

Fig 1: The interpolation of a set of sample points by a triangle mesh

Fig 2: The interpolation of a set of sample points may have the wrong smoothness or connectivity.

Fig 3: A simple triangle mesh is a planar triangle graph.

Fig 4: Splitting a triangle to remove a T-junction

Fig 5: Local border operators.

Fig 7: Typical starting Edgebreaker sequence, producing the clers stream CCCCCRCCRCRC

Fig 6: Edgebreaker CLERS states and labels.

Fig 8: An S triangle early in the spiral.

Fig 9: A more complex Edgebreaker beginning producing the clers stream CCCRCCCRCCCRCCCRRLCCCRCSLE

Fig 10: Typical ending Edgebreaker sequence, producing the clers stream CRSRLECRRRLE

Fig 11: Free border orientation for Wrap\&Zip. Initial triangle on the left.

Fig 12: Zipping up the triangle tree.

Fig 13: Zipping up the triangle tree.

Fig 14: Non-manifold solid with a non-manifold edge (left) and vertex (right).

Fig 15: A non-manifold solid.

Fig 16: A non-manifold solid.

Fig 17: A triangle mesh with a hole

Fig 18: Filling the hole with a dummy vertex.

Fig 19: Discovering handles when returning to an S triangle.

B

Fig 20: Parallelogram used for predicting a vertex.

Fig 21: Vertex insertion (the inverse of an edge collapse).

Fig 22: Vertex clustering.

Fig 23: Error/time evolution.
Bits transmitted (or time)

Fig 24: Progressive transmission (crude model plus upgrades)

Fig 25: Triangles inserted in one batch

Fig 26: Models used to test our progressive transmission

