{1} w_{1}+v_{2} w_{2} & v_{2} w_{1}-v_{1} w_{2} \\
v_{1} w_{2}-v_{2} w_{1} & v_{1} w_{1}+v_{2} w_{2}
\end{array}\right]
$$

$v w=\left(v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}\right) 1+\left(v_{2} w_{3}-v_{3} w_{2}\right) e_{2} e_{3}$ $+\left(v_{3} w_{1}-v_{1} w_{3}\right) e_{3} e_{1}+\left(v_{1} w_{2}-v_{2} w_{1}\right) e_{1} e_{2}$ We will see that this corresponds to

$$
v w=v \bullet w+v \wedge w
$$

manns inner and outer products and that it combines the scalar and the vector product of conventional vector algebra.

$$
a=a_{1} e_{1}+a_{2} e_{2} \quad a_{1}, a_{2} \in \mathscr{R}
$$

as we could see from the right figure. A general element called multivector contains also a scalar and a bivector part.
$A=a_{0} 1+\left(a_{1} e_{1}+a_{2} e_{2}\right)+a_{3} i$
$A=A_{0}+A_{1}+A_{2}$
A_{0} describes the scalar part, A_{1} the vector part and A_{2} the bivector part.

1.2 Clifford algebra in 2D

The relation between the different products in the motivation holds for different matrix representations. For a general definition in 2D we use a set of matrices $\left\{e_{1}, e_{2}\right\}$ with the following properties

$$
\begin{gathered}
e_{1} e_{2}+e_{2} e_{1}=0 \\
e_{j}^{2}=1 \quad \text { for } j=1,2 \\
e_{1} e_{2} \neq \pm 1
\end{gathered}
$$

where 1 notes the identity matrix and $i=e_{1} e_{2}$ is called a bivector.

The following grade projectors allow to deal with this parts in

 applications.$\langle\bullet\rangle_{0}: G_{2} \rightarrow \Re \subset G_{2}$ $A \rightarrow A_{0}=a_{0}{ }^{1}$
$\langle\bullet\rangle_{1}: G_{2} \rightarrow \Re^{2} \subset G_{2}$ $A \rightarrow A_{1}=a_{1} e_{1}+a_{2} e_{2}$
$\langle\bullet\rangle_{2}: G_{2} \rightarrow \Re i \subset G_{2}$ $A \rightarrow A_{2}=a_{3}{ }^{i}$

The algebra G_{2} is built by real linear combinations of the basis elements $\left\{1, e_{1}, e_{2}, i\right\}$.

The i is interpreted as positive oriented area segment with area 1 .

The inner and outer products of Grassmann can now be defined
from the matrix (Clifford) product of two vectors

$$
\begin{aligned}
& a \wedge b=\frac{1}{2}(a b-b a)=\langle a b\rangle_{2} \\
& a \bullet b=\frac{1}{2}(a b+b a)=\langle a b\rangle_{0}
\end{aligned}
$$

and are extended to the other grades by setting

$$
A_{r} \wedge A_{s}=\left\langle A_{r} A_{s}\right\rangle_{r+}
$$

$$
A_{r} \bullet A_{s}=\left\langle A_{r} A_{s}\right\rangle_{|r-s|}
$$

so that general inner and outer products can be defined by linear so that general inner and outer products can be defined by
combination of the products of the parts with pure grade.

The geometric interpretation of this products is shown in the
following figures : following figures

14

1.3 Clifford algebra in 3D

Geometry in three dimensions has to deal with real ratios (scalars), directed line segments (vectors), directed area segments (bivectors) and directed volumes (trivectors).
G_{3} is constructed by any set of matrices $\left\{e_{1}, e_{2}, e_{3}\right\}$ satisfying

$$
\begin{gathered}
e_{1} e_{2}+e_{2} e_{1}=e_{3} e_{1}+e_{1} e_{3}=e_{2} e_{3}+e_{3} e_{2}=0 \\
e_{j}^{2}=1 \quad \text { for } j=1,2,3 \\
\\
e_{1} e_{2} e_{3} \neq \pm 1
\end{gathered}
$$

It is important to see that the inner product is not always the con-
ventional scalar product. If, for example, one takes the inner prod uct of a vector with a bivector, one will get a vector. To introduce scalar product one defines the reversion operation.

$$
A^{\dagger}=A_{0}+A_{1}-A_{2}
$$

Then one defines the scalar product of multivectors A, B by

$$
A * B=\left\langle A B^{\dagger}\right\rangle_{0}=a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

which gives for vectors the usual scalar product

and contains all real linear combinations of

$$
\left\{1, e_{1}, e_{2}, e_{3}, e_{1} e_{2}, e_{3} e_{1}, e_{2} e_{3}, i=e_{1} e_{2} e_{3}\right\}
$$

The magnitude of a multivector is defined as usual.

$$
|A|=+\sqrt{A^{*} A}=\sqrt{a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

Again, we have the conventional meaning for vectors.

A geometric interpretation is given by the following figures

$e_{1} e_{2}$ describes an area segment with positive orientation and area 1 in the e_{1}, e_{2}-plane.
$e_{3} e_{1}$ stands for a positive oriented area segment in the e_{1}, e_{3}-plane
and $e_{2} e_{3}$ for a positive oriented area segment in the e_{2}, e_{3}-plane.
The i is interpreted as an oriented volume segment with volume 1 and positive orientation.

> The Hodge-duality $$
e_{1} e_{2}=i e_{3} \quad e_{3} e_{1}=i e_{2} \quad e_{2} e_{3}=i e_{1}
$$

allows to describe a general multivector as
$A=\alpha+a+i(\beta+b)$
where

$$
\alpha, \beta \in \mathfrak{R}, \quad a, b \in \mathfrak{R}^{3} \subset G_{3}
$$

for vectors $a, b \in \mathfrak{R}^{3} \subset G_{3}$
One has again the formula

$$
a \bullet b+a \wedge b=a b
$$

The cross product is related to this products in the following way

$$
a \times b=i(a \wedge b)
$$

and a comparison with the motivation shows that it is really the conventional cross product.

The next figure illustrates the relation between the outer and the cross product.

Again, it is useful to define grade projectors to describe the part of a multivector with pure dimensio
$\langle A\rangle_{0}=\alpha \quad\langle A\rangle_{1}=a \quad\langle A\rangle_{2}=i b \quad\langle A\rangle_{3}=\beta$
The inner and outer products of Grassmann are defined as
$a \wedge b=\frac{1}{2}(a b-b a)=\langle a b\rangle_{2}$
$a \bullet b=\frac{1}{2}(a b+b a)=\langle a b\rangle_{0}$

For inner and outer products of a vector a and a bivector B, we set
$a \bullet B=\frac{1}{2}(a B-B a)$,
$a \wedge B=\frac{1}{2}(a B+B a)$.
The general inner and outer products are defined by
$A_{r} \wedge A_{s}=\left\langle A_{r} A_{s}\right\rangle_{r+s}$
$A_{r} \bullet A_{s}=\left\langle A_{r} A_{s}\right\rangle_{r-s}$
for elements of pure grade r and s and extended by linear composifor elements of pure grade r a
tion exactly as in the 2 D -case.

The reversion
$A^{\dagger}=\alpha+a-i(\beta+b)$
lows The scalar product of two multivectors
$A=\alpha+a+i(\beta+b), B=\gamma+c+i(\delta+d)$
is defined by
$A^{*} B=\left\langle A B^{+}\right\rangle_{0}=\alpha \gamma+a \bullet c+\beta \delta+b \bullet d$

For the magnitude one sets

$|A|=+\sqrt{A^{*} A}=\sqrt{\alpha^{2}+a^{2}+\beta^{2}+b^{2}}$ and this is again the usual length if A is a vector

