
Eurographics 98
Lisbon Portugal

Introduction to VRML 97

Lecturer

David R. Nadeau

nadeau@sdsc.edu
http://www.sdsc.edu/~nadeau

San Diego Supercomputer Center
University of California at San Diego

Tutorial notes sections

Abstract
Preface
Lecturer information
Using the VRML examples
Using the JavaScript examples
Using the Java examples
Tutorial slides

Introduction to VRML 97

Abstract
VRML (the Virtual Reality Modeling Language) is an international standard for describing 3-D shapes
and scenery on the World Wide Web. VRML’s technology has very broad applicability, including
web-based entertainment, distributed visualization, 3-D user interfaces to remote web resources, 3-D
collaborative environments, interactive simulations for education, virtual museums, virtual retail spaces,
and more. VRML is a key technology shaping the future of the web.

Participants in this tutorial will learn how to use VRML 97 (a.k.a. ISO VRML, VRML 2.0, and Moving
Worlds) to author their own 3-D virtual worlds on the World Wide Web. Participants will learn VRML
concepts and terminology, and be introduced to VRML’s text format syntax. Participants also will learn
tips and techniques for increasing performance and realism. The tutorial includes numerous VRML
examples and information on where to find out more about VRML features and use.

Introduction to VRML 97

Preface
Welcome to the Introduction to VRML 97 tutorial notes! These tutorial notes have been written to
give you a quick, practical, example-driven overview of VRML 97, the Web’s Virtual Reality
Modeling Language. Included are over 500 pages of tutorial material with nearly 200 images and
over 100 VRML examples.

To use these tutorial notes you will need an HTML Web browser with support for viewing VRML
worlds. An up to date list of available VRML browsing and authoring software is available at:

The VRML Repository
(http://vrml.sdsc.edu)

What’s included in these notes

These tutorial notes primarily contain two types of information:

1. General information, such as this preface
2. Tutorial slides and examples

The tutorial slides are arranged as a sequence of 500+ hyper-linked pages containing VRML
syntax notes, VRML usage comments, or images of sample VRML worlds. Clicking on a sample
world’s image loads the VRML world into your browser for you to examine yourself.

Clicking on a sample world’s file name, shown underneath the image, loads into your browser a
text page showing the VRML code itself. Using these links, or text editor, you can view the
VRML code and see how a particular effect is created. In most cases, the VRML files contain
extensive comments providing information about the techniques the file illustrates.

The tutorial notes provide a necessarily terse overview of VRML. It is recommended that you
invest in one of the VRML books on the market to get a more thorough coverage of the language.
The book we recommend is one we co-authored:

The VRML 2.0 Sourcebook
by Andrea L. Ames, David R. Nadeau, and John L. Moreland
published by John Wiley & Sons

Several other good VRML books are on the market as well.

A word about VRML versions

VRML has evolved through several versions of the language, starting way back in late 1994.
These tutorial notes cover VRML 97, the latest version of the language. To provide context, the
following table provides a quick overview of these VRML versions and the names they have
become known by.

Version/Released Comments

VRML 1.0
May 1995

Begun in late 1994, the first version of VRML was largely based upon the
Open Inventor file format developed by Silicon Graphics Inc. (SGI). The
VRML 1.0 specification was completed in May 1995 and included support
for shape building, lighting, and texturing.

VRML 1.0 browser plug-ins became widely available by late 1995, though
few ever supported the full range of features defined by the VRML 1.0
specification.

VRML 1.0c
January 1996

As vendors began producing VRML 1.0 browsers, a number of
ambiguities in the VRML 1.0 specification surfaced. These problems were
corrected in a new VRML 1.0c (clarified) specification released in January
1996. No new features were added to the language in VRML 1.0c.

VRML 1.1
canceled

In late 1995, discussion began on extensions to the VRML 1.0
specification. These extensions were intended to address language features
that made browser implementation difficult or inefficient. The extended
language was tentatively dubbed VRML 1.1. These enhancements were
later dropped in favor of forging ahead on VRML 2.0 instead.

No VRML 1.1 browsers exist.

Moving Worlds
January 1996

VRML 1.0 included features for building static, unchanging worlds
suitable for architectural walk-throughs and some scientific visualization
applications. To extend the language to support animation and interaction,
the VRML architecture group made a call for proposals for a language
redesign. Silicon Graphics, Netscape, and others worked together to create
the Moving Worlds proposal, submitted in January 1996. That proposal
was later accepted and became the starting point for developing VRML
2.0. The final VRML 2.0 language specification is still sometimes referred
to as the Moving Worlds specification, though it differs significantly from
the original Moving Worlds proposal.

VRML 2.0
August 1996

After seven months of intense effort by the VRML community, the
Moving Worlds proposal evolved to become the final VRML 2.0
specification, released in August 1996. The new specification redesigned
the VRML syntax and added an extensive set of new features for shape
building, animation, interaction, sound, fog, backgrounds, and language
extensions.

While multiple VRML 2.0 browsers exist today, as of this writing, none
are complete. All of the browsers are missing a few features. Fortunately,
most of the missing features are obscure aspects of VRML.

VRML 97 In early 1997, efforts got under way to present the VRML 2.0 specification

December 1997 to the International Standards Organization (ISO) which oversees most of
the major language specifications in use in the computing community. The
ISO version of VRML 2.0 was reviewed and the specification significantly
rewritten to clarify issues. A few minor changes to the language were also
made. The final ISO VRML was dubbed VRML 97. The VRML 97
specification features finalized in March 1997 and its explanitory text
finalized in September 1997. This specification was ratified by ISO in
December 1997.

Most major VRML 2.0 browsers are now VRML 97 browsers.

VRML 1.0 and VRML 2.0 differ radically in syntax and features. A VRML 1.0 browser cannot
display VRML 2.0 worlds. Most VRML 2.0 browsers, however, can display VRML 1.0 worlds.

VRML 97 differs in a few minor ways from VRML 2.0. In most cases, a VRML 2.0 browser will
be able to correctly display VRML 97 files. However, for 100% accuracy, you should have a
VRML 97 compliant browser for viewing the VRML files contained within these tutorial notes.

How these tutorial notes were created

These tutorial notes were developed and tested on a PC with a Diamond Multimedia FireGL 1000
3D accelerator card, and on a Silicon Graphics High Impact UNIX workstation. HTML and
VRML text was hand-authored using a text editor. In some cases Perl and C programs were used
to automatically generate smooth surfaces and animation paths.

A Perl script, called mktalk , developed by John Moreland, was used to process raw tutorial notes
text and produce the 500+ individual HTML files, one per tutorial slide.

HTML text was displayed using Netscape Navigator 4.04 on Silicon Graphics and PC systems and
Microsoft Internet Explorer 4.01 on PC systems. Colors were checked for viewability in 24-bit,
16-bit, and 8-bit display modes on a PC. Text sizes were chosen for viewability at a normal 12
point font on-screen, and at an 24 point font for presentation during the tutorial. The large text,
white-on-black colors, and terse language are used to insure that slides are readable when
displayed for the tutorial audience.

VRML worlds were displayed on Silicon Graphics systems using the Silicon Graphics Cosmo
Player 1.02 VRML 97 compliant browser for Netscape Navigator. The same worlds were
displayed on PC systems using Silicon Graphics Cosmo Player 2.0 for Netscape Navigator and
Microsoft Internet Explorer.

Texture images were created using Adobe PhotoShop 4.0 on a PC with help from KAI’s
PowerTools 3.0 from MetaTools. Image processing was also performed using the Image Tools
suite of applications for UNIX workstations from the San Diego Supercomputer Center.

PDF tutorial notes for printing were created by dumping individual tutorial slides to PostScript on
a Silicon Graphics workstation. The PostScript was transferred to a PC where it was converted to
PDF and assembled into a single PDF file using Adobe’s Distiller and Exchange.

Use of these tutorial notes

Can you use these tutorial notes for your own purposes? The answer is:

Parts of these tutorial notes are copyright (c) 1997 by David R. Nadeau, (c) 1997 John L.
Moreland, and (c) 1997 Michael M. Heck. Users and possessors of these tutorial notes are
hereby granted a nonexclusive, royalty-free copyright and design patent license to use this
material in individual applications. License is not granted for commercial resale, in whole or
in part, without prior written permission from the authors. This material is provided "AS IS"
without express or implied warranty of any kind.

You are free to use these tutorial notes in whole or in part to help you teach your own VRML
tutorial. You may translate these notes into other languages and you may post copies of these notes
on your own Web site, as long as the above copyright notice is included as well. You may not,
however, sell these tutorial notes for profit or include them on a CD-ROM or other media product
without written permission.

If you use these tutorial notes, please:

1. Give credit for the original material
2. Tell us since we like hearing about the use of the material!

If you find bugs in the notes, please tell us. We have worked hard to try and make the notes
bug-free, but if something slipped by, we’d like to fix it before others are confused by the mistake.

Contact
For bug reports, comments, and questions, please contact:

David R. Nadeau
San Diego Supercomputer Center
P.O. Box 85608
San Diego, CA 92186-9784

UPS, Fed Ex: 10100 Hopkins Dr.
La Jolla, CA 92093-0505

(619) 534-5062
FAX: (619) 534-5152

nadeau@sdsc.edu
http://www.sdsc.edu/~nadeau

Introduction to VRML 97

Lecturer Information
David R. Nadeau

Title Principal Scientist

Affiliation San Diego Supercomputer Center (SDSC)
University of California, San Diego (UCSD)

Address P.O. Box 85608
San Diego, CA 92186-9784

UPS, Fed Ex: 10100 Hopkins Dr.
La Jolla, CA 92093-0505

Work phone (619) 534-5062

Fax phone (619) 534-5152

Email nadeau@sdsc.edu

Home page http://www.sdsc.edu/~nadeau

Dave Nadeau is a principal scientist at the San Diego Supercomputer Center (SDSC), a national
research center specializing in computational science and engineering, located on the campus of
the University of California, San Diego (UCSD). Specializing in scientific visualization and virtual
reality, he is the author of technical papers and articles on 3D graphics and VRML and is a
co-author of two books on VRML (The VRML Sourcebook and The VRML 2.0 Sourcebook,
published by John Wiley & Sons). He is the founder and lead librarian for The VRML Repository
and The Java3D Repository, principal Web sites for information on VRML, Java3D, and related
software.

Dave has taught VRML at multiple conferences including SIGGRAPH 96-97, WebNet 96-97,
VRML 97-98, WMC/SCS 98, Eurographics 97, and Visualization 97. He was a co-chair for the
VRML Behavior Workshop in October 1995, the first workshop on VRML behavior technology,
and a co-chair for the VRML 95 conference in December 1995, the first conference on VRML. He
was on the program committees for VRML 97 and VRML 98 and is SDSC’s representative to the
VRML Consortium.

Dave holds a B.S. in Aerospace Engineering from the University of Colorado, Boulder, an M.S. in
Mechanical Engineering from Purdue University, and is in the PhD program in Electrical and
Computer Engineering at the University of California, San Diego.

Introduction to VRML 97

Using the VRML examples
These tutorial notes include over a hundred VRML files. Almost all of the provided worlds are
linked to from the tutorial slides pages.

VRML support

As noted in the preface to these tutorial notes, this tutorial covers VRML 97, the ISO standard
version of VRML 2.0. There are only minor differences between VRML 97 and VRML 2.0, so
any VRML 97 or VRML 2.0 browser should be able to view any of the VRML worlds contained
within these tutorial notes.

The VRML 97 (and VRML 2.0) language specifications are complex and filled with powerful
features for VRML content authors. Unfortunately, the richness of the language makes
development of a robust VRML browser difficult. As of this writing, there are nearly a dozen
VRML browsers on the market, but none support all features in VRML 97 (despite press releases
to the contrary). Fortunately, most of the features not yet fully supported are fairly obscure.

All VRML examples in these tutorial notes have been extensively tested and are believed to be
correct. Chances are that if one of the VRML examples doesn’t look right, the problem is with
your VRML browser and not with the example. It’s a good idea to read carefully the release notes
for your browser to see what features it does and does not support. It’s also a good idea to
regularly check your VRML browser vendor’s Web site for updates. The industry is moving very
fast and often produces new browser releases every month or so.

As of this writing, Cosmo Software’s Cosmo Player for PCs, Macs, and Silicon Graphics UNIX
workstations is the fastest, most complete, and most robust VRML 97 browser available. It is this
browser that was used to test this tutorial’s VRML examples.

What if my VRML browser doesn’t support a VRML feature?

If your VRML browser doesn’t support a particular VRML 97 feature, then those worlds that use
the feature will not load properly. Some VRML browsers display an error window when they
encounter an unsupported feature. Other browsers silently ignore features they do not support yet.

When your VRML browser encounters an unsupported feature, it may elect to reject the entire
VRML file, or it may load only those parts of the world that it understands. When only part of a
VRML file is loaded, those portions of the world that depend upon the unsupported features will
display incorrectly. Shapes may be in the wrong position, have the wrong size, be shaded
incorrectly, or have the wrong texture colors. Animations may not run, sounds may not play, and
interactions may not work correctly.

For most worlds an image of the world is included on the tutorial slide page to give you an idea of
what the world should look like. If your VRML browser’s display doesn’t look like the picture,
chances are the browser is missing support for one or more features used by the world. Alternately,

the browser may simply have a bug or two.

In general, VRML worlds later in the tutorial use features that are harder for vendors to implement
than those features used earlier in the tutorial. So, VRML worlds at the end of the tutorial are more
likely to fail to load properly than VRML worlds early in the tutorial.

Introduction to VRML 97

Using the JavaScript examples
These tutorial notes include several VRML worlds that use JavaScript program scripts within
Script nodes. The text for these program scripts is included directly within the Script node
within the VRML file.

JavaScript support

The VRML 97 specification does not require that a VRML browser support the use of JavaScript
to create program scripts for Script nodes. Fortunately, most VRML browsers do support
JavaScript program scripts, though you should check your VRML browser’s release notes to be
sure it is JavaScript-enabled.

Some VRML browsers, particularly those from Cosmo Software (Silicon Graphics), support a
derivative of JavaScript called VRMLscript. The language is essentially identical to JavaScript.
Because of Cosmo Software’s strength in the VRML market, most VRML browser vendors have
modified their VRML browsers to support VRMLscript as well as JavaScript.

JavaScript and VRMLscript program scripts are included as text within the url field of a Script

node. To indicate the program script’s language, the field value starts with either "javascript: "
for JavaScript, or "vrmlscript: " for VRMLscript, like this:

Script {
 field SFFloat bounceHeight 1.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url " vrmlscript:
 function set_fraction(frac, tm) {
 y = 4.0 * bounceHeight * frac * (1.0 - frac);
 value_changed[0] = 0.0;
 value_changed[1] = y;
 value_changed[2] = 0.0;
 }"
}

For compatibility with Cosmo Software VRML browsers, all JavaScript program script examples
in these notes are tagged as "vrmlscript: ", like the above example. If you have a VRML browser
that does not support VRMLscript, but does support JavaScript, then you can convert the examples
to JavaScript simply by changing the tag "vrmlscript: " to "javascript: " like this:

Script {
 field SFFloat bounceHeight 1.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url " javascript:
 function set_fraction(frac, tm) {
 y = 4.0 * bounceHeight * frac * (1.0 - frac);
 value_changed[0] = 0.0;
 value_changed[1] = y;

 value_changed[2] = 0.0;
 }"
}

What if my VRML browser doesn’t support JavaScript?

If your VRML browser doesn’t support JavaScript or VRMLscript, then those worlds that use
these languages will produce an error when loaded into your VRML browser. This is unfortunate
since JavaScript or VRMLscript is an essential feature that all VRML browsers should support.
Perhaps you should consider getting a different VRML browser...

If you can’t get another VRML browser right now, there are only a few VRML worlds in these
tutorial notes that you will not be able to view. Those worlds are contained as examples in the
following tutorial sections:

Introducing script use
Writing program scripts with JavaScript
Creating new node types

So, if you don’t have a VRML browser with JavaScript or VRMLscript support, just skip the
above sections and everything will be fine.

Introduction to VRML 97

Using the Java examples
These tutorial notes include a few VRML worlds that use Java program scripts within Script

nodes. The text for these program scripts is included in files with .java file name extensions.
Before use, you will need to compile these Java program scripts to Java byte-code contained in
files with .class file name extensions.

Java support

The VRML 97 specification does not require that a VRML browser support the use of Java to
create program scripts for Script nodes. Fortunately, most VRML browsers do support Java
program scripts, though you should check your VRML browser’s release notes to be sure it is
Java-enabled.

In principle, all Java-enabled VRML browsers identically support the VRML Java API as
documented in the VRML 97 specification. Similarly, in principle, a compiled Java program script
using the VRML Java API can be executed on any type of computer within any brand of VRML
browser

In practice, neither of these ideal cases occurs. The Java language is supported somewhat
differently on different platforms, particularly as the community transitions from Java 1.0 to Java
1.1 and beyond. Additionally, the VRML Java API is implemented somewhat differently by
different VRML browsers, making it difficult to insure that a compiled Java class file will work
for all VRML browsers available now and in the future.

Because of Java incompatibilities observed with current VRML browsers, these tutorial notes
include source Java files, but not compiled Java class files. Before use, you will need to compile
the Java program scripts yourself on your platform with your VRML browser and your version of
the Java language and support tools.

Compiling Java

To compile the Java examples, you will need:

The VRML Java API class files for your VRML browser
A Java compiler

All VRML browsers that support Java program scripts supply their own set of VRML Java API
class files. Typically these are automatically installed when you install your VRML browser.

There are multiple Java compilers available for most platforms. Sun Microsystems provides the
Java Development Kit (JDK) for free from its Web site at http://www.javasoft.com. The JDK
includes the javac compiler and instructions on how to use it. Multiple commercial Java
development environments are available from Microsoft, Silicon Graphics, Symantec, and others.
An up to date list of available Java products is available at Gamelan’s Web site at

http://www.gamelan.com.

Once you have the VRML Java API class files and a Java compiler, you will need to compile the
supplied Java files. Each platform and Java compiler is different. You’ll have to consult your
software’s manuals.

Once compiled, place the .class files in the examples folder along with the other tutorial
examples. Now, when you click on a VRML world using a Java program script, the class files will
be automatically loaded and the example will run.

What if my VRML browser doesn’t support Java ?

If your VRML browser doesn’t support Java, then those worlds that use Java will produce an error
when loaded into your VRML browser. This is unfortunate since Java is an essential feature that
all VRML browsers should support. Perhaps you should consider getting a different brand of
VRML browser...

What if I don’t compile the Java program scripts?

If you have a VRML browser that doesn’t support Java, or if if you don’t compile the Java
program scripts, those worlds that use Java will produce an error when loaded into your VRML
browser. Fortunately, Java program scripts are only used in the Writing program scripts with Java
section of the tutorial slides. So, if you don’t compile the Java program scripts, then just skip the
VRML examples in that section and everything will be fine.

Title Page

Introduction to VRML 97

Table of contents

Morning

Section 1 - Shapes, geometry, and appearance

Welcome! 1
Introducing VRML 5
Building a VRML world 16
Building primitive shapes 28
Transforming shapes 49
Controlling appearance with materials 71
Grouping nodes 84
Naming nodes 101
Summary examples 111

Section 2 - Animation, sensors, and geometry

Introducing animation 116
Animating transforms 133
Sensing viewer actions 161
Building shapes out of points, lines, and faces 175
Building elevation grids 199
Building extruded shapes 208
Controlling color on coordinate-based geometry 221
Controlling shading on coordinate-based geometry 238
Summary examples 253

Afternoon

Section 3 - Textures, lights, and environment

Mapping textures 259
Controlling how textures are mapped 276
Lighting your world 299
Adding backgrounds 311
Adding fog 325

Adding sound 333
Controlling the viewpoint 352
Controlling navigation 358
Sensing the viewer 366
Summary examples 382

Section 4 - Scripts and prototypes

Controlling detail 387
Introducing script use 399
Writing program scripts with JavaScript 409
Writing program scripts with Java 435
Accessing the browser from JavaScript and Java 459
Creating new node types 471
Providing information about your world 491
Summary examples 494
Miscellaneous extensions 501
Conclusion 506

1

Welcome!

 Introduction to VRML 97 2
 Schedule for the day 3
 Tutorial scope 4

2

Welcome!

Introduction to VRML 97

Welcome to the tutorial!

Dave Nadeau
San Diego Supercomputer Center
University of California at San Diego

3

Welcome!

Schedule for the day

Section 1 Shapes, geometry, appearance

Break

Section 2 Animation, sensors, geometry

Lunch

Section 3 Textures, lights, environment

Break

Section 4 Scripts, prototypes

4

Welcome!

Tutorial scope

This tutorial covers VRML 97
The ISO standard revision of VRML 2.0

You will learn:
VRML file structure
Concepts and terminology
Most shape building syntax
Most sensor and animation syntax
Most program scripting syntax
Where to find out more

5

Introducing VRML

 What is VRML? 6
 What do I need to use VRML? 7
 Examples 8
 How can VRML be used on a Web page? 9
 What do I need to develop in VRML? 10
 Should I use a text editor? 11
 Should I use a world builder? 12
 Should I use a 3D modeler and format translator? 13
 Should I use a shape generator? 14
 How do I get VRML software? 15

6

Introducing VRML

What is VRML?

VRML is:
A simple text language for describing 3-D shapes and
interactive environments

VRML text files use a .wrl extension

7

Introducing VRML

What do I need to use VRML?

You can view VRML files using a VRML browser:
A VRML helper-application
A VRML plug-in to an HTML browser

You can view VRML files from your local hard disk, or from the
Internet

8

Introducing VRML

Examples

[temple.wrl] [cutplane.wrl]

[spiral.wrl] [floater.wrl]

9

Introducing VRML

How can VRML be used on a Web page?

Fill Web page [boxes.wrl]

Embed into Web page [boxes1.htm]

Fill Web page frame [boxes2.htm]

Embed into Web page frame [boxes3.htm]

Embed multiple times [boxes4.htm]

10

Introducing VRML

What do I need to develop in VRML?

You can construct VRML files using:
A text editor
A world builder application
A 3D modeler and format translator
A shape generator (like a Perl script)

11

Introducing VRML

Should I use a text editor?

Pros:
No new software to buy
Access to all VRML features
Detailed control of world efficiency

Cons:
Hard to author complex 3D shapes
Requires knowledge of VRML syntax

12

Introducing VRML

Should I use a world builder?

Pros:
Easy 3-D drawing and animating user interface
Little need to learn VRML syntax

Cons:
May not support all VRML features
May not produce most efficient VRML

13

Introducing VRML

Should I use a 3D modeler and format translator?

Pros:
Very powerful drawing and animating features
Can make photo-realistic images too

Cons:
May not support all VRML features
May not produce most efficient VRML
Not designed for VRML
Often a one-way path from 3D modeler into VRML
Easy to make shapes that are too complex

14

Introducing VRML

Should I use a shape generator?

Pros:
Easy way to generate complex shapes

Fractal mountains, logos, etc.
Generate VRML from CGI Perl scripts
Extend science applications to generate VRML

Cons:
Only suitable for narrow set of shapes
Best used with other software

15

Introducing VRML

How do I get VRML software?

The VRML Repository at:

http://vrml.sdsc.edu

maintains uptodate information and links for:
Browser software
World builder software
File translators
Image editors
Java authoring tools
Texture libraries

Sound libraries
Object libraries
Specifications
Tutorials
Books
and more...

16

Building a VRML world

 VRML file structure 17
 A sample VRML file 18
 Understanding the header 19
 Understanding UTF8 20
 Using comments 21
 Using nodes 22
 Using node type names 23
 Using fields and values 24
 Using field names 25
 Using fields and values 26
 Summary 27

17

Building a VRML world

VRML file structure

VRML files contain:
The file header
Comments - notes to yourself
Nodes - nuggets of scene information
Fields - node attributes you can change
Values - attribute values
more. . .

18

Building a VRML world

A sample VRML file

#VRML V2.0 utf8
A Cylinder
Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cylinder {
 height 2.0
 radius 1.5
 }
}

19

Building a VRML world

Understanding the header

#VRML V2.0 utf8

#VRML: File contains VRML text
V2.0 : Text conforms to version 2.0 syntax
utf8 : Text uses UTF8 character set

20

Building a VRML world

Understanding UTF8

utf8 is an international character set standard

utf8 stands for:
UCS (Universal Character Set) Transformation Format, 8-bit

Encodes 24,000+ characters for many languages
ASCII is a subset

21

Building a VRML world

Using comments

A Cylinder

Comments start with a number-sign (#) and extend to the end of
the line

22

Building a VRML world

Using nodes

Cylinder {
}

Nodes describe shapes, lights, sounds, etc.

Every node has:
A node type (Shape , Cylinder , etc.)
A pair of curly-braces
Zero or more fields inside the curly-braces

23

Building a VRML world

Using node type names

Node type names are case sensitive
Each word starts with an upper-case character
The rest of the word is lower-case

Some examples:
Appearance
Cylinder
Material
Shape

ElevationGrid
FontStyle
ImageTexture
IndexedFaceSet

24

Building a VRML world

Using fields and values

Cylinder {
 height 2.0
 radius 1.5
}

Fields describe node attributes
Every field has:

A field name (height , radius , etc.)
A data type (float, integer, etc.)
A default value

25

Building a VRML world

Using field names

Field names are case sensitive
The first word starts with lower-case character
Each added word starts with upper-case character
The rest of the word is lower-case

Some examples:
appearance
height
material
radius

coordIndex
diffuseColor
fontStyle
textureTransform

26

Building a VRML world

Using fields and values

Different node types have different fields

Fields are optional
A default value is used if a field is not given

Fields can be listed in any order
The order doesn’t affect the node

27

Building a VRML world

Summary

The file header gives the version and encoding

Nodes describe scene content

Fields and values specify node attributes

Everything is case sensitive

28

Building primitive shapes

 Motivation 29
 Example 30
 Syntax: Shape 31
 Specifying appearance 32
 Specifying geometry 33
 Syntax: Box 34
 Syntax: Cone 35
 Syntax: Cylinder 36
 Syntax: Sphere 37
 Syntax: Text 38
 Syntax: FontStyle 39
 Syntax: FontStyle 40
 Syntax: FontStyle 41
 Syntax: FontStyle 42
 Primitive shape example code 43
 Primitive shape example 44
 Building multiple shapes 45
 Multiple shapes file example code 46
 Multiple shapes file example 47
 Summary 48

29

Building primitive shapes

Motivation

Shapes are the building blocks of a VRML world

Primitive Shapes are standard building blocks:
Box
Cone
Cylinder
Sphere
Text

30

Building primitive shapes

Example

[prim.wrl]

31

Building primitive shapes

Syntax: Shape

A Shape node builds a shape
appearance - color and texture
geometry - form, or structure

Shape {
 appearance . . .
 geometry . . .
}

32

Building primitive shapes

Specifying appearance

Shape appearance is described by appearance nodes

For now, we’ll use nodes to create a shaded white appearance:

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry . . .
}

33

Building primitive shapes

Specifying geometry

Shape geometry is built with geometry nodes:

Box { . . . }
Cone { . . . }
Cylinder { . . . }
Sphere { . . . }
Text { . . . }

Geometry node fields control dimensions
Dimensions usually in meters, but can be anything

34

Building primitive shapes

Syntax: Box

A Box geometry node builds a box
size - width, height, depth

[box.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Box {
 size 2.0 2.0 2.0
 }
}

35

Building primitive shapes

Syntax: Cone

A Cone geometry node builds an upright cone
height and bottomRadius - cylinder size
bottom and side - parts on or off

[cone.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cone {
 height 2.0
 bottomRadius 1.0
 bottom TRUE
 side TRUE
 }
}

36

Building primitive shapes

Syntax: Cylinder

A Cylinder geometry node builds an upright cylinder
height and radius - cylinder size
bottom , top , and side - parts on or off

[cyl.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cylinder {
 height 2.0
 radius 1.0
 bottom TRUE
 top TRUE
 side TRUE
 }
}

37

Building primitive shapes

Syntax: Sphere

A Sphere geometry node builds a sphere
radius - sphere radius

[sphere.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Sphere {
 radius 1.0
 }
}

38

Building primitive shapes

Syntax: Text

A Text geometry node builds text
string - text to build
fontStyle - font control

[text.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Text {
 string ["Text",
 "Shape"]
 fontStyle FontStyle {
 style "BOLD"
 }
 }
}

39

Building primitive shapes

Syntax: FontStyle

A FontStyle node describes a font
family - SERIF, SANS, or TYPEWRITER
style - BOLD, ITALIC , BOLDITALIC , or PLAIN

[textfont.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Text {
 string . . .
 fontStyle FontStyle {
 family "SERIF"
 style "BOLD"
 }
 }
}

40

Building primitive shapes

Syntax: FontStyle

A FontStyle node describes a font
size - character height
spacing - row/column spacing

[textsize.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Text {
 string . . .
 fontStyle FontStyle {
 size 1.0
 spacing 1.0
 }
 }
}

41

Building primitive shapes

Syntax: FontStyle

A FontStyle node describes a font
justify - FIRST , BEGIN, MIDDLE, or END

[textjust.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Text {
 string . . .
 fontStyle FontStyle {
 justify "BEGIN"
 }
 }
}

42

Building primitive shapes

Syntax: FontStyle

A FontStyle node describes a font
horizontal - horizontal or vertical
leftToRight and topToBottom - direction

[textvert.wrl]

Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Text {
 string . . .
 fontStyle FontStyle {
 horizontal FALSE
 leftToRight TRUE
 topToBottom TRUE
 }
 }
}

43

Building primitive shapes

Primitive shape example code

#VRML V2.0 utf8
A cylinder
Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cylinder {
 height 2.0
 radius 1.5
 }
}

44

Building primitive shapes

Primitive shape example

[cylinder.wrl]

45

Building primitive shapes

Building multiple shapes

Shapes are built centered in the world

A VRML file can contain multiple shapes

Shapes overlap when built at the same location

46

Building primitive shapes

Multiple shapes file example code

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Box {
 size 1.0 1.0 1.0
 }
}
Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Sphere {
 radius 0.7
 }
}
. . .

47

Building primitive shapes

Multiple shapes file example

[space.wrl]

48

Building primitive shapes

Summary

Shapes are built using a Shape node

Shape geometry is built using geometry nodes, such as Box, Cone,
Cylinder , Sphere , and Text

Text fonts are controlled using a FontStyle node

49

Transforming shapes

 Motivation 50
 Example 51
 Using coordinate systems 52
 Visualizing a coordinate system 53
 Transforming a coordinate system 54
 Syntax: Transform 55
 Including children 56
 Translating 57
 Translating 58
 Rotating 59
 Specifying rotation axes 60
 Rotating 61
 Using the Right-Hand Rule 62
 Using the Right-Hand Rule 63
 Scaling 64
 Scaling 65
 Scaling, rotating, and translating 66
 Scaling, rotating, and translating 67
 Transform group example code 68
 Transform group example 69
 Summary 70

50

Transforming shapes

Motivation

By default, all shapes are built at the center of the world

A transform enables you to
Position shapes
Rotate shapes
Scale shapes

51

Transforming shapes

Example

[towers.wrl]

52

Transforming shapes

Using coordinate systems

A VRML file builds components for a world

A file’s world components are built in the file’s world coordinate
system

By default, all shapes are built at the origin of the world
coordinate system

53

Transforming shapes

Visualizing a coordinate system

a. XYZ axes and a simple shapeb. XYZ axes and a complex shape

54

Transforming shapes

Transforming a coordinate system

A transform creates a coordinate system that is
Positioned
Rotated
Scaled

relative to a parent coordinate system

Shapes built in the new coordinate system are positioned, rotated,
and scaled along with it

55

Transforming shapes

Syntax: Transform

The Transform group node creates a group with its own
coordinate system

translation - position
rotation - orientation
scale - size
children - shapes to build

Transform {
 translation . . .
 rotation . . .
 scale . . .
 children [. . .]
}

56

Transforming shapes

Including children

The children field includes a list of one or more nodes

Transform {
 . . .
 children [
 Shape { . . . }
 Shape { . . . }
 Transform { . . . }
 . . .
]
}

57

Transforming shapes

Translating

Translation positions a coordinate system in X, Y, and Z

Transform {
 # X Y Z
 translation 2.0 0.0 0.0
 children [. . .]
}

58

Transforming shapes

Translating

a. World coordinate systemb. New coordinate system,
translated 2.0 units in X

c. Shape built in new coordinate system

59

Transforming shapes

Rotating

Rotation orients a coordinate system about a rotation axis by a
rotation angle

Angles are measured in radians
radians = degrees / 180.0 * 3.141

Transform {
 # X Y Z Angle
 rotation 0.0 0.0 1.0 0.52
 children [. . .]
}

60

Transforming shapes

Specifying rotation axes

A rotation axis defines a pole to rotate around
Like the Earth’s North-South pole

Typical rotations are about the X, Y, or Z axes:
Rotate about Axis

X-Axis 1.0 0.0 0.0

Y-Axis 0.0 1.0 0.0

Z-Axis 0.0 0.0 1.0

61

Transforming shapes

Rotating

a. World coordinate system b. New coordinate system,
rotated 30.0 degrees around Z

c. Shape built in new coordinate system

62

Transforming shapes

Using the Right-Hand Rule

Positive rotations are counter-clockwise

To help remember positive and negative rotation directions:
Open your hand
Stick out your thumb
Aim your thumb in an axis positive direction
Curl your fingers around the axis

The curl direction is a positive rotation

63

Transforming shapes

Using the Right-Hand Rule

a. X-axis rotation b. Y-axis rotation

c. Z-axis rotation

64

Transforming shapes

Scaling

Scale grows or shrinks a coordinate system by a scaling factor in
X, Y, and Z

Transform {
 # X Y Z
 scale 0.5 0.5 0.5
 children [. . .]
}

65

Transforming shapes

Scaling

a. World coordinate systemb. New coordinate system,
scaled by half

c. Shape built in new coordinate system

66

Transforming shapes

Scaling, rotating, and translating

Scale, Rotate, and Translate a coordinate system, one after the
other

Transform {
 translation 2.0 0.0 0.0
 rotation 0.0 0.0 1.0 0.52
 scale 0.5 0.5 0.5
 children [. . .]
}

Read operations bottom-up:
The children are scaled, rotated, then translated
Order is fixed, independent of field order

67

Transforming shapes

Scaling, rotating, and translating

a. World coordinate system b. New coordinate system,
scaled by half,

rotated 30.0 degrees around Z,
and translated 2.0 units in X

68

Transforming shapes

Transform group example code

Transform {
 translation -2.0 -1.0 0.0
 children [
 Shape {
 appearance Appearance {
 material Material { }
 }
 geometry Cylinder {
 radius 0.3
 height 6.0
 top FALSE
 }
 }
]
}
. . .

69

Transforming shapes

Transform group example

[arch.wrl] [arches.wrl]

70

Transforming shapes

Summary

All shapes are built in a coordinate system

The Transform node creates a new coordinate system relative to
its parent

Transform node fields do
translation
rotation
scale

71

Controlling appearance with materials

 Motivation 72
 Example 73
 Syntax: Shape 74
 Syntax: Appearance 75
 Syntax: Material 76
 Specifying colors 77
 Syntax: Material 78
 Appearance example code 79
 Appearance example 80
 Experimenting with shiny materials 81
 Shiny materials example 82
 Summary 83

72

Controlling appearance with materials

Motivation

The primitive shapes have a default emissive (glowing) white
appearance

You can control a shape’s
Shading color
Glow color
Transparency
Shininess
Ambient intensity

73

Controlling appearance with materials

Example

[colors.wrl]

74

Controlling appearance with materials

Syntax: Shape

Recall that Shape nodes describe:
appearance - color and texture
geometry - form, or structure

Shape {
 appearance . . .
 geometry . . .
}

75

Controlling appearance with materials

Syntax: Appearance

An Appearance node describes overall shape appearance
material properties - color, transparency, etc.

Shape {
 appearance Appearance {
 material . . .
 }
 geometry . . .
}

76

Controlling appearance with materials

Syntax: Material

A Material node controls shape material attributes
diffuseColor - main shading color
emissiveColor - glowing color
transparency - opaque or not

Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.8 0.8 0.8
 emissiveColor 0.0 0.0 0.0
 transparency 0.0
 }
 }
 geometry . . .
}

77

Controlling appearance with materials

Specifying colors

Colors specify:
A mixture of red, green, and blue light
Values between 0.0 (none) and 1.0 (lots)

Color Red Green Blue Result

White 1.0 1.0 1.0 (white)

Red 1.0 0.0 0.0 (red)

Yellow 1.0 1.0 0.0 (yellow)

Cyan 0.0 1.0 1.0 (cyan)

Brown 0.5 0.2 0.0 (brown)

78

Controlling appearance with materials

Syntax: Material

A Material node also controls shape shininess
specularColor - highlight color
shininess - highlight size
ambientIntensity - ambient lighting effects

Shape {
 appearance Appearance {
 material Material {
 specularColor 0.71 0.70 0.56
 shininess 0.16
 ambientIntensity 0.4
 }
 }
 geometry . . .
}

79

Controlling appearance with materials

Appearance example code

Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.2 0.2 0.2
 emissiveColor 0.0 0.0 0.8
 transparency 0.25
 }
 }
 geometry Box {
 size 2.0 4.0 0.3
 }
}
. . .

80

Controlling appearance with materials

Appearance example

[slabs.wrl]

81

Controlling appearance with materials

Experimenting with shiny materials

Description ambient
Intensity

diffuse
Color

specular
Color

shininess

Aluminum 0.30 0.30 0.30 0.50 0.70 0.70 0.80 0.10

Copper 0.26 0.30 0.11 0.00 0.75 0.33 0.00 0.08

Gold 0.40 0.22 0.15 0.00 0.71 0.70 0.56 0.16

Metalic Purple 0.17 0.10 0.03 0.22 0.64 0.00 0.98 0.20

Metalic Red 0.15 0.27 0.00 0.00 0.61 0.13 0.18 0.20

Plastic Blue 0.10 0.20 0.20 0.71 0.83 0.83 0.83 0.12

82

Controlling appearance with materials

Shiny materials example

[shiny.wrl]

83

Controlling appearance with materials

Summary

The Appearance node controls overall shape appearance

The Material node controls overall material properties including:
Shading color
Glow color
Transparency
Shininess
Ambient intensity

84

Grouping nodes

 Motivation 85
 Syntax: Group 86
 Syntax: Switch 87
 Syntax: Transform 88
 Syntax: Billboard 89
 Billboard rotation axes 90
 Billboard rotation axes 91
 Billboard group example code 92
 Billboard group example 93
 Syntax: Anchor 94
 Anchor example 95
 Syntax: Inline 96
 Inline example code 97
 Inline example 98
 Summary 99
 Summary 100

85

Grouping nodes

Motivation

You can group shapes to compose complex shapes
VRML has several grouping nodes, including:

Group { . . . }
Switch { . . . }
Transform { . . . }
Billboard { . . . }
Anchor { . . . }
Inline { . . . }

86

Grouping nodes

Syntax: Group

The Group node creates a basic group
Every child node in the group is displayed

Group {
 children [. . .]
}

87

Grouping nodes

Syntax: Switch

The Switch group node creates a switched group
Only one child node in the group is displayed
You select which child

Children implicitly numbered from 0
A -1 selects no children

Switch {
 whichChoice 0
 choice [. . .]
}

88

Grouping nodes

Syntax: Transform

The Transform group node creates a group with its own
coordinate system

Every child node in the group is displayed

Transform {
 translation 0.0 0.0 0.0
 rotation 0.0 1.0 0.0 0.0
 scale 1.0 1.0 1.0
 children [. . .]
}

89

Grouping nodes

Syntax: Billboard

The Billboard group node creates a group with a special
coordinate system

Every child node in the group is displayed
Coordinate system is turned to face viewer

Billboard {
 axisOfRotation 0.0 1.0 0.0
 children [. . .]
}

90

Grouping nodes

Billboard rotation axes

A rotation axis defines a pole to rotate round
Similar to a Transform node’s rotation field, but no angle
(auto computed)

a. Viewer moves to the right b. Billboard automatically
rotates to face viewer

91

Grouping nodes

Billboard rotation axes

A rotation axis limits rotation to spin about that axis
A zero rotation axis enables rotation around any axis

Rotate about Axis

X-Axis 1.0 0.0 0.0

Y-Axis 0.0 1.0 0.0

Z-Axis 0.0 0.0 1.0

Any Axis 0.0 0.0 0.0

92

Grouping nodes

Billboard group example code

Billboard {
 # Y-axis
 axisOfRotation 0.0 1.0 0.0
 children [
 Shape { . . . }
 Shape { . . . }
 Shape { . . . }
 . . .
]
}

93

Grouping nodes

Billboard group example

[robobill.wrl]

94

Grouping nodes

Syntax: Anchor

An Anchor node creates a group that acts as a clickable anchor
Every child node in the group is displayed
Clicking any child follows a URL
A description names the anchor

Anchor {
 url "stairwy.wrl"
 description "Twisty Stairs"
 children [. . .]
}

95

Grouping nodes

Anchor example

[anchor.wrl]
a. Click on door to go to...

[stairwy.wrl]
b. ...the stairway world

96

Grouping nodes

Syntax: Inline

An Inline node creates a special group from another VRML
file’s contents

Children read from file selected by a URL
Every child node in group is displayed

Inline {
 url "table.wrl"
}

97

Grouping nodes

Inline example code

Inline { url "table.wrl" }
. . .
Transform {
 translation -0.95 0.0 0.0
 rotation 0.0 1.0 0.0 3.14
 children [
 Inline { url "chair.wrl" }
]
}

98

Grouping nodes

Inline example

[table.wrl]

[chair.wrl]

[dinette.wrl]

99

Grouping nodes

Summary

The Group node creates a basic group

The Switch node creates a group with 1 choice used

The Transform node creates a group with a new coordinate
system

100

Grouping nodes

Summary

The Billboard node creates a group with a coordinate system
that rotates to face the viewer

The Anchor node creates a clickable group
Clicking any child in the group loads a URL

The Inline node creates a special group loaded from another
VRML file

101

Naming nodes

 Motivation 102
 Syntax: DEF 103
 Using DEF 104
 Syntax: USE 105
 Using USE 106
 Using named nodes 107
 Node names example code 108
 Node names example 109
 Summary 110

102

Naming nodes

Motivation

If several shapes have the same geometry or appearance, you
must use multiple duplicate nodes, one for each use

Instead, define a name for the first occurrence of a node

Later, use that name to share the same node in a new context

103

Naming nodes

Syntax: DEF

The DEF syntax gives a name to a node

Shape {
 appearance Appearance {
 material DEF RedColor Material {
 diffuseColor 1.0 0.0 0.0
 }
 }
 geometry . . .
}

104

Naming nodes

Using DEF

DEF must be in upper-case

You can name any node

Names can be most any sequence of letters and numbers
Names must be unique within a file

105

Naming nodes

Syntax: USE

The USE syntax uses a previously named node

Shape {
 appearance Appearance {
 material USE RedColor
 }
 geometry . . .
}

106

Naming nodes

Using USE

USE must be in upper-case

A re-use of a named node is called an instance

A named node can have any number of instances
Each instance shares the same node description
You can only instance names defined in the same file

107

Naming nodes

Using named nodes

Naming and using nodes:
Saves typing
Reduces file size
Enables rapid changes to shapes with the same attributes
Speeds browser processing

Names are also necessary for animation...

108

Naming nodes

Node names example code

Inline { url "table.wrl" }
Transform {
 translation 0.95 0.0 0.0
 children DEF Chair Inline { url "chair.wrl" }
}
Transform {
 translation -0.95 0.0 0.0
 rotation 0.0 1.0 0.0 3.14
 children USE Chair
}
Transform {
 translation 0.0 0.0 0.95
 rotation 0.0 1.0 0.0 -1.57
 children USE Chair
}
Transform {
 translation 0.0 0.0 -0.95
 rotation 0.0 1.0 0.0 1.57
 children USE Chair
}

109

Naming nodes

Node names example

[dinette.wrl]

110

Naming nodes

Summary

DEF names a node

USE uses a named node

111

Summary examples

 A fairy-tale castle 112
 A bar plot 113
 A simple spaceship 114
 A juggling hand 115

112

Summary examples

A fairy-tale castle

Cylinder nodes build the towers
Cone nodes build the roofs and tower bottoms

[castle.wrl]

113

Summary examples

A bar plot

Box nodes create the bars
Text nodes provide bar labels
Billboard nodes keep the labels facing the viewer

[barplot.wrl]

114

Summary examples

A simple spaceship

Sphere nodes make up all parts of the ship
Transform nodes scale the spheres into ship parts

[space2.wrl]

115

Summary examples

A juggling hand

Cylinder and Sphere nodes build fingers and joints
Transform nodes articulate the hand

[hand.wrl]

116

Introducing animation

 Motivation 117
 Building animation circuits 118
 Using animation circuits 119
 Routing events 120
 Using node inputs and outputs 121
 Sample inputs 122
 Sample outputs 123
 Syntax: ROUTE 124
 Event data types 125
 Event data types 126
 Event data types 127
 Following naming conventions 128
 Animation example code 129
 Animation example 130
 Using multiple routes 131
 Summary 132

117

Introducing animation

Motivation

Nodes like Billboard and Anchor have built-in behavior

You can create your own behaviors to make shapes move, rotate,
scale, blink, and more

We need a means to trigger, time, and respond to a sequence of
events in order to provide better user/world interactions

118

Introducing animation

Building animation circuits

Almost every node can be a component in an animation circuit
Nodes act like virtual electronic parts
Nodes can send and receive events
Wired routes connect nodes together

An event is a message sent between nodes
A data value (such as a translation)
A time stamp (when did the event get sent)

119

Introducing animation

Using animation circuits

To spin a shape:
Connect a node that sends rotation events to a Transform

node’s rotation field

To blink a shape:
Connect a node that sends color events to a Material node’s
diffuseColor field

120

Introducing animation

Routing events

To set up an animation circuit, you need three things:

1. A node which sends events
The node must be named with DEF

2. A node which receives events
The node must be named with DEF

3. A route connecting them

121

Introducing animation

Using node inputs and outputs

Every node has fields, inputs, and outputs:
field: A stored value
eventIn: An input
eventOut: An output

An exposedField is a short-hand for a field, eventIn, and
eventOut

122

Introducing animation

Sample inputs

A Transform node has these eventIns:
set_translation
set_rotation
set_scale

A Material node has these eventIns:
set_diffuseColor
set_emissiveColor
set_transparency

123

Introducing animation

Sample outputs

An OrientationInterpolator node has this eventOut:
value_changed to send rotation values

A PositionInterpolator node has this eventOut:
value_changed to send position (translation) values

A TimeSensor node has this eventOut:
time to send time values

124

Introducing animation

Syntax: ROUTE

A ROUTE statement connects two nodes together using
The sender’s node name and eventOut name
The receiver’s node name and eventIn name

ROUTE MySender.rotation_changed
 TO MyReceiver.set_rotation

ROUTE and TO must be in upper-case

125

Introducing animation

Event data types

Sender and receiver event data types must match!

Data types have names with a standard format, such as:
SFString , SFRotation , or MFColor

Character Values

1 S: Single value
M: Multiple values

2 Always an F
remainder Name of data type, such as String ,

Rotation , or Color

126

Introducing animation

Event data types

Data type Meaning

SFBool Boolean, true or false value

SFColor , MFColor RGB color value

SFFloat , MFFloat Floating point value
SFImage Image value

SFInt32 , MFInt32 Integer value

SFNode, MFNode Node value

127

Introducing animation

Event data types

Data type Meaning

SFRotation , MFRotation Rotation value

SFString , MFString Text string value
SFTime Time value

SFVec2f , MFVec2f XY floating point value

SFVec3f , MFVec3f XYZ floating point value

128

Introducing animation

Following naming conventions

Most nodes have exposedFields

If the exposed field name is xxx , then:
set_xxx is an eventIn to set the field
xxx_changed is an eventOut that sends when the field changes
The set_ and _changed sufixes are optional but recommended
for clarity

The Transform node has:
rotation field
set_rotation eventIn
rotation_changed eventOut

129

Introducing animation

Animation example code

DEF Touch TouchSensor { }

DEF Timer1 TimeSensor { . . . }

DEF Rot1 OrientationInterpolator { . . . }

DEF Frame1 Transform {
 children [
 Shape { . . . }
]
}

ROUTE Touch.touchTime TO Timer1.set_startTime
ROUTE Timer1.fraction_changed TO Rot1.set_fraction
ROUTE Rot1.value_changed TO Frame1.set_rotation

130

Introducing animation

Animation example

[colors.wrl]

131

Introducing animation

Using multiple routes

You can have fan-out
Multiple routes out of the same sender

You can have fan-in
Multiple routes into the same receiver

132

Introducing animation

Summary

Connect senders to receivers using routes

eventIns are inputs, and eventOuts are outputs

A route names the sender.eventOut, and the receiver.eventIn
Data types must match

You can have multiple routes into or out of a node

133

Animating transforms

 Motivation 134
 Example 135
 Controlling time 136
 Using absolute time 137
 Using fractional time 138
 Syntax: TimeSensor 139
 Using timers 140
 Using timers 141
 Using timers 142
 Using timer outputs 143
 Time sensor example code 144
 Time sensor example 145
 Converting time to position 146
 Interpolating positions 147
 Syntax: PositionInterpolator 148
 Using position interpolator inputs and outputs 149
 Position interpolator example code 150
 Position interpolator example 151
 Using other types of interpolators 152
 Syntax: OrientationInterpolator 153
 Syntax: PositionInterpolator 154
 Syntax: ColorInterpolator 155
 Syntax: ScalarInterpolator 156
 Other interpolators example 157
 Summary 158
 Summary 159
 Summary 160

134

Animating transforms

Motivation

An animation changes something over time:
position - a car driving
orientation - an airplane banking
color - seasons changing

Animation requires control over time:
When to start and stop
How fast to go

135

Animating transforms

Example

[floater.wrl]

136

Animating transforms

Controlling time

A TimeSensor node is similar to a stop watch
You control the start and stop time

The sensor generates time events while it is running

To animate, route time events into other nodes

137

Animating transforms

Using absolute time

A TimeSensor node generates absolute and fractional time events

Absolute time events give the wall-clock time
Absolute time is measured in seconds since 12:00am January
1, 1970!
Useful for triggering events at specific dates and times

138

Animating transforms

Using fractional time

Fractional time events give a number from 0.0 to 1.0
When the sensor starts, it outputs a 0.0

At the end of a cycle, it outputs a 1.0

The number of seconds between 0.0 and 1.0 is controlled by
the cycle interval

The sensor can loop forever, or run through only one cycle and
stop

139

Animating transforms

Syntax: TimeSensor

A TimeSensor node generates events based upon time
startTime and stopTime - when to run
cycleInterval - how long a cycle is
loop - whether or not to repeat cycles

TimeSensor {
 cycleInterval 1.0
 loop FALSE
 startTime 0.0
 stopTime 0.0
}

140

Animating transforms

Using timers

To create a continuously running timer:
loop TRUE
stopTime <= startTime

When stop time <= start time, stop time is ignored

141

Animating transforms

Using timers

To run until the stop time:
loop TRUE
stopTime > startTime

To run one cycle then stop:
loop FALSE
stopTime <= startTime

142

Animating transforms

Using timers

The set_startTime input event:
Sets when the timer should start

The set_stopTime input event:
Sets when the timer should stop

143

Animating transforms

Using timer outputs

The isActive output event:
Outputs TRUE at timer start
Outputs FALSE at timer stop

The time output event:
Outputs the absolute time

The fraction_changed output event:
Outputs values from 0.0 to 1.0 during a cycle
Resets to 0.0 at the start of each cycle

144

Animating transforms

Time sensor example code

Shape {
 appearance Appearance {
 material DEF Monolith1Facade Material {
 diffuseColor 0.2 0.2 0.2
 }
 }
 geometry Box { size 2.0 4.0 0.3 }
}
DEF Monolith1Timer TimeSensor {
 cycleInterval 4.0
 loop FALSE
 startTime 0.0
 stopTime 0.1
}

ROUTE Monolith1Touch.touchTime
 TO Monolith1Timer.set_startTime
ROUTE Monolith1Timer.fraction_changed
 TO Monolith1Facade.set_transparency

145

Animating transforms

Time sensor example

[monolith.wrl]

146

Animating transforms

Converting time to position

To animate the position of a shape you provide:
A list of key positions for a movement path
A time at which to be at each position

An interpolator node converts an input time to an output position
When a time is in between two key positions, the interpolator
computes an intermediate position

147

Animating transforms

Interpolating positions

Each key position along a path has:
A key value (such as a position)
A key fractional time

Interpolation fills in values between your key values:
Fractional Time Position

0.0 0.0 0.0 0.0
0.1 0.4 0.1 0.0
0.2 0.8 0.2 0.0
.

0.5 4.0 1.0 0.0
.

148

Animating transforms

Syntax: PositionInterpolator

A PositionInterpolator node describes a position path
key - key fractional times
keyValue - key positions

PositionInterpolator {
 key [0.0, . . .]
 keyValue [0.0 0.0 0.0, . . .]
}

Typically route into a Transform node’s set_translation input

149

Animating transforms

Using position interpolator inputs and outputs

The set_fraction input:
Sets the current fractional time along the key path

The value_changed output:
Outputs the position along the path each time the fraction is
set

150

Animating transforms

Position interpolator example code

DEF Particle1 Transform { . . . }
DEF Timer1 TimeSensor {
 cycleInterval 12.0
 loop TRUE
}
DEF Position1 PositionInterpolator {
 key [0.0, . . .]
 keyValue [0.0 0.0 0.0, . . .]
}
ROUTE Timer1.fraction_changed TO Position1.set_fraction
ROUTE Position1.value_changed TO Particle1.set_translation

151

Animating transforms

Position interpolator example

[spiral.wrl]

152

Animating transforms

Using other types of interpolators

Animate position PositionInterpolator

Animate rotation OrientationInterpolator

Animate scale PositionInterpolator

Animate color ColorInterpolator

Animate transparency ScalarInterpolator

153

Animating transforms

Syntax: OrientationInterpolator

A OrientationInterpolator node describes an orientation path
key - key fractional times
keyValue - key rotations (axis and angle)

OrientationInterpolator {
 key [0.0, . . .]
 keyValue [0.0 1.0 0.0 0.0, . . .]
}

Typically route into a Transform node’s set_rotation input

154

Animating transforms

Syntax: PositionInterpolator

A PositionInterpolator node describes a position or scale path
key - key fractional times
keyValue - key positions (or scales)

PositionInterpolator {
 key [0.0, . . .]
 keyValue [0.0 0.0 0.0, . . .]
}

Typically route into a Transform node’s set_scale input

155

Animating transforms

Syntax: ColorInterpolator

ColorInterpolator node describes a color path
key - key fractional times
keyValue - key colors (red, green, blue)

ColorInterpolator {
 key [0.0, . . .]
 keyValue [1.0 1.0 0.0, . . .]
}

Typically route into a Material node’s set_diffuseColor or
set_emissiveColor inputs

156

Animating transforms

Syntax: ScalarInterpolator

ScalarInterpolator node describes a scalar path
key - key fractional times
keyValue - key scalars (used for anything)

ScalarInterpolator {
 key [0.0, . . .]
 keyValue [4.5, . . .]
}

Often route into a Material node’s set_transparency input

157

Animating transforms

Other interpolators example

[squisher.wrl]

158

Animating transforms

Summary

The TimeSensor node’s fields control
Timer start and stop times
The cycle interval
Whether the timer loops or not

The sensor outputs
true/false on isActive at start and stop
absolute time on time while running
fractional time on fraction_changed while running

159

Animating transforms

Summary

Interpolators use key times and values and compute intermediate
values

All interpolators have:
a set_fraction input to set the fractional time
a value_changed output to send new values

160

Animating transforms

Summary

The PositionInterpolator node converts times to positions (or
scales)

The OrientationInterpolator node converts times to rotations

The ColorInterpolator node converts times to colors

The ScalarInterpolator node converts times to scalars (such as
transparencies)

161

Sensing viewer actions

 Motivation 162
 Using action sensors 163
 Sensing shapes 164
 Syntax: TouchSensor 165
 Touch sensor example code 166
 Touch sensor example 167
 Syntax: SphereSensor 168
 Syntax: CylinderSensor 169
 Syntax: PlaneSensor 170
 Using multiple sensors 171
 Multiple sensors example 172
 Multiple sensors example 173
 Summary 174

162

Sensing viewer actions

Motivation

You can sense when the viewer’s cursor:
Is over a shape
Has touched a shape
Is dragging atop a shape

You can trigger animations on a viewer’s touch

You can enable the viewer to move and rotate shapes

163

Sensing viewer actions

Using action sensors

There are four main action sensor types:
TouchSensor senses touch
SphereSensor senses drags
CylinderSensor senses drags
PlaneSensor senses drags

The Anchor node is a special-purpose action sensor with a built-in
response

164

Sensing viewer actions

Sensing shapes

All action sensors sense all shapes in the same group

Sensors trigger when the viewer’s cursor touches a sensed shape

165

Sensing viewer actions

Syntax: TouchSensor

A TouchSensor node senses the cursor’s touch
isOver - send true/false when cursor over/not over
isActive - send true/false when mouse button
pressed/released
touchTime - send time when mouse button released

Transform {
 children [
 DEF Touched TouchSensor { }
 Shape { . . . }
 . . .
]
}

166

Sensing viewer actions

Touch sensor example code

DEF Touch TouchSensor { }
DEF Timer1 TimeSensor { . . . }
DEF Rot1 OrientationInterpolator { . . . }
DEF Frame1 Transform {
 children [
 Shape { . . . }
]
}

ROUTE Touch.touchTime TO Timer1.set_startTime
ROUTE Timer1.fraction_changed TO Rot1.set_fraction
ROUTE Rot1.value_changed TO Frame1.set_rotation

167

Sensing viewer actions

Touch sensor example

[colors.wrl]

168

Sensing viewer actions

Syntax: SphereSensor

A SphereSensor node senses a cursor drag and generates
rotations as if rotating a ball

isActive - sends true/false when mouse button
pressed/released
rotation_changed - sends rotation during a drag

Transform {
 children [
 DEF Rotator SphereSensor { }
 DEF RotateMe Transform { . . . }
]
}
ROUTE Rotator.rotation_changed TO RotateMe.set_rotation

169

Sensing viewer actions

Syntax: CylinderSensor

A CylinderSensor node senses a cursor drag and generates
rotations as if rotating a cylinder

isActive - sends true/false when mouse button
pressed/released
rotation_changed - sends rotation during a drag

Transform {
 children [
 DEF Rotator CylinderSensor { }
 DEF RotateMe Transform { . . . }
]
}
ROUTE Rotator.rotation_changed TO RotateMe.set_rotation

170

Sensing viewer actions

Syntax: PlaneSensor

A PlaneSensor node senses a cursor drag and generates
translations as if sliding on a plane

isActive - sends true/false when mouse button
pressed/released
translation_changed - sends translations during a drag

Transform {
 children [
 DEF Mover PlaneSensor { }
 DEF MoveMe Transform { . . . }
]
}
ROUTE Mover.translation_changed TO MoveMe.set_translatio n

171

Sensing viewer actions

Using multiple sensors

Multiple sensors can sense the same shape but. . .
If sensors are in the same group:

They all respond

If sensors are at different depths in the hierarchy:
The deepest sensor responds
The other sensors do not respond

172

Sensing viewer actions

Multiple sensors example

[nested.wrl]

173

Sensing viewer actions

Multiple sensors example

[lamp.wrl]

174

Sensing viewer actions

Summary

Action sensors sense when the viewer’s cursor:
is over a shape
has touched a shape
is dragging atop a shape

Sensors convert viewer actions into events to
Start and stop animations
Orient shapes
Position shapes

175

Building shapes out of points, lines, and faces

 Motivation 176
 Example 177
 Building shapes using coordinates 178
 Syntax: Coordinate 179
 Using geometry coordinates 180
 Syntax: PointSet 181
 Point set example 182
 Syntax: IndexedLineSet 183
 Using line set coordinate indexes 184
 Using line set coordinate index lists 185
 IndexedLineSet example 186
 Syntax: IndexedFaceSet 187
 Using face set coordinate index lists 188
 Using face set coordinate index lists 189
 IndexedFaceSet example 190
 Syntax: IndexedFaceSet 191
 Using shape control 192
 Syntax: CoordinateInterpolator 193
 Interpolating coordinate lists 194
 Coordinate interpolator example 195
 Summary 196
 Summary 197
 Summary 198

176

Building shapes out of points, lines, and faces

Motivation

Complex shapes are hard to build with primitive shapes
Terrain
Animals
Plants
Machinery

Instead, build shapes out of atomic components:
Points, lines, and faces

177

Building shapes out of points, lines, and faces

Example

[isosurf.wrl]

178

Building shapes out of points, lines, and faces

Building shapes using coordinates

Shape building is like a 3-D connect-the-dots game:
Place dots at 3-D locations
Connect-the-dots to form shapes

A coordinate specifies a 3-D dot location
Measured relative to a coordinate system origin

A geometry node specifies how to connect the dots

179

Building shapes out of points, lines, and faces

Syntax: Coordinate

A Coordinate node contains a list of coordinates for use in
building a shape

Coordinate {
 point [
X Y Z
 2.0 1.0 3.0,
 4.0 2.5 5.3,
 . . .
]
}

180

Building shapes out of points, lines, and faces

Using geometry coordinates

Build coordinate-based shapes using geometry nodes:
PointSet
IndexedLineSet
IndexedFaceSet

For all three nodes, use a Coordinate node as the value of the
coord field

181

Building shapes out of points, lines, and faces

Syntax: PointSet

A PointSet geometry node creates geometry out of points
One point (a dot) is placed at each coordinate

Shape {
 appearance Appearance { . . . }
 geometry PointSet {
 coord Coordinate {
 point [. . .]
 }
 }
}

182

Building shapes out of points, lines, and faces

Point set example

[ptplot.wrl]

183

Building shapes out of points, lines, and faces

Syntax: IndexedLineSet

An IndexedLineSet geometry node creates geometry out of lines
A straight line is drawn between pairs of selected coordinates

Shape {
 appearance Appearance { . . . }
 geometry IndexedLineSet {
 coord Coordinate {
 point [. . .]
 }
 coordIndex [. . .]
 }
}

184

Building shapes out of points, lines, and faces

Using line set coordinate indexes

Each coordinate in a Coordinate node is implicitly numbered
Index 0 is the first coordinate
Index 1 is the second coordinate, etc.

To build a line shape
Make a list of coordinates, using their indexes

List coordinate indexes in the coordIndex field of the
IndexedLineSet node

185

Building shapes out of points, lines, and faces

Using line set coordinate index lists

A line is drawn between pairs of coordinate indexes
-1 marks a break in the line

A line is not automatically drawn from the last index back to
the first

coordIndex [1, 0, 3, 8, -1, 5, 9, 0]
1, 0, 3, 8, Draw line from 1 to 0 to 3 to 8
-1, End line, start next
5, 9, 0 Draw line from 5 to 9 to 0

186

Building shapes out of points, lines, and faces

IndexedLineSet example

[lnplot.wrl]

187

Building shapes out of points, lines, and faces

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates geometry out of faces
A flat face (polygon) is drawn using an outline specified by
coordinate indexes

Shape {
 appearance Appearance { . . . }
 geometry IndexedFaceSet {
 coord Coordinate {
 point [. . .]
 }
 coordIndex [. . .]
 }
}

188

Building shapes out of points, lines, and faces

Using face set coordinate index lists

To build a face shape
Make a list of coordinates, using their indexes

List coordinate indexes in the coordIndex field of the
IndexedFaceSet node

189

Building shapes out of points, lines, and faces

Using face set coordinate index lists

A triangle is drawn connecting sequences of coordinate indexes
-1 marks a break in the sequence

Each face is automatically closed, connecting the last index
back to the first

coordIndex [1, 0, 3, 8, -1, 5, 9, 0]
1, 0, 3, 8 Draw face from 1 to 0 to 3 to 8

to 1
-1, End face, start next
5, 9, 0 Draw face from 5 to 9 to 0 to 5

190

Building shapes out of points, lines, and faces

IndexedFaceSet example

[lightng.wrl]

191

Building shapes out of points, lines, and faces

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates geometry out of faces
solid - shape is solid
ccw - faces are counter-clockwise
convex - faces are convex

Shape {
 appearance Appearance { . . . }
 geometry IndexedFaceSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 solid TRUE
 ccw TRUE
 convex TRUE
 }
}

192

Building shapes out of points, lines, and faces

Using shape control

A solid shape is one where the insides are never seen
If never seen, don’t attempt to draw them
When solid TRUE , the back sides (inside) of faces are not
drawn

The front of a face has coordinates in counter-clockwise order
When ccw FALSE , the other side is the front

Faces are assumed to be convex
When convex FALSE , concave faces are automatically broken
into multiple convex faces

193

Building shapes out of points, lines, and faces

Syntax: CoordinateInterpolator

A CoordinateInterpolator node describes a coordinate path
keys - key fractions
values - key coordinate lists (X,Y,Z lists)

CoordinateInterpolator {
 key [0.0, . . .]
 keyValue [0.0 1.0 0.0, . . .]
}

Typically route into a Coordinate node’s set_point input

194

Building shapes out of points, lines, and faces

Interpolating coordinate lists

A CoordinateInterpolator node interpolates lists of coordinates
Each output is a list of coordinates
If n output coordinates are needed for t fractional times:

n × t coordinates are needed in the key value list

195

Building shapes out of points, lines, and faces

Coordinate interpolator example

[wiggle.wrl]

196

Building shapes out of points, lines, and faces

Summary

Shapes are built by connecting together coordinates

Coordinates are listed in a Coordinate node

Coordinates are implicitly numbers starting at 0

Coordinate index lists give the order in which to use coordinates

197

Building shapes out of points, lines, and faces

Summary

The PointSet node draws a dot at every coordinate
The coord field value is a Coordinate node

The IndexedLineSet node draws lines between coordinates
The coord field value is a Coordinate node
The coordIndex field value is a list of coordinate indexes

198

Building shapes out of points, lines, and faces

Summary

The IndexedFaceSet node draws faces outlined by coordinates
The coord field value is a Coordinate node
The coordIndex field value is a list of coordinate indexes

The CoordinateInterpolator node converts times to coordinates

199

Building elevation grids

 Motivation 200
 Example 201
 Syntax: ElevationGrid 202
 Syntax: ElevationGrid 203
 Syntax: ElevationGrid 204
 Elevation grid example code 205
 Elevation grid example 206
 Summary 207

200

Building elevation grids

Motivation

Building terrains is very common
Hills, valleys, mountains
Other tricky uses...

You can build a terrain using an IndexedFaceSet node

You can build terrains more efficiently using an ElevationGrid

node

201

Building elevation grids

Example

[16 x 16: mount16.wrl]

[32 x 32: mount32.wrl]

[128 x 128: mount128.wrl]

202

Building elevation grids

Syntax: ElevationGrid

An ElevationGrid geometry node creates terrains
xDimension and zDimension - grid size
xSpacing and zSpacing - row and column distances

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 xDimension 3
 zDimension 2
 xSpacing 1.0
 zSpacing 1.0
 . . .
 }
}

203

Building elevation grids

Syntax: ElevationGrid

An ElevationGrid geometry node creates terrains
height - elevations at grid points

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 . . .
 height [
 0.0, -0.5, 0.0,
 0.2, 4.0, 0.0
]
 }
}

204

Building elevation grids

Syntax: ElevationGrid

An ElevationGrid geometry node creates terrains
solid - shape is solid
ccw - faces are counter-clockwise

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 . . .
 solid TRUE
 ccw TRUE
 }
}

205

Building elevation grids

Elevation grid example code

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 xDimension 9
 zDimension 9
 xSpacing 1.0
 zSpacing 1.0
 solid FALSE
 height [
 0.0, 0.0, 0.5, 1.0, 0.5, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 2.5, 0.5, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.5, 0.5, 3.0, 1.0, 0.5, 0.0, 1.0,
 0.0, 0.0, 0.5, 2.0, 4.5, 2.5, 1.0, 1.5, 0.5,
 1.0, 2.5, 3.0, 4.5, 5.5, 3.5, 3.0, 1.0, 0.0,
 0.5, 2.0, 2.0, 2.5, 3.5, 4.0, 2.0, 0.5, 0.0,
 0.0, 0.0, 0.5, 1.5, 1.0, 2.0, 3.0, 1.5, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 1.5, 0.5,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0,
]
 }
}

206

Building elevation grids

Elevation grid example

[mount.wrl]

207

Building elevation grids

Summary

An ElevationGrid node efficiently creates a terrain

Grid size is specified in the xDimension and zDimension fields

Grid spacing is specified in the xSpacing and zSpacing field

Elevations at each grid point are specified in the height field

208

Building extruded shapes

 Motivation 209
 Examples 210
 Creating extruded shapes 211
 Extruding along a straight line 212
 Extruding around a circle 213
 Extruding along a helix 214
 Syntax: Extrusion 215
 Syntax: Extrusion 216
 Squishing and twisting extruded shapes 217
 Syntax: Extrusion 218
 Sample extrusions with scale and rotation 219
 Summary 220

209

Building extruded shapes

Motivation

Extruded shapes are very common
Tubes, pipes, bars, vases, donuts
Other tricky uses...

You can build extruded shapes using an IndexedFaceSet node

You can build extruded shapes more easily and efficiently using
an Extrusion node

210

Building extruded shapes

Examples

[slide.wrl]

[donut.wrl]

211

Building extruded shapes

Creating extruded shapes

Extruded shapes are described by
A 2-D cross-section
A 3-D spine along which to sweep the cross-section

Extruded shapes are like long bubbles created with a bubble wand
The bubble wand’s outline is the cross-section
The path along which you swing the wand is the spine

212

Building extruded shapes

Extruding along a straight line

a. Square cross-section b. Straight spine

c. Resulting extrusion

213

Building extruded shapes

Extruding around a circle

a. Circular cross-section b. Circular spine

c. Resulting extrusion

214

Building extruded shapes

Extruding along a helix

a. Half-circle cross-section b. Helical spine

c. Resulting extrusion

215

Building extruded shapes

Syntax: Extrusion

An Extrusion geometry node creates extruded geometry
cross-section - 2-D cross-section
spine - 3-D sweep path
endCap and beginCap - cap ends

Shape {
 appearance Appearance { . . . }
 geometry Extrusion {
 crossSection [. . .]
 spine [. . .]
 endCap TRUE
 beginCap TRUE
 . . .
 }
}

216

Building extruded shapes

Syntax: Extrusion

An Extrusion geometry node creates extruded geometry
solid - shape is solid
ccw - faces are counter-clockwise
convex - faces are convex

Shape {
 appearance Appearance { . . . }
 geometry Extrusion {
 . . .
 solid TRUE
 ccw TRUE
 convex TRUE
 }
}

217

Building extruded shapes

Squishing and twisting extruded shapes

You can scale the cross-section along the spine
Vases, musical instruments
Surfaces of revolution

You can rotate the cross-section along the spine
Twisting ribbons

218

Building extruded shapes

Syntax: Extrusion

An Extrusion geometry node creates geometry using
scale - cross-section scaling per spine point
orientation - cross-section rotation per spine point

Shape {
 appearance Appearance { . . . }
 geometry Extrusion {
 . . .
 scale [. . .]
 orientation [. . .]
 }
}

219

Building extruded shapes

Sample extrusions with scale and rotation

[horn.wrl]

[bartwist.wrl]

220

Building extruded shapes

Summary

An Extrusion node efficiently creates extruded shapes

The crossSection field specifies the cross-section

The spine field specifies the sweep path

The scale and orientation fields specify scaling and rotation at
each spine point

221

Controlling color on coordinate-based geometry

 Motivation 222
 Example 223
 Syntax: Color 224
 Binding colors 225
 Syntax: PointSet 226
 PointSet example 227
 Syntax: IndexedLineSet 228
 Controlling color binding for line sets 229
 IndexedLineSet example 230
 Syntax: IndexedFaceSet 231
 Controlling color binding for face sets 232
 IndexedFaceSet example 233
 Syntax: ElevationGrid 234
 Controlling color binding for elevation grids 235
 ElevationGrid example 236
 Summary 237

222

Controlling color on coordinate-based geometry

Motivation

The Material node gives an entire shape the same color

You can provide colors for individual parts of a shape using a
Color node

223

Controlling color on coordinate-based geometry

Example

[cmount.wrl]

224

Controlling color on coordinate-based geometry

Syntax: Color

A Color node contains a list of RGB values (similar to a
Coordinate node)

Color {
 color [1.0 0.0 0.0, . . .]
}

Used as the color field value of IndexedFaceSet ,
IndexedLineSet , PointSet or ElevationGrid nodes

225

Controlling color on coordinate-based geometry

Binding colors

Colors in the Color node override those in the Material node

You can bind colors
To each point, line, or face
To each coordinate in a line, or face

226

Controlling color on coordinate-based geometry

Syntax: PointSet

A PointSet geometry node creates geometry out of points
color - provides a list of colors
Always binds one color to each point, in order

Shape {
 appearance Appearance { . . . }
 geometry PointSet {
 coord Coordinate { . . . }
 color Color { . . . }
 }
}

227

Controlling color on coordinate-based geometry

PointSet example

[scatter.wrl]

228

Controlling color on coordinate-based geometry

Syntax: IndexedLineSet

An IndexedLineSet geometry node creates geometry out of lines
color - list of colors
colorIndex - selects colors from list
colorPerVertex - control color binding

Shape {
 appearance Appearance { . . . }
 geometry IndexedLineSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 color Color { . . . }
 colorIndex [. . .]
 colorPerVertex TRUE
 }
}

229

Controlling color on coordinate-based geometry

Controlling color binding for line sets

The colorPerVertex field controls how color indexes are used
FALSE: one color index to each line (ending at -1 coordinate
indexes)

TRUE: one color index to each coordinate index of each line
(including -1 coordinate indexes)

230

Controlling color on coordinate-based geometry

IndexedLineSet example

[burst.wrl]

231

Controlling color on coordinate-based geometry

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates geometry out of faces
color - list of colors
colorIndex - selects colors from list
colorPerVertex - control color binding

Shape {
 appearance Appearance { . . . }
 geometry IndexedFaceSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 color Color { . . . }
 colorIndex [. . .]
 colorPerVertex TRUE
 }
}

232

Controlling color on coordinate-based geometry

Controlling color binding for face sets

The colorPerVertex field controls how color indexes are used
(similar to line sets)

FALSE: one color index to each face (ending at -1 coordinate
indexes)

TRUE: one color index to each coordinate index of each face
(including -1 coordinate indexes)

233

Controlling color on coordinate-based geometry

IndexedFaceSet example

[log.wrl]

234

Controlling color on coordinate-based geometry

Syntax: ElevationGrid

An ElevationGrid geometry node creates terrains
color - list of colors
colorPerVertex - control color binding
Always binds one color to each grid point or square, in order

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 . . .
 height [. . .]
 color Color { . . . }
 colorPerVertex TRUE
 }
}

235

Controlling color on coordinate-based geometry

Controlling color binding for elevation grids

The colorPerVertex field controls how color indexes are used
(similar to line and face sets)

FALSE: one color to each grid square

TRUE: one color to each height for each grid square

236

Controlling color on coordinate-based geometry

ElevationGrid example

[cmount.wrl]

237

Controlling color on coordinate-based geometry

Summary

The Color node lists colors to use for parts of a shape
Used as the value of the color field
Color indexes select colors to use
Colors override Material node

The colorPerVertex field selects color per line/face/grid square
or color per coordinate

238

Controlling shading on coordinate-based geometry

 Motivation 239
 Examples 240
 Controlling shading using the crease angle 241
 Selecting crease angles 242
 Crease angle example 243
 Crease angle example 244
 Using normals 245
 Syntax: Normal 246
 Syntax: IndexedFaceSet 247
 Controlling normal binding for face sets 248
 Syntax: ElevationGrid 249
 Controlling normal binding for elevation grids 250
 Syntax: NormalInterpolator 251
 Summary 252

239

Controlling shading on coordinate-based geometry

Motivation

When shaded, the faces on a shape are obvious

To create a smooth shape you can use a large number of small
faces

Requires lots of faces, disk space, memory, and drawing time

Instead, use smooth shading to create the illusion of a smooth
shape, but with a small number of faces

240

Controlling shading on coordinate-based geometry

Examples

[cmount.wrl]

a. No smooth shading

[cmount2.wrl]

b. With smooth shading

241

Controlling shading on coordinate-based geometry

Controlling shading using the crease angle

By default, faces are drawn with faceted shading

You can enable smooth shading using the creaseAngle field for
IndexedFaceSet
ElevationGrid
Extrusion

242

Controlling shading on coordinate-based geometry

Selecting crease angles

A crease angle is a threshold angle between two faces

If face angle >= crease angle, use facet
shading

If face angle < crease angle, use smoot
shading

243

Controlling shading on coordinate-based geometry

Crease angle example

[creangle.wrl]

244

Controlling shading on coordinate-based geometry

Crease angle example

[hcyl.wrl]

Left has crease angle = 0 (faceted),
Right has crease angle = 1.571 (smooth)

245

Controlling shading on coordinate-based geometry

Using normals

A normal vector indicates the direction a face is facing
If it faces a light, the face is shaded bright

By defualt, normals are automatically generated by the VRML
browser

You can specify your own normals with a Normal node

Usually automatically generated normals are good enough

246

Controlling shading on coordinate-based geometry

Syntax: Normal

A Normal node contains a list of normal vectors that override use
of a crease angle

Normal {
 vector [0.0 1.0 0.0, . . .]
}

Normals can be given for IndexedFaceSet and ElevationGrid

nodes

247

Controlling shading on coordinate-based geometry

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates geometry out of faces
normal - list of normals
normalIndex - selects normals from list
normalPerVertex - control normal binding

Shape {
 appearance Appearance { . . . }
 geometry IndexedFaceSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 normal Normal { . . . }
 normalIndex [. . .]
 normalPerVertex TRUE
 }
}

248

Controlling shading on coordinate-based geometry

Controlling normal binding for face sets

The normalPerVertex field controls how normal indexes are used
FALSE: one normal index to each face (ending at -1 coordinate
indexes)

TRUE: one normal index to each coordinate index of each face
(including -1 coordinate indexes)

249

Controlling shading on coordinate-based geometry

Syntax: ElevationGrid

An ElevationGrid geometry node creates terrains
normal - list of normals
normalPerVertex - control normal binding
Always binds one normal to each grid point or square, in
order

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 height [. . .]
 normal Normal { . . . }
 normalPerVertex TRUE
 }
}

250

Controlling shading on coordinate-based geometry

Controlling normal binding for elevation grids

The normalPerVertex field controls how normal indexes are used
(similar to face sets)

FALSE: one normal to each grid square

TRUE: one normal to each height for each grid square

251

Controlling shading on coordinate-based geometry

Syntax: NormalInterpolator

A NormalInterpolator node describes a normal set
keys - key fractions
values - key normal lists (X,Y,Z lists)
Interpolates lists of normals, similar to the
CoordinateInterpolator

NormalInterpolator {
 key [0.0, . . .]
 keyValue [0.0 1.0 1.0, . . .]
}

Typically route into a Normal node’s set_vector input

252

Controlling shading on coordinate-based geometry

Summary

The creaseAngle field controls faceted or smooth shading

The Normal node lists normal vectors to use for parts of a shape
Used as the value of the normal field
Normal indexes select normals to use
Normals override creaseAngle value

The normalPerVertex field selects normal per face/grid square or
normal per coordinate

The NormalInterpolator node converts times to normals

253

Summary examples

 A terrain 254
 Particle flow 255
 A real-time clock 256
 A timed timer 257
 A morphing snake 258

254

Summary examples

A terrain

An ElevationGrid node creates a terrain
A Color node provides terrain colors

[land.wrl]

255

Summary examples

Particle flow

Multiple Extrusion nodes trace particle paths
Multiple PositionInterpolator nodes define particle animation
paths
Multiple TimeSensor nodes clock the animation using different
starting times

[espiralm.wrl]

256

Summary examples

A real-time clock

A set of TimeSensor nodes watch the time
A set of OrientationInterpolator nodes spin the clock hands

[stopwtch.wrl]

257

Summary examples

A timed timer

A first TimeSensor node clocks a second TimeSensor node to
create a periodic animation

[timetime.wrl]

258

Summary examples

A morphing snake

A CoordinateInterpolator node animates the spine of an
Extrusion node

[snake.wrl]

259

Mapping textures

 Motivation 260
 Example 261
 Example Textures 262
 Using image textures 263
 Using pixel textures 264
 Using movie textures 265
 Syntax: Appearance 266
 Syntax: ImageTexture 267
 Syntax: PixelTexture 268
 Syntax: MovieTexture 269
 Using materials with textures 270
 Colorizing textures 271
 Using transparent textures 272
 Transparent texture example 273
 Transparent texture example 274
 Summary 275

260

Mapping textures

Motivation

You can model every tiny texture detail of a world using a vast
number of colored faces

Takes a long time to write the VRML
Takes a long time to draw

Use a trick instead
Take a picture of the real thing
Paste that picture on the shape, like sticking on a decal

This technique is called Texture Mapping

261

Mapping textures

Example

[can.wrl]

262

Mapping textures

Example Textures

263

Mapping textures

Using image textures

Image texture
Uses a single image from a file in one of these formats:

GIF 8-bit lossless compressed images
1 transparency color
Usually a poor choice for texture mapping

JPEG 8-bit thru 24-bit lossy compressed images
No transparency support
An adequate choice for texture mapping

PNG 8-bit thru 24-bit lossless compressed images
8-bit transparency per pixel
Best choice

264

Mapping textures

Using pixel textures

Pixel texture
A single image, given in the VRML file itself

The image is encoded using hex
Up to 10 bytes per pixel
Very inefficient
Only useful for very small textures

Stripes
Checkerboard patterns

265

Mapping textures

Using movie textures

Movie texture
A movie from an MPEG-1 file

The movie plays back on the textured shape
Problematic in some browsers

266

Mapping textures

Syntax: Appearance

An Appearance node describes overall shape appearance
texture - texture source

Shape {
 appearance Appearance {
 material Material { . . . }
 texture ImageTexture { . . . }
 }
 geometry . . .
}

267

Mapping textures

Syntax: ImageTexture

An ImageTexture node selects a texture image for texture
mapping

url - texture image file URL

Shape {
 appearance Appearance {
 material Material { }
 texture ImageTexture {
 url "wood.jpg"
 }
 }
 geometry . . .
}

268

Mapping textures

Syntax: PixelTexture

A PixelTexture node specifies texture image pixels for texture
mapping

image - texture image pixels
Image data - width, height, bytes/pixel, pixel values

Shape {
 appearance Appearance {
 material Material { }
 texture PixelTexture {
 image 2 1 3
 0xFFFF00 0xFF0000
 }
 }
 geometry . . .
}

269

Mapping textures

Syntax: MovieTexture

A MovieTexture node selects a texture movie for texture mapping
url - texture movie file URL
When to play the movie, and how quickly (like a TimeSensor

node)

Shape {
 appearance Appearance {
 material Material { }
 texture MovieTexture {
 url "movie.mpg"
 loop TRUE
 speed 1.0
 startTime 0.0
 stopTime 0.0
 }
 }
 geometry . . .
}

270

Mapping textures

Using materials with textures

Color textures override the color in a Material node

Grayscale textures multiply with the Material node color
Good for colorizing grayscale textures

If there is no Material node, the texture is applied emissively

271

Mapping textures

Colorizing textures

a. Grayscale wood texture b. Six wood colors from
one colorized texture

272

Mapping textures

Using transparent textures

Texture images can include color and transparency values for
each pixel

Pixel transparency is also known as alpha

Pixel transparency enables you to make parts of a shape
transparent

Windows, grillwork, holes
Trees, clouds

273

Mapping textures

Transparent texture example

a. Color portion of tree texture

b. Transparency portion of tree

texture

274

Mapping textures

Transparent texture example

[treewall.wrl]

275

Mapping textures

Summary

A texture is like a decal pasted to a shape

Specify the texture using an ImageTexture , PixelTexture , or
MovieTexture node in an Appearance node

Color textures override material, grayscale textures multiply

Textures with transparency create holes

276

Controlling how textures are mapped

 Motivation 277
 Working through the texturing process 278
 Using texture coordinate system 279
 Specifying texture coordinates 280
 Applying texture transforms 281
 Texturing a face 282
 Working through the texturing process 283
 Syntax: TextureCoordinate 284
 Syntax: IndexedFaceSet 285
 Syntax: ElevationGrid 286
 Syntax: Appearance 287
 Syntax: TextureTransform 288
 No texture transform example 289
 Texture translation example 290
 Texture rotation example 291
 Texture scale example 292
 Texture coordinates example 293
 Texture scale example 294
 Scaling, rotating, and translating 295
 Scaling, rotating, and translating 296
 Texture scale and rotation example 297
 Summary 298

277

Controlling how textures are mapped

Motivation

By default, an entire texture image is mapped once around the
shape

You can also:
Extract only pieces of interest
Create repeating patterns

278

Controlling how textures are mapped

Working through the texturing process

Imagine the texture image is a big piece of rubbery cookie dough

Select a texture image piece
Define the shape of a cookie cutter
Position and orient the cookie cutter
Stamp out a piece of texture dough

Stretch the rubbery texture cookie to fit a face

279

Controlling how textures are mapped

Using texture coordinate system

Texture images (the dough) are in a texture coordinate system

S direction is horizontal
T direction is vertical
(0,0) at lower-left
(1,1) at upper-right

280

Controlling how textures are mapped

Specifying texture coordinates

Texture coordinates and texture coordinate indexes specify a
texture piece shape (the cookie cutter)

0.0 0.0,
1.0 0.0,
1.0 1.0,
0.0 1.0

281

Controlling how textures are mapped

Applying texture transforms

Texture transforms translate, rotate, and scale the texture
coordinates (placing the cookie cutter)

282

Controlling how textures are mapped

Texturing a face

Bind the texture to a face (stretch the cookie and stick it)

283

Controlling how textures are mapped

Working through the texturing process

Select piece with texture coordinates and indexes
Create a cookie cutter

Transform the texture coordinates
Position and orient the cookie cutter

Bind the texture to a face
Stamp out the texture and stick it on a face

The process is very similar to creating faces!

284

Controlling how textures are mapped

Syntax: TextureCoordinate

A TextureCoordinate node contains a list of texture coordinates

TextureCoordinate {
 point [0.2 0.2, 0.8 0.2, . . .]
}

Used as the texCoord field value of IndexedFaceSet or
ElevationGrid nodes

285

Controlling how textures are mapped

Syntax: IndexedFaceSet

An IndexedFaceSet geometry node creates geometry out of faces
texCoord and texCoordIndex - specify texture pieces

Shape {
 appearance Appearance { . . . }
 geometry IndexedFaceSet {
 coord Coordinate { . . . }
 coordIndex [. . .]
 texCoord TextureCoordinate { . . . }
 texCoordIndex [. . .]
 }
}

286

Controlling how textures are mapped

Syntax: ElevationGrid

An ElevationGrid geometry node creates terrains
texCoord - specify texture pieces
Automatically generated texture coordinate indexes

Shape {
 appearance Appearance { . . . }
 geometry ElevationGrid {
 height [. . .]
 texCoord TextureCoordinate { . . . }
 }
}

287

Controlling how textures are mapped

Syntax: Appearance

An Appearance node describes overall shape appearance
textureTransform - transform

Shape {
 appearance Appearance {
 material Material { . . . }
 texture ImageTexture { . . . }
 textureTransform TextureTransform { . . . }
 }
 geometry . . .
}

288

Controlling how textures are mapped

Syntax: TextureTransform

A TextureTransform node transforms texture coordinates
translation - position
rotation - orientation
scale - size

Shape {
 appearance Appearance {
 material Material { . . . }
 texture ImageTexture { . . . }
 textureTransform TextureTransform {
 translation 0.0 0.0
 rotation 0.0
 scale 1.0 1.0
 }
 }
}

289

Controlling how textures are mapped

No texture transform example

a. Texture in texture space b. Texture on shape

290

Controlling how textures are mapped

Texture translation example

a. Texture in texture space b. Translated cookie cutter

c. Texture on shape

291

Controlling how textures are mapped

Texture rotation example

a. Texture in texture space b. Rotated cookie cutter

c. Texture on shape

292

Controlling how textures are mapped

Texture scale example

a. Texture in texture space b. Scaled cookie cutter

c. Texture on shape

293

Controlling how textures are mapped

Texture coordinates example

a. Texture image

[cookie.wrl]
b. Texture on shapes

294

Controlling how textures are mapped

Texture scale example

a. Texture image [brickb.wrl]
b. Texture on shape

295

Controlling how textures are mapped

Scaling, rotating, and translating

Scale, Rotate, and Translate a texture cookie cutter one after the
other

Shape {
 appearance Appearance {
 material Material { . . . }
 texture ImageTexture { . . . }
 textureTransform TextureTransform {
 translation 0.0 0.0
 rotation .785
 scale 8.5 8.5
 }
 }
}

296

Controlling how textures are mapped

Scaling, rotating, and translating

Read texture transform operations top-down:
The cookie cutter is translated, rotated, then scaled
Order is fixed, independent of field order
This is the reverse of a Transform node

This is a significant difference between VRML 2.0 and ISO
VRML 97

VRML 2.0 uses scale, rotate, translate order
ISO VRML 97 uses translate, rotate, scale order

297

Controlling how textures are mapped

Texture scale and rotation example

a. Texture image [fence.wrl]
b. Texture on shape

298

Controlling how textures are mapped

Summary

Texture images are in a texture coordinate system

Texture coordinates and indexes describe a texture cookie cutter

Texture transforms translate, rotate, and scale place the cookie
cutter

Texture indexes bind the cut-out cookie texture to a face on a
shape

299

Lighting your world

 Motivation 300
 Example 301
 Using types of lights 302
 Using common lighting features 303
 Using common lighting features 304
 Syntax: PointLight 305
 Syntax: DirectionalLight 306
 Syntax: SpotLight 307
 Syntax: SpotLight 308
 Example 309
 Summary 310

300

Lighting your world

Motivation

By default, you have one light in the scene, attached to your head

For more realism, you can add multiple lights
Suns, light bulbs, candles
Flashlights, spotlights, firelight

Lights can be positioned, oriented, and colored

Lights do not cast shadows

301

Lighting your world

Example

302

Lighting your world

Using types of lights

Theer are three types of VRML lights
Point lights - radiate in all directions from a point

Directional lights - aim in one direction from infinitely far
away

Spot lights - aim in one direction from a point, radiating in a
cone

303

Lighting your world

Using common lighting features

All lights have several common fields:
on - turn it on or off
intensity - control brightness
ambientIntensity - control ambient effect
color - select color

304

Lighting your world

Using common lighting features

Point lights and spot lights also have:
location - position
radius - maximum lighting distance
attenuation - drop off with distance

Directional lights and spot lights also have
direction - aim direction

305

Lighting your world

Syntax: PointLight

A PointLight node illuminates radially from a point

[pntlite.wrl]

PointLight {
 location 0.0 0.0 0.0
 intensity 1.0
 color 1.0 1.0 1.0
}

306

Lighting your world

Syntax: DirectionalLight

A DirectionalLight node illuminates in one direction from
infinitely far away

[dirlite.wrl]

DirectionalLight {
 direction 1.0 0.0 0.0
 intensity 1.0
 color 1.0 1.0 1.0
}

307

Lighting your world

Syntax: SpotLight

A SpotLight node illuminates from a point, in one direction,
within a cone

[sptlite.wrl]

SpotLight {
 location 0.0 0.0 0.0
 direction 1.0 0.0 0.0
 intensity 1.0
 color 1.0 1.0 1.0
 cutOffAngle 0.785
}

308

Lighting your world

Syntax: SpotLight

The maximum width of a spot light’s cone is controlled by the
cutOffAngle field

An inner cone region with constant brightness is controlled by the
beamWidth field

SpotLight {
 . . .
 cutOffAngle 0.785
 beamWidth 0.52
}

309

Lighting your world

Example

[temple.wrl]

310

Lighting your world

Summary

There are three types of lights: point, directional, and spot

All lights have an on/off, intensity, ambient effect, and color

Point and spot lights have a location, radius, and attenuation

Directional and spot lights have a direction

311

Adding backgrounds

 Motivation 312
 Using the background components 313
 Using the background components 314
 Syntax: Background 315
 Using sky angles and colors 316
 Using ground angles and colors 317
 Background example code 318
 Background example 319
 Syntax: Background 320
 Background image example 321
 Background image example code 322
 Background image example 323
 Summary 324

312

Adding backgrounds

Motivation

Shapes form the foreground of your scene

You can add a background to provide context

Backgrounds describe:
Sky and ground colors
Panorama images of mountains, cities, etc

Backgrounds are faster to draw than if you used shapes to build
them

313

Adding backgrounds

Using the background components

A background creates three special shapes:
A sky sphere
A ground hemisphere inside the sky sphere
A panorama box inside the ground hemisphere

The sky sphere and ground hemisphere are shaded with a color
gradient

The panorama box is texture mapped with six images

314

Adding backgrounds

Using the background components

Transparent parts of the ground hemisphere reveal the sky sphere

Transparent parts of the panorama box reveal the ground and sky

The viewer can look up, down, and side-to-side to see different
parts of the background

The viewer can never get closer to the background

315

Adding backgrounds

Syntax: Background

A Background node describes background colors
skyColor and skyAngle - sky gradation
groundColor and groundAngle - ground gradation

Background {
 skyColor [0.1 0.1 0.0, . . .]
 skyAngle [1.309, 1.571]
 groundColor [0.0 0.2 0.7, . . .]
 groundAngle [1.309, 1.571]
}

316

Adding backgrounds

Using sky angles and colors

The first sky color is at the north pole

The remaining sky colors are at given sky angles
The maximum angle is 180 degrees = 3.1415 radians

The last color smears on down to the south pole

317

Adding backgrounds

Using ground angles and colors

The first ground color is at the south pole

The remaining ground colors are at given ground angles
The maximum angle is 90 degrees = 1.5708 radians

After the last color, the rest of the hemisphere is transparent

318

Adding backgrounds

Background example code

Background {
 skyColor [
 0.0 0.2 0.7,
 0.0 0.5 1.0,
 1.0 1.0 1.0
]
 skyAngle [1.309, 1.571]
 groundColor [
 0.1 0.10 0.0,
 0.4 0.25 0.2,
 0.6 0.60 0.6,
]
 groundAngle [1.309, 1.571]
}

319

Adding backgrounds

Background example

[back.wrl]

320

Adding backgrounds

Syntax: Background

A Background node describes background images
frontUrl , etc - texture image URLs for box

Background {
 . . .
 frontUrl "mountns.png"
 backUrl "mountns.png"
 leftUrl "mountns.png"
 rightUrl "mountns.png"
 topUrl "clouds.png"
 bottomUrl "ground.png"
}

321

Adding backgrounds

Background image example

a. Color portion of mountains
texture

b. Transparency portion of
mountains texture

322

Adding backgrounds

Background image example code

Background {
 skyColor [
 0.0 0.2 0.7,
 0.0 0.5 1.0,
 1.0 1.0 1.0
]
 skyAngle [1.309, 1.571]
 groundColor [
 0.1 0.10 0.0,
 0.4 0.25 0.2,
 0.6 0.60 0.6,
]
 groundAngle [1.309, 1.571]
 frontUrl "mountns.png"
 backUrl "mountns.png"
 leftUrl "mountns.png"
 rightUrl "mountns.png"
 # no top or bottom images
}

323

Adding backgrounds

Background image example

[back2.wrl]

324

Adding backgrounds

Summary

Backgrounds describe:
Ground and sky color gradients on ground hemisphere and
sky sphere

Panorama images on a panorama box

The viewer can look around, but never get closer to the
background

325

Adding fog

 Motivation 326
 Examples 327
 Using fog visibility controls 328
 Selecting a fog color 329
 Syntax: Fog 330
 Several fog samples 331
 Summary 332

326

Adding fog

Motivation

Fog increases realism:
Add fog outside to create hazy worlds
Add fog inside to create dark dungeons
Use fog to set a mood

The further the viewer can see, the more you have to model and
draw

To reduce development time and drawing time, limit the viewer’s
sight by using fog

327

Adding fog

Examples

[fog2.wrl] [fog4.wrl]

328

Adding fog

Using fog visibility controls

The fog type selects linear or exponential visibility reduction with
distance

Linear is easier to control
Exponential is more realistic and "thicker"

The visibility range selects the distance where the fog reaches
maximum thickness

Fog is "clear" at the viewer, and gradually reduces visibility

329

Adding fog

Selecting a fog color

Fog has a fog color
White is typical, but black, red, etc. also possible

Shapes are faded to the fog color with distance

The background is unaffected
For the best effect, make the background the fog color

330

Adding fog

Syntax: Fog

A Fog node creates colored fog
color - fog color
fogType - LINEAR or EXPONENTIAL
visibilityRange - maximum visibility limit

Fog {
 color 1.0 1.0 1.0
 fogType "LINEAR"
 visibilityRange 10.0
}

331

Adding fog

Several fog samples

[fog1.wrl]
a. No fog

[fog2.wrl]
b. Linear fog, visibility range 30.0

[fog3.wrl]
c. Exponential fog, visibility

range 30.0

[fog5.wrl]
c. Linear fog with a background

(don’t do this!)

332

Adding fog

Summary

Fog has a color, a type, and a visibility range

Fog can be used to set a mood, even indoors

Fog limits the viewer’s sight:
Reduces the amount of the world you have to build
Reduces the amount of the world that must be drawn

333

Adding sound

 Motivation 334
 Creating sounds 335
 Syntax: AudioClip 336
 Syntax: MovieTexture 337
 Selecting sound source types 338
 Syntax: Sound 339
 Syntax: Sound 340
 Syntax: Sound 341
 Setting the sound range 342
 Creating triggered sounds 343
 Triggered sound example code 344
 Triggered sound example 345
 Creating continuous localized sounds 346
 Continuous localized sound example code 347
 Continuous localized sound example 348
 Creating continuous background sounds 349
 Multiple sounds example 350
 Summary 351

334

Adding sound

Motivation

Sounds can be triggered by viewer actions
Clicks, horn honks, door latch noises

Sounds can be continuous in the background
Wind, crowd noises, elevator music

Sounds emit from a location, in a direction, within an area

335

Adding sound

Creating sounds

Sounds have two components
A sound source providing a sound signal

Like a stereo component

A sound emitter converts a signal to virtual sound
Like a stereo speaker

336

Adding sound

Syntax: AudioClip

An AudioClip node creates a digital sound source
url - a sound file URL
pitch - playback speed
playback controls, like a TimeSensor node

Sound {
 source AudioClip {
 url "myfile.wav"
 pitch 1.0
 startTime 0.0
 stopTime 0.0
 loop FALSE
 }
}

337

Adding sound

Syntax: MovieTexture

A MovieTexture node creates a movie sound source
url - a texture move file URL
speed - playback speed
playback controls, like a TimeSensor node

Sound {
 source MovieTexture {
 url "movie.mpg"
 speed 1.0
 startTime 0.0
 stopTime 0.0
 loop FALSE
 }
}

338

Adding sound

Selecting sound source types

Supported by the AudioClip node:
WAV - digital sound files

Good for sound effects

MIDI - General MIDI musical performance files
MIDI files are good for background music

Supported by the MovieTexture node:
MPEG - movie file with sound

Good for virtual TVs

339

Adding sound

Syntax: Sound

A Sound node describes a sound emitter
source - AudioClip or MovieTexture node
location and direction - emitter placement

Sound {
 source AudioClip { . . . }
 location 0.0 0.0 0.0
 direction 0.0 0.0 1.0
}

340

Adding sound

Syntax: Sound

A Sound node describes a sound emitter
intensity - volume
spatialize - use spatialize processing
priority - prioritize the sound

Sound {
 . . .
 intensity 1.0
 spatialize TRUE
 priority 0.0
}

341

Adding sound

Syntax: Sound

A Sound node describes a sound emitter
minFront , minBack - inner ellipsoid
maxFront , maxBack - outer ellipsoid

Sound {
 . . .
 minFront 1.0
 minBack 1.0
 maxFront 10.0
 maxBack 10.0
}

342

Adding sound

Setting the sound range

The sound range fields specify two ellipsoids
minFront and minBack control an inner ellipsoid
maxFront and maxBack control an outer ellipsoid

Sound has a constant volume inside the inner ellipsoid

Sound drops to zero volume from the inner to the outer ellipsoid

343

Adding sound

Creating triggered sounds

AudioClip node:
loop FALSE
Set startTime from a sensor node

Sound node:
spatialize TRUE
minFront etc. with small values
priority 1.0

344

Adding sound

Triggered sound example code

Group {
 children [
 Shape { . . . }
 DEF C4 TouchSensor { }
 Sound {
 source DEF PitchC4 AudioClip {
 url "tone1.wav"
 pitch 1.0
 }
 maxFront 100.0
 maxBack 100.0
 }
]
}
ROUTE C4.touchTime TO PitchC4.set_startTime

345

Adding sound

Triggered sound example

[kbd.wrl]

346

Adding sound

Creating continuous localized sounds

AudioClip node:
loop TRUE
startTime 0.0 (default)
stopTime 0.0 (default)

Sound node:
spatialize TRUE (default)
minFront etc. with medium values
priority 0.0 (default)

347

Adding sound

Continuous localized sound example code

Sound {
 source AudioClip {
 url "willow1.wav"
 loop TRUE
 startTime 1.0
 stopTime 0.0
 }
 minFront 5.0
 minBack 5.0
 maxFront 10.0
 maxBack 10.0
}
Transform {
 translation 0.0 -1.65 0.0
 children [
 Inline { url "sndmark.wrl" }
]
}

348

Adding sound

Continuous localized sound example

[ambient.wrl]

349

Adding sound

Creating continuous background sounds

AudioClip node:
loop TRUE
startTime 0.0 (default)
stopTime 0.0 (default)

Sound node:
spatialize FALSE (default)
minFront etc. with large values
priority 0.0 (default)

350

Adding sound

Multiple sounds example

[subworld.wrl]

351

Adding sound

Summary

An AudioClip node or a MovieTexture node describe a sound
source

A URL gives the sound file
Looping, start time, and stop time control playback

A Sound node describes a sound emitter
A source node provides the sound
Range fields describe the sound volume

352

Controlling the viewpoint

 Motivation 353
 Creating viewpoints 354
 Syntax: Viewpoint 355
 Multiple viewpoints example 356
 Summary 357

353

Controlling the viewpoint

Motivation

By default, the viewer enters a world at (0.0, 0.0, 10.0)

You can provide your own preferred view points
Select the entry point position
Select favorite views for the viewer
Name the views for a browser menu

354

Controlling the viewpoint

Creating viewpoints

Viewpoints specify a desired location, an orientation, and a
camera field of view lens angle

Viewpoints can be transformed using a Transform node

The first viewpoint found in a file is the entry point

355

Controlling the viewpoint

Syntax: Viewpoint

A Viewpoint node specifies a named viewing location
position and orientation - viewing location
fieldOfView - camera lens angle
description - description for viewpoint menu

Viewpoint {
 position 0.0 0.0 10.0
 orientation 0.0 0.0 1.0 0.0
 fieldOfView 0.785
 description "Entry View"
}

356

Controlling the viewpoint

Multiple viewpoints example

[windmill.wrl]

357

Controlling the viewpoint

Summary

Specify favorite viewpoints in Viewpoint nodes

The first viewpoint in the file is the entry viewpoint

358

Controlling navigation

 Motivation 359
 Selecting navigation types 360
 Specifying avatars 361
 Controlling the headlight 362
 Syntax: NavigationInfo 363
 NavigationInfo example 364
 Summary 365

359

Controlling navigation

Motivation

Different types of worlds require different styles of navigation
Walk through a dungeon
Fly through a cloud world
Examine shapes in a CAD application

You can select the navigation type

You can describe the size and speed of the viewer’s avatar

360

Controlling navigation

Selecting navigation types

There are five standard navigation keywords:
WALK - walk, pulled down by gravity
FLY - fly, unaffected by gravity
EXAMINE - examine an object at "arms length"
NONE - no navigation, movement controlled by world not
viewer!
ANY - allows user to change navigation type

Some browsers support additional navigation types

361

Controlling navigation

Specifying avatars

Avatar size (width, height, step height) and speed can be
specified

362

Controlling navigation

Controlling the headlight

By default, a headlight is placed on the avatar’s head and aimed
in the head direction

You can turn this headlight on and off
Most browsers provide a menu option to control the headlight
You can also control the headlight with the NavigationInfo

node

363

Controlling navigation

Syntax: NavigationInfo

A NavigationInfo node selects the navigation type and avatar
characteristics

type - navigation style
avatarSize and speed - avatar characteristics
headlight - headlight on or off

NavigationInfo {
 type ["WALK", "ANY"]
 avatarSize [0.25, 1.6, 0.75]
 speed 1.0
 headlight TRUE
}

364

Controlling navigation

NavigationInfo example

[playyard.wrl]

365

Controlling navigation

Summary

The navigation type specifies how a viewer can move in a world
walk, fly, examine, or none

The avatar overall size and speed specify the viewer’s avatar
characteristics

366

Sensing the viewer

 Motivation 367
 Sensing the viewer 368
 Using visibility and proximity sensors 369
 Syntax: VisibilitySensor 370
 Syntax: ProximitySensor 371
 Syntax: ProximitySensor 372
 Detecting viewer-shape collision 373
 Creating collision groups 374
 Syntax: Collision 375
 Proximity sensors and collision groups example 376
 Optimizing collision detection 377
 Using multiple sensors 378
 Summary 379
 Summary 380
 Summary 381

367

Sensing the viewer

Motivation

Sensing the viewer enables you to trigger animations
when a region is visible to the viewer
when the viewer is within a region
when the viewer collides with a shape

The LOD and Billboard nodes are special-purpose viewer sensors
with built-in responses

368

Sensing the viewer

Sensing the viewer

There are three types of viewer sensors:
A VisibilitySensor node senses if the viewer can see a
region

A ProximitySensor node senses if the viewer is within a
region

A Collision node senses if the viewer has collided with
shapes

369

Sensing the viewer

Using visibility and proximity sensors

VisibilitySensor and ProximitySensor nodes sense a
box-shaped region

center - region center
size - region dimensions

Both nodes have similar outputs:
enterTime - sends time on visible or region entry
exitTime - sends time on not visible or region exit
isActive - sends true on entry, false on exit

370

Sensing the viewer

Syntax: VisibilitySensor

A VisibilitySensor node senses if the viewer sees or stops
seeing a region

center and size - the region’s location and size
enterTime and exitTime - sends time on entry/exit
isActive - sends true/false on entry/exit

DEF VisSense VisibilitySensor {
 center 0.0 0.0 0.0
 size 14.0 14.0 14.0
}
ROUTE VisSense.enterTime TO Clock.set_startTime

371

Sensing the viewer

Syntax: ProximitySensor

A ProximitySensor node senses if the viewer enters or leaves a
region

center and size - the region’s location and size
enterTime and exitTime - sends time on entry/exit
isActive - sends true/false on entry/exit

DEF ProxSense ProximitySensor {
 center 0.0 0.0 0.0
 size 14.0 14.0 14.0
}
ROUTE ProxSense.enterTime TO Clock.set_startTime

372

Sensing the viewer

Syntax: ProximitySensor

A ProximitySensor node senses the viewer while in a region
position and orientation - sends position and orientation
while viewer is in the region

DEF ProxSense ProximitySensor { . . . }

ROUTE ProxSense.position_changed TO PetRobotFollower.set _

373

Sensing the viewer

Detecting viewer-shape collision

A Collision grouping node senses shapes within the group
Detects if the viewer collides with any shape in the group
Automatically stops the viewer from going through the shape

Collision occurs when the viewer’s avatar gets close to a shape
Collision distance is controlled by the avatar size in the
NavigationInfo node

374

Sensing the viewer

Creating collision groups

Collision checking is expensive so, check for collision with a
proxy shape instead

Proxy shapes are typically extremely simplified versions of
the actual shapes
Proxy shapes are never drawn

A collision group with a proxy shape, but no children, creates an
invisible collidable shape

Windows and invisible railings
Invisible world limits

375

Sensing the viewer

Syntax: Collision

A Collision grouping node senses if the viewer collides with
group shapes

collide - enable/disable sensor
proxy - simple shape to sense instead of children
children - children to sense
collideTime - sends time on collision

DEF Collide Collision {
 collide TRUE
 proxy Shape { geometry Box { . . . } }
 children [. . .]
}
ROUTE Collide.collideTime TO OuchSound.set_startTime

376

Sensing the viewer

Proximity sensors and collision groups example

[prox2.wrl]

377

Sensing the viewer

Optimizing collision detection

Collision is on by default
Turn it off whenever possible!

However, once a parent turns off collision, a child can’t turn it
back on!

Collision results from viewer colliding with a shape, but not from
a shape colliding with a viewer

378

Sensing the viewer

Using multiple sensors

Any number of sensors can sense at the same time
You can have multiple visibility, proximity, and collision
sensors

Sensor areas can overlap

If multiple sensors should trigger, they do

379

Sensing the viewer

Summary

A VisibilitySensor node checks if a region is visible to the
viewer

The region is described by a center and a size

Time is sent on entry and exit of visibility

True/false is sent on entry and exit of visibility

380

Sensing the viewer

Summary

A ProximitySensor node checks if the viewer is within a region
The region is described by a center and a size

Time is sent on viewer entry and exit

True/false is sent on viewer entry and exit

Position and orientation of the viewer is sent while within the
sensed region

381

Sensing the viewer

Summary

A Collision grouping node checks if the viewer has run into a
shape

The shapes are defined by the group’s children or a proxy

Collision time is sent on contact

382

Summary examples

 A doorway 383
 A mysterious temple 384
 Depth-cueing using fog 385
 A heads-up display 386

383

Summary examples

A doorway

A set of ImageTexture nodes add marble textures
Lighting nodes create dramatic lighting
A Fog node fades distant shapes
A ProximitySensor node controls animation

[doorway.wrl]

384

Summary examples

A mysterious temple

A Background node creates a sky gradient
A Sound node creates a spatialized sound effect
A set of Viewpoint nodes provide standard views

[temple.wrl]

385

Summary examples

Depth-cueing using fog

Multiple IndexedLineSet nodes create wireframe isosurfaces
A Fog node with black fog fades out distant lines for depth-cueing

[isoline.wrl]

386

Summary examples

A heads-up display

A ProximitySensor node tracks the viewer and moves a panel at
each step
The panel contains shapes and sensors to control the content

[hud.wrl]

387

Controlling detail

 Motivation 388
 Example 389
 Creating multiple shape versions 390
 Controlling level of detail 391
 Syntax: LOD 392
 Choosing detail ranges 393
 Optimizing a shape 394
 Detail levels example 395
 Level of detail example code 396
 Level of detail example 397
 Summary 398

388

Controlling detail

Motivation

The further the viewer can see, the more there is to draw

If a shape is distant:
The shape is smaller
The viewer can’t see as much detail
So... draw it with less detail

Varying detail with distance reduces upfront download time, and
increases drawing speed

389

Controlling detail

Example

[prox1.wrl]

390

Controlling detail

Creating multiple shape versions

To control detail, model the same shape several times
high detail for when the viewer is close up
medium detail for when the viewer is nearish
low detail for when the viewer is distant

Usually, two or three different versions is enough, but you can
have as many as you want

391

Controlling detail

Controlling level of detail

Group the shape versions as levels in an LOD grouping node
LOD is short for Level of Detail
List them from highest to lowest detail

392

Controlling detail

Syntax: LOD

An LOD grouping node creates a group of shapes describing
different levels (versions) of the same shape

center - the center of the shape
range - a list of level switch ranges
level - a list of shape levels

LOD {
 center 0.0 0.0 0.0
 range [. . .]
 level [. . .]
}

393

Controlling detail

Choosing detail ranges

Use a list of ranges for level switch points
If you have 3 levels, you need 2 ranges
Ranges are hints to the browser

range [5.0, 10.0]

shape
center

5.0 10.0

Viewer <= 5.0
Show 1st level

|
|

Viewer <= 10.0
Show 2nd level

|
|

Viewer > 10.0
Show 3rd level

394

Controlling detail

Optimizing a shape

Suggested procedure to make different levels (versions):
Make the high detail shape first
Copy it to make a medium detail level
Move the medium detail shape to a desired switch distance
Delete parts that aren’t dominant
Repeat for a low detail level

Lower detail levels should use simpler geometry, fewer textures,
and no text

395

Controlling detail

Detail levels example

[torches3.wrl]

396

Controlling detail

Level of detail example code

LOD {
 center 0.0 0.0 0.0
 range [7.0, 10.0]
 level [
 Inline { url "torch1.wrl" }
 Inline { url "torch2.wrl" }
 Inline { url "torch3.wrl" }
]
}

397

Controlling detail

Level of detail example

[torches.wrl]

398

Controlling detail

Summary

Increase performance by making multiple levels of shapes
High detail for close up viewing
Lower detail for more distant viewing

Group the levels in an LOD node
Ordered from high detail to low detail
Ranges to select switching distances

399

Introducing script use

 Motivation 400
 A word about scripting languages 401
 Syntax: Script 402
 Defining the program script interface 403
 Data types 404
 Data types 405
 Program script example code 406
 Program script example 407
 Summary 408

400

Introducing script use

Motivation

Many actions are too complex for animation nodes
Computed animation paths (eg. gravity)
Algorithmic shapes (eg. fractals)
Collaborative environments (eg. games)

You can create new sensors, interpolators, etc., using program
scripts written in

Java - powerful general-purpose language
JavaScript - easy-to-learn language
VRMLscript - same as JavaScript

401

Introducing script use

A word about scripting languages

The VRML specification doesn’t require scripting language
support

Most browsers support JavaScript et al
Many browsers support Java

VRMLScript = JavaScript = ECMAScript
JavaScript is nothing like Java
VRMLScript is Cosmo Software’s limited JavaScript
The ISO VRML specification calls for ECMAScript, the
ECMA version of JavaScript

402

Introducing script use

Syntax: Script

A Script node selects a program script to run:
url - choice of program script

DEF Bouncer Script {
 url "bouncer.class"
or...
 url "bouncer.js"
or...
 url "javascript: ..."
or...
 url "vrmlscript: ..."
}

403

Introducing script use

Defining the program script interface

A Script node also declares the program script interface
field , eventIn , and eventOut - inputs and outputs

Each has a name and data type
Fields have an initial value

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
}

404

Introducing script use

Data types

Data type Meaning

SFBool Boolean, true or false value

SFColor , MFColor RGB color value

SFFloat , MFFloat Floating point value
SFImage Image value

SFInt32 , MFInt32 Integer value

SFNode, MFNode Node value

405

Introducing script use

Data types

Data type Meaning

SFRotation , MFRotation Rotation value

SFString , MFString Text string value
SFTime Time value

SFVec2f , MFVec2f XY floating point value

SFVec3f , MFVec3f XYZ floating point value

406

Introducing script use

Program script example code

DEF Clock TimeSensor { . . . }

DEF Ball Transform { . . . }

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
 url "vrmlscript: . . ."
}

ROUTE Clock.fraction_changed TO Bouncer.set_fraction
ROUTE Bouncer.value_changed TO Ball.set_translation

407

Introducing script use

Program script example

[bounce1.wrl]

408

Introducing script use

Summary

The Script node selects a program script, specified by a URL

Program scripts have field and event interface declarations, each
with

A data type
A name
An initial value (fields only)

409

Writing program scripts with JavaScript

 Motivation 410
 Declaring a program script interface 411
 Initializing a program script 412
 Shutting down a program script 413
 Responding to events 414
 Accessing fields from JavaScript 415
 Accessing eventOuts from JavaScript 416
 JavaScript script example code 417
 JavaScript script example code 418
 JavaScript script example code 419
 JavaScript script example code 420
 JavaScript script example code 421
 JavaScript script example code 422
 JavaScript script example code 423
 JavaScript script example code 424
 JavaScript script example code 425
 JavaScript script example 426
 Building user interfaces 427
 Building a toggle switch 428
 Using a toggle switch 429
 Using a toggle switch 430
 Building a color selector 431
 Using a color selector 432
 Using a color selector 433
 Summary 434

410

Writing program scripts with JavaScript

Motivation

A program script implements the Script node using values from
the interface

The script responds to inputs and sends outputs

A program script can be written in Java, JavaScript, VRMLscript,
and other languages

JavaScript is easier to program
Java is more powerful
VRMLscript is essentially JavaScript

411

Writing program scripts with JavaScript

Declaring a program script interface

For a JavaScript program script, typically give the script in the
Script node’s url field

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
 url "javascript: . . ."
or...
 url "vrmlscript: . . ."
}

412

Writing program scripts with JavaScript

Initializing a program script

The optional initialize function is called when the script is
loaded

function initialize () {
 . . .
}

Initialization occurs when:
the Script node is created (typically when the browser loads
the world)

413

Writing program scripts with JavaScript

Shutting down a program script

The optional shutdown function is called when the script is
unloaded

function shutdown () {
 . . .
}

Shutdown occurs when:
the Script node is deleted
the browser loads a new world

414

Writing program scripts with JavaScript

Responding to events

An eventIn function must be declared for each eventIn

The eventIn function is called each time an event is received,
passing the event’s

value
time stamp

function set_fraction(value, timestamp) {
 . . .
}

415

Writing program scripts with JavaScript

Accessing fields from JavaScript

Each interface field is a JavaScript variable
Read a variable to access the field value
Write a variable to change the field value
Multi-value data types are arrays

lastval = bounceHeight; // get field

bounceHeight = newval; // set field

416

Writing program scripts with JavaScript

Accessing eventOuts from JavaScript

Each interface eventOut is a JavaScript variable
Read a variable to access the last eventOut value
Write a variable to send an event on the eventOut
Multi-value data types are arrays

lastval = value_changed[0]; // get last event

value_changed[0] = newval; // send new event

417

Writing program scripts with JavaScript

JavaScript script example code

Create a Bouncing ball interpolator that computes a gravity-like
vertical bouncing motion from a fractional time input

Nodes needed:

DEF Ball Transform { . . . }
DEF Clock TimeSensor { . . . }
DEF Bouncer Script { . . . }

418

Writing program scripts with JavaScript

JavaScript script example code

Script fields needed:
Bounce height

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 . . .
}

419

Writing program scripts with JavaScript

JavaScript script example code

Inputs and outputs needed:
Fractional time input
Position value output

DEF Bouncer Script {
 . . .
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
 . . .
}

420

Writing program scripts with JavaScript

JavaScript script example code

Initialization and shutdown actions needed:
None - all work done in eventIn function

421

Writing program scripts with JavaScript

JavaScript script example code

Event processing actions needed:
set_fraction eventIn function

DEF Bouncer Script {
 . . .
 url "vrmlscript:
 function set_fraction(frac, tm) {
 . . .
 }"
}

422

Writing program scripts with JavaScript

JavaScript script example code

Calculations needed:
Compute new ball position
Send new position event

Use a ball position equation roughly based upon Physics
See comments in the VRML file for the derivation of the
equation

423

Writing program scripts with JavaScript

JavaScript script example code

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed
 url "vrmlscript:
 function set_fraction(frac, tm) {
 y = 4.0 * bounceHeight * frac * (1.0 - frac);
 value_changed[0] = 0.0; // X
 value_changed[1] = y; // Y
 value_changed[2] = 0.0; // Z
 }"
}

424

Writing program scripts with JavaScript

JavaScript script example code

Routes needed:
Clock into script’s set_fraction
Script’s value_changed into transform

ROUTE Clock.fraction_changed TO Bouncer.set_fraction
ROUTE Bouncer.value_changed TO Ball.set_translation

425

Writing program scripts with JavaScript

JavaScript script example code

DEF Ball Transform {
 children [
 Shape {
 appearance Appearance {
 material Material {
 ambientIntensity 0.5
 diffuseColor 1.0 1.0 1.0
 specularColor 0.7 0.7 0.7
 shininess 0.4
 }
 texture ImageTexture { url "beach.jpg" }
 textureTransform TextureTransform { scale 2.
 }
 geometry Sphere { }
 }
]
}
DEF Clock TimeSensor {
 cycleInterval 2.0
 startTime 1.0
 stopTime 0.0
 loop TRUE
}
DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url "vrmlscript:
 function set_fraction(frac, tm) {
 y = 4.0 * bounceHeight * frac * (1.0 - frac);
 value_changed[0] = 0.0; // X
 value_changed[1] = y; // Y
 value_changed[2] = 0.0; // Z
 }"
}
ROUTE Clock.fraction_changed TO Bouncer.set_fraction

ROUTE Bouncer.value_changed TO Ball.set_translation

426

Writing program scripts with JavaScript

JavaScript script example

[bounce1.wrl]

427

Writing program scripts with JavaScript

Building user interfaces

Program scripts can be used to help create 3D user interface
widgets

Toggle buttons
Radio buttons
Rotary dials
Scrollbars
Text prompts
Debug message text

428

Writing program scripts with JavaScript

Building a toggle switch

A toggle script turns on at 1st touch, off at 2nd
A TouchSensor node can supply touch events

DEF Toggle Script {
 field SFBool on TRUE
 eventIn SFBool set_active
 eventOut SFBool on_changed
 url "vrmlscript:
 function set_active(b, ts) {
 // ignore button releases
 if (b == FALSE) return;

 // toggle on button presses
 if (on == TRUE) on = FALSE;
 else on = TRUE;
 on_changed = on;
 }"
}

429

Writing program scripts with JavaScript

Using a toggle switch

Use the toggle switch to make a lamp turn on and off

DEF LightSwitch TouchSensor { }
DEF LampLight SpotLight { . . . }

DEF Toggle Script { . . . }

ROUTE LightSwitch.isActive TO Toggle.set_active
ROUTE Toggle.on_changed TO LampLight.set_on

430

Writing program scripts with JavaScript

Using a toggle switch

[lamp2a.wrl]

431

Writing program scripts with JavaScript

Building a color selector

The turns lamp on and off, but the light bulb doesn’t change
color!

A color selector script sends an on color on a TRUE input, and an
off color on a FALSE input

DEF ColorSelector Script {
 field SFColor onColor 1.0 1.0 1.0
 field SFColor offColor 0.0 0.0 0.0
 eventIn SFBool set_selection
 eventOut SFColor color_changed
 url "vrmlscript:
 function set_selection(b, ts) {
 if (b == TRUE)
 color_changed = onColor;
 else
 color_changed = offColor;
 }"
}

432

Writing program scripts with JavaScript

Using a color selector

Use the color selector to change the lamp bulb color

DEF LightSwitch TouchSensor { }
DEF LampLight SpotLight { . . . }
DEF BulbMaterial Material { . . . }

DEF Toggle Script { . . . }
DEF ColorSelector Script { . . . }

ROUTE LightSwitch.isActive TO Toggle.set_active
ROUTE Toggle.on_changed TO LampLight.set_on
ROUTE Toggle.on_changed TO ColorSelector.set_selectio n
ROUTE ColorSelector.color_changed TO BulbMaterial.set_em i

433

Writing program scripts with JavaScript

Using a color selector

[lamp2.wrl]

434

Writing program scripts with JavaScript

Summary

The initialize and shutdown functions are called at load and
unload

An eventIn function is called when an event is received

Functions can get field values and send event outputs

435

Writing program scripts with Java

 Motivation 436
 Declaring a program script interface 437
 Importing packages for the Java class 438
 Creating the Java class 439
 Initializing a program script 440
 Shutting down a program script 441
 Responding to events 442
 Accessing fields from Java 443
 Accessing eventOuts from Java 444
 Java script example code 445
 Java script example code 446
 Java script example code 447
 Java script example code 448
 Java script example code 449
 Java script example code 450
 Java script example code 451
 Java script example code 452
 Java script example code 453
 Java script example code 454
 Java script example code 455
 Java script example code 456
 Java script example 457
 Summary 458

436

Writing program scripts with Java

Motivation

Compared to JavaScript/VRMLscript, Java enables:
Better modularity
Better data structures
Potential for faster execution
Access to the network

For simple tasks, use JavaScript/VRMLscript
For complex tasks, use Java

437

Writing program scripts with Java

Declaring a program script interface

For a Java program script, give the class file in the Script node’s
url field

A class file is a compiled Java program script

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url "bounce2.class"
}

438

Writing program scripts with Java

Importing packages for the Java class

The program script file must import the VRML packages:
Supplied by the VRML browser vendor

import vrml.*;
import vrml.field.*;
import vrml.node.*;

439

Writing program scripts with Java

Creating the Java class

The program script must define a public class that extends the
Script class

public class bounce2
 extends Script
{
 . . .
}

440

Writing program scripts with Java

Initializing a program script

The optional initialize method is called when the script is
loaded

public void initialize () {
 . . .
}

Initialization occurs when:
the Script node is created (typically when the browser loads
the world)

441

Writing program scripts with Java

Shutting down a program script

The optional shutdown method is called when the script is
unloaded

public void shutdown () {
 . . .
}

Shutdown occurs when:
the Script node is deleted
the browser loads a new world

442

Writing program scripts with Java

Responding to events

The processEvent method is called each time an event is
received, passing an Event object containing the event’s

value
time stamp

public void processEvent(Event event) {
 . . .
}

443

Writing program scripts with Java

Accessing fields from Java

Each interface field can be read and written
Call getField to get a field object

obj = (SFFloat) getField("bounceHeight");

Call getValue to get a field value

lastval = obj.getValue();

Call setValue to set a field value

obj.setValue(newval);

444

Writing program scripts with Java

Accessing eventOuts from Java

Each interface eventOut can be read and written
Call getEventOut to get an eventOut object

obj = (SFVec3f) getEventOut("value_changed");

Call getValue to get the last event sent

lastval = obj.getValue();

Call setValue to send an event

obj.setValue(newval);

445

Writing program scripts with Java

Java script example code

Create a Bouncing ball interpolator that computes a gravity-like
vertical bouncing motion from a fractional time input

Nodes needed:

DEF Ball Transform { . . . }
DEF Clock TimeSensor { . . . }
DEF Bouncer Script { . . . }

446

Writing program scripts with Java

Java script example code

Give it the same interface as the JavaScript example

DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url "bounce2.class"
}

447

Writing program scripts with Java

Java script example code

Imports and class definition needed:

import vrml.*;
import vrml.field.*;
import vrml.node.*;

public class bounce2
 extends Script
{
 . . .
}

448

Writing program scripts with Java

Java script example code

Class variables needed:
One for the bounceHeight field value
One for the value_changed eventOut object

private float bounceHeight;
private SFVec3f value_changedObj;

449

Writing program scripts with Java

Java script example code

Initialization actions needed:
Get the value of the bounceHeight field
Get the value_changedObj eventOut object

public void initialize()
{
 SFFloat obj = (SFFloat) getField("bounceHeight");
 bounceHeight = (float) obj.getValue();
 value_changedObj = (SFVec3f) getEventOut("value_cha n
}

450

Writing program scripts with Java

Java script example code

Shutdown actions needed:
None - all work done in processEvent method

451

Writing program scripts with Java

Java script example code

Event processing actions needed:
processEvent event method

public void processEvent(Event event)
{
 . . .
}

452

Writing program scripts with Java

Java script example code

Calculations needed:
Compute new ball position
Send new position event

453

Writing program scripts with Java

Java script example code

public void processEvent(Event event)
{
 ConstSFFloat flt = (ConstSFFloat) event.getValue();
 float frac = (float) flt.getValue();

 float y = (float)(4.0 * bounceHeight * frac * (1.0 - fra

 float[] changed = new float[3];
 changed[0] = (float) 0.0;
 changed[1] = y;
 changed[2] = (float) 0.0;
 value_changedObj.setValue(changed);
}

454

Writing program scripts with Java

Java script example code

import vrml.*;
import vrml.field.*;
import vrml.node.*;

public class bounce2
 extends Script
{
 private float bounceHeight;
 private SFVec3f value_changedObj;

 public void initialize()
 {
 // Get the fields and eventOut
 SFFloat floatObj = (SFFloat) getField("bounceHeight
 bounceHeight = (float) floatObj.getValue();
 value_changedObj = (SFVec3f) getEventOut("value_cha
 }

 public void processEvent(Event event)
 {
 ConstSFFloat flt = (ConstSFFloat) event.getValue();
 float frac = (float) flt.getValue();

 float y = (float)(4.0 * bounceHeight * frac * (1.0 -

 float[] changed = new float[3];
 changed[0] = (float)0.0;
 changed[1] = y;
 changed[2] = (float)0.0;
 value_changedObj.setValue(changed);
 }
}

455

Writing program scripts with Java

Java script example code

Routes needed:
Clock into script’s set_fraction
Script’s value_changed into transform

ROUTE Clock.fraction_changed TO Bouncer.set_fraction
ROUTE Bouncer.value_changed TO Ball.set_translation

456

Writing program scripts with Java

Java script example code

DEF Ball Transform {
 children [
 Shape {
 appearance Appearance {
 material Material {
 ambientIntensity 0.5
 diffuseColor 1.0 1.0 1.0
 specularColor 0.7 0.7 0.7
 shininess 0.4
 }
 texture ImageTexture { url "beach.jpg" }
 textureTransform TextureTransform { scale 2.
 }
 geometry Sphere { }
 }
]
}
DEF Clock TimeSensor {
 cycleInterval 2.0
 startTime 1.0
 stopTime 0.0
 loop TRUE
}
DEF Bouncer Script {
 field SFFloat bounceHeight 3.0
 eventIn SFFloat set_fraction
 eventOut SFVec3f value_changed

 url "bounce2.class"
}
ROUTE Clock.fraction_changed TO Bouncer.set_fraction
ROUTE Bouncer.value_changed TO Ball.set_translation

457

Writing program scripts with Java

Java script example

[bounce2.wrl]

458

Writing program scripts with Java

Summary

The initialize and shutdown methods are called at load and
unload

The processEvent method is called when an event is received

Methods can get field values and send event outputs

459

Accessing the browser from JavaScript and Java

 Motivation 460
 Using the Browser object 461
 Using Browser information functions 462
 Using Browser information functions 463
 Browser information functions example code 464
 Browser information functions example 465
 Using Browser route functions 466
 Using Browser content creation functions 467
 Browser content creation functions example code 468
 Browser content creation functions example 469
 Summary 470

460

Accessing the browser from JavaScript and Java

Motivation

You can create scripts that request the VRML browser to:
Report it’s name and version number
Return its current frame rate
Add and delete routes
Load VRML from a URL or text string
Replace the current world

461

Accessing the browser from JavaScript and Java

Using the Browser object

To control the browser, use the Browser object
Available in both Java and JavaScript program scripts

To call a Browser function type

Browser. function

where function is the name of a browser function

462

Accessing the browser from JavaScript and Java

Using Browser information functions

Browser information functions:
string Browser.getName()

Get the name of the VRML browser
string Browser.getVersion()

Get the VRML browser’s version
string Browser.getWorldURL()

Get the URL of the current world
void Browser.setDescription(string text)

Set the world’s description

463

Accessing the browser from JavaScript and Java

Using Browser information functions

Browser information functions:
numeric Browser.getCurrentSpeed()

Get the VRML browser’s drawing speed
numeric Browser.getCurrentFrameRate()

Get the VRML browser’s frame rate

464

Accessing the browser from JavaScript and Java

Browser information functions example code

Query browser information and send it as a string
Use a Text node to display the string

DEF Introspect Script {
 eventIn SFTime trigger
 eventOut MFString message
 url "vrmlscript:
 function update() {
 message.length = 5;
 message[0] = ’Browser: ’ + Browser.getName();
 message[1] = ’Version: ’ + Browser.getVersion()
 message[2] = ’URL: ’ + Browser.getWorldURL(
 message[3] = ’Speed: ’ + Browser.getCurrentSpe
 message[4] = ’Frames: ’ + Browser.getCurrentFra m
 }
 function initialize() {
 update();
 }
 function trigger(t, ts) {
 update();
 }"
}

465

Accessing the browser from JavaScript and Java

Browser information functions example

[query.wrl]

466

Accessing the browser from JavaScript and Java

Using Browser route functions

Browser route functions:
void Browser.addRoute(
 node fromNode, string fromOut,

 node toNode, string toIn)
Create a route between two nodes

void Browser.deleteRoute(
 node fromNode, string fromOut,

 node toNode, string toIn)
Remove a route between two nodes

467

Accessing the browser from JavaScript and Java

Using Browser content creation functions

Browser content creation functions:
void Browser.replaceWorld(

 node newNode)
Replace the world with a new node

node Browser.createVrmlFromString(

 string text)
Create a new node from VRML text

void Browser.createVrmlFromURL(
 string url,

 node notifyNode, string notifyIn)
Load VRML text from a URL, then notify a node by
sending the loaded node to it’s notify eventIn

468

Accessing the browser from JavaScript and Java

Browser content creation functions example code

Receive a URL on an input, load it, and output the results
Use a Group node to hold the results

DEF Loader Script {
 field SFNode myself USE Loader
 field MFString lastUrl ""
 eventIn MFString loadUrl
 eventIn MFNode vrmlLoaded
 eventOut MFNode node_changed
 eventOut MFString string_changed
 url "vrmlscript:
 function loadUrl(str, ts) {
 lastUrl = str;
 Browser.createVrmlFromURL(str, myself, ’vrmlLoa
 string_changed[0] = ’Loading...’;
 }
 function vrmlLoaded(nd, ts) {
 node_changed = nd;
 string_changed[0] = lastUrl[0];
 }"
}

469

Accessing the browser from JavaScript and Java

Browser content creation functions example

[loader.wrl]

470

Accessing the browser from JavaScript and Java

Summary

Scripts can access the VRML browser to:
Get information including the browser name, version, speed,
and current URL
Add and delete routes
Load VRML content into the current world, or replace it

471

Creating new node types

 Motivation 472
 Syntax: PROTO 473
 Defining prototype bodies 474
 Using new nodes 475
 Using prototypes 476
 Syntax: IS 477
 IS example code 478
 IS example 479
 Using IS 480
 Using IS 481
 Controlling usage rules 482
 Controlling usage rules 483
 Prototype example code 484
 Prototype example code 485
 Prototype example code 486
 Prototype example 487
 Changing a prototype 488
 Syntax: EXTERNPROTO 489
 Summary 490

472

Creating new node types

Motivation

You can create new node types that encapsulate:
Shapes
Sensors
Interpolators
Scripts
anything else . . .

This creates high-level nodes
Robots, menus, new shapes, etc.

473

Creating new node types

Syntax: PROTO

A PROTO statement declares a new node type (a prototype)
name - the new node type name
fields and events - interface to the prototype

PROTO Robot [
 field SFColor eyeColor 1.0 0.0 0.0
 . . .
] {
 . . .
}

474

Creating new node types

Defining prototype bodies

PROTO defines:
body - nodes and routes for the new node type

PROTO Robot [
 . . .
] {
 Transform {
 children [. . .]
 }
}

475

Creating new node types

Using new nodes

Once defined, a prototyped node can be used like any other node

Robot {
 eyeColor 0.0 1.0 0.0
 metalColor 0.6 0.6 0.8
 rodColor 1.0 1.0 0.0
}

476

Creating new node types

Using prototypes

The PROTO interface declares items you can use within the body
A PROTO is like a JavaScript function
An interface item is like a JavaScript function argument

For example:
Create a PROTO for a Robot node
Give the Robot node an eyeColor field
Use that eyeColor in the PROTO body to set the color of
each robot eye

477

Creating new node types

Syntax: IS

The IS syntax uses an interface item (argument) in the PROTO

body
Like an assignment statement
Assigns an interface field or eventIn to a body
Assigns a body eventOut to interface

478

Creating new node types

IS example code

PROTO Robot [
 field SFColor eyeColor 1.0 0.0 0.0
 . . .
] {
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor IS eyeColor
 }
 }
 . . .
 }
}

479

Creating new node types

IS example

[robot.wrl]

480

Creating new node types

Using IS

Interface

May IS to . . .

Fields
Exposed

fields EventIns EventOuts

Fields yes yes no no
Exposed fields no yes no no
EventIns no yes yes no
EventOuts no yes no yes

481

Creating new node types

Using IS

For example, you may say that:
A body node’s field IS an interface field

Such as the Robot’s eye color

A body node’s eventIn IS an interface eventIn
Such as a Robot’s turnOn event used to set a TimeSensor

set_startTime

A body node’s eventOut IS an interface eventOut
Such as a Robot’s blasterFire eventOut from an AI
script!

482

Creating new node types

Controlling usage rules

Recall that node use must be appropriate for the context
A Shape node specifies shape, not color
A Material node specifies color, not shape
A Box node specifies geometry, not shape or color

483

Creating new node types

Controlling usage rules

The context for a new node type depends upon the first node in
the PROTO body

For example, if the first node is a geometry node:
The prototype creates a new geometry node type

The new node type can be used wherever the first node of the
prototype body can be used

484

Creating new node types

Prototype example code

Create a BouncingBall node type that:
Builds a beachball

Creates an animation clock
Using a PROTO field to select the cycle interval

Bounces the beachball
Using the bouncing ball program script
Using a PROTO field to select the bounce height

485

Creating new node types

Prototype example code

Fields needed:
Bounce height
Bounce time

PROTO BouncingBall [
 field SFFloat bounceHeight 1.0
 field SFTime bounceTime 1.0
] {
 . . .
}

486

Creating new node types

Prototype example code

Body needed:
A ball shape inside a transform
An animation clock
A bouncing ball program script
Routes connecting it all together

PROTO BouncingBall [
 . . .
] {
 DEF Ball Transform {
 children [
 Shape { . . . }
]
 }
 DEF Clock TimeSensor { . . . }
 DEF Bouncer Script { . . . }
 ROUTE . . .
}

487

Creating new node types

Prototype example

[bounce3.wrl]

488

Creating new node types

Changing a prototype

If you change a prototype, all uses of that prototype change as
well

Prototypes enable world modularity
Large worlds make heavy use of prototypes

489

Creating new node types

Syntax: EXTERNPROTO

Prototypes are typically in a separate external file, referenced by
an EXTERNPROTO

name, fields, events - as from PROTO, minus initial values
url - the URL of the prototype file
#name - name of PROTO in file

EXTERNPROTO BouncingBall [
 field SFFloat bounceHeight
 field SFTime bounceTime
] "bounce4.wrl#BouncingBall"

490

Creating new node types

Summary

PROTO declares a new node type and defines its node body

EXTERNPROTO declares a new node type, specified by URL

491

Providing information about your world

 Motivation 492
 Syntax: WorldInfo 493

492

Providing information about your world

Motivation

After you’ve created a great world, sign it!

You can provide a title and a description embedded within the
file

493

Providing information about your world

Syntax: WorldInfo

A WorldInfo node provides title and description information for
your world

title - the name for your world
info - any additional information

WorldInfo {
 title "My Masterpiece"
 info ["Copyright (c) 1997 Me."]
}

494

Summary examples

 An animated switch 495
 A vector node for vector fields 496
 An animated texture plane node 497
 A cutting plane node 498
 An animated flame node 499
 A torch node 500

495

Summary examples

An animated switch

A Switch node groups together a set of elevation grids
A Script node converts fractional times to switch choices

[animgrd.wrl]

496

Summary examples

A vector node for vector fields

A PROTO encapsulates a vector shape into a Vector node
That node is used multiple times to create a vector field

[vecfld1.wrl]

497

Summary examples

An animated texture plane node

A Script node selects a texture to map to a face
A PROTO encapsulates the face shape, script, and routes to create a
TexturePlane node type

[texplane.wrl]

498

Summary examples

A cutting plane node

A TexturePlane node creates textured face
A PlaneSensor node slides the textured face
A PROTO encapsulates the textured face, sensor, and translator
script to create a SlidingPlane node

[cutplane.wrl]

499

Summary examples

An animated flame node

A Script node cycles between flame textures
A PROTO encapsulates the flame shape, script, and routes into a
Flames node

[match.wrl]

500

Summary examples

A torch node

A Flame node creates animated flame
An LOD node selects among torches using the flame
A PROTO encapsulates the torches into a Torch node

[columns.wrl]

501

Miscellaneous extensions

 Working groups 502
 Working groups 503
 Using the external authoring interface 504
 Using the external authoring interface 505

502

Miscellaneous extensions

Working groups

Several groups are working on VRML extensions
Color fidelity WG
Conformance WG
Database WG
External authoring interface WG
Human animation WG

503

Miscellaneous extensions

Working groups

And more...
Keyboard input WG
Living worlds WG
Metaforms WG
Object-oriented WG
Universal media libraries WG
Widgets WG

504

Miscellaneous extensions

Using the external authoring interface

Program scripts in a Script node are Internal
Inside the world
Connected by routes

External program scripts can be written in Java using the
External Authoring Interface (EAI)

Outside the world, on an HTML page
No need to use routes!

505

Miscellaneous extensions

Using the external authoring interface

A typical Web page contains:
HTML text
An embedded VRML browser plug-in
A Java applet

The EAI enables the Java applet to "talk" to the VRML browser

The EAI is not part of the VRML standard (yet), but it is widely
supported

Check your browser’s release notes for EAI support
Support is often incomplete or buggy

506

Conclusion

 Coverage 507
 Coverage 508
 Where to find out more 509
 Where to find out more 510
 Introduction to VRML 97 511

507

Conclusion

Coverage

This morning we covered:
Building primitive shapes
Building complex shapes
Translating, rotating, and scaling shapes
Controlling appearance
Grouping shapes
Animating transforms
Interpolating values
Sensing viewer actions

508

Conclusion

Coverage

This afternoon we covered:
Controlling texture
Controlling shading
Adding lights
Adding backgrounds and fog
Controlling detail
Controlling viewing
Adding sound
Sensing the viewer
Using and writing program scripts
Building new node types

509

Conclusion

Where to find out more

The ISO VRML 97 specification
http://www.vrml.org/Specifications/

The VRML Repository
http://vrml.sdsc.edu

510

Conclusion

Where to find out more

Shameless plug for our VRML book...

The VRML 2.0 Sourcebook
by Andrea L. Ames, David R. Nadeau, and John L. Moreland
published by John Wiley & Sons

511

Conclusion

Introduction to VRML 97

Thanks for coming!

Dave Nadeau
San Diego Supercomputer Center
University of California at San Diego

