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1.1 Motivation

We start our considerations in the euclidean plane.
In an orthonormal basis , we may describe a vector

 as

With the standard description as column vectors we get
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If we would use square matrices, we could take

This allows a multiplication of vectors
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With a suitable choice of the remaining basis matrices we get

where  and  denote the inner and outer products of Grassmann.
In this case we know them as scalar product and vector product in
two dimensions.

Conclusion : We get a multiplication of vectors unifying the scalar
product and the vector product in two dimensions.
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In euclidean 3-space, we may use as description
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For the matrix product of two vectors, we get

and with

vw
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v3w1 v1w3–( )– v2w3 v3w2–( )– v1w2 v2w1– v1w1 v2w2 v3w3+ +

=

e1e2

0 1– 0 0

1 0 0 0

0 0 0 1–

0 0 1 0

= e, 3e1

0 0 0 1

0 0 1 0

0 1– 0 0

1– 0 0 0

= e, 2e
3

0 0 1– 0

0 0 0 1

1 0 0 0

0 1– 0 0

=

http://www.eg.org
http://diglib.eg.org


8

this gives

We will see that this corresponds to

with Grassmanns inner and outer products and that it combines the
scalar and the vector product of conventional vector algebra.

vw v1w1 v2w2 v3w3+ +( ) 1 v2w3 v3w2–( ) e2e3+=

v3w1 v1w3–( ) e3e1 v1w2 v2w1–( ) e1e2+ +

vw v w• v w∧+=
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1.2 Clifford algebra in 2D

The relation between the different products in the motivation holds
for different matrix representations. For a general definition in 2D

we use a set of matrices  with the following properties :

where 1 notes the identity matrix and  is called a bivec-
tor.
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The algebra  is built by real linear combinations of the basis ele-

ments .

The i is interpreted as positive oriented area segment with area 1.

G2

1 e1 e2 i, , ,{ }

e

e

O

2

1

i
a

1a e

a e2 2

1

11

We will see a different interpretation in a later section.
The 2D-vectors are modeled by :

as we could see from the right figure. A general element called
multivector contains also a scalar and a bivector part.

 describes the scalar part,  the vector part and  the bivector

part.

a a1e1 a2e2+= a1 a2, ℜ∈

A a01 a1e1 a2e2+( ) a3i+ +=

A A0 A1 A2+ +=

A0 A1 A2
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The following grade projectors allow to deal with this parts in
applications.

•〈 〉 0: G2 ℜ G⊂ 2→

A A0 a=
0
1→

•〈 〉 1: G2 ℜ 2
G2⊂→

A A1 a=
1
e1 a2e2+→

•〈 〉 2: G2 ℜ i G2⊂→

A A2 a=
3
i→
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The inner and outer products of Grassmann can now be defined
from the matrix (Clifford) product of two vectors.

and are extended to the other grades by setting

so that general inner and outer products can be defined by linear
combination of the products of the parts with pure grade.

a b∧ 1
2
--- ab ba–( ) ab〈 〉 2==

a b• 1
2
--- ab ba+( ) ab〈 〉 0==

Ar As∧ ArAs〈 〉
r s+

=

Ar As• ArAs〈 〉
r s–

=
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The geometric interpretation of this products is shown in the
following figures :
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It is important to see that the inner product is not always the con-
ventional scalar product. If, for example, one takes the inner prod-
uct of a vector with a bivector, one will get a vector. To introduce a
scalar product one defines the reversion operation.

Then one defines the scalar product of multivectors A, B by

which gives for vectors the usual scalar product.

A† A0 A1 A2–+=

A * B AB†〈 〉 0 a0b0 a1b1 a2b2 a3b3+ + += =
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The magnitude of a multivector is defined as usual.

Again, we have the conventional meaning for vectors.

A + A * A a0
2

a1
2

a2
2

a3
2

+ + +==
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1.3 Clifford algebra in 3D

Geometry in three dimensions has to deal with real ratios (scalars),
directed line segments (vectors), directed area segments (bivectors)
and directed volumes (trivectors).

 is constructed by any set of matrices  satisfyingG3 e1 e2 e3, ,{ }

e1e2 e2e1+ e3e1 e1e3+ e2e3 e3e2+ 0= = =
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2

1= for j 1 2 3, ,=
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and contains all real linear combinations of

1 e1 e2 e3 e1e2 e3e1 e2e3 i e1e2e3=, , , , , , ,{ } .
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A geometric interpretation is given by the following figures:

 describes an area segment with positive orientation and area 1

in the -plane.
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 stands for a positive oriented area segment in the -plane

and  for a positive oriented area segment in the -plane.

The i is interpreted as an oriented volume segment with volume 1
and positive orientation.

e3e1 e1 e3,

e2e3 e2 e3,
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The Hodge-duality

allows to describe a general multivector as

where

e1e2 ie3= e3e1 ie2= e2e3 ie1=

A α a i β b+( )+ +=

α β, ℜ∈ a b, ℜ 3
G3⊂∈,
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Again, it is useful to define grade projectors to describe the part of
a multivector with pure dimension.

The inner and outer products of Grassmann are defined as

A〈 〉 0 α= A〈 〉 1 a= A〈 〉 2 ib= A〈 〉 3 β=

a b∧ 1
2
--- ab ba–( ) ab〈 〉 2==

a b• 1
2
--- ab ba+( ) ab〈 〉 0==
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for vectors .

One has again the formula

The cross product is related to this products in the following way

and a comparison with the motivation shows that it is really the
conventional cross product.

a b, ℜ 3
G3⊂∈

a b• a b∧+ ab .=

a b× i a b∧( )=
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The next figure illustrates the relation between the outer and the
cross product.
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For inner and outer products of a vector a and a bivector B, we set

The general inner and outer products are defined by

for elements of pure grade r and s and extended by linear composi-
tion exactly as in the 2D-case.

a B• 1
2
--- aB Ba–( ) ,=

a B∧ 1
2
--- aB Ba+( ) .=

Ar As∧ ArAs〈 〉
r s+

=

Ar As• ArAs〈 〉
r s–

=
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The reversion

allows the definition of the scalar product.
The scalar product of two multivectors

is defined by

A† α a i β b+( )–+=

A α a i β b+( )+ += B γ c i δ d+( )+ +=,

A * B AB
+〈 〉 0 αγ a c• βδ b d•+ + += =
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For the magnitude one sets

and this is again the usual length if A is a vector.

A + A * A α2
a

2 β2
b

2
+ + +==


