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1 Introduction

The motivation for providing multi-sensorial interfaces for human-machine
interaction is rooted in the nature of human perception and cognition, which
use several sensory channels at the time to construct what is generally referred
to as reality. Naturally, the more sensory channels can be stimulated coherently
in a human-machine interface, the richer the interaction models can be. The
more of our innate and culturally acquired perceptual and cognitive skills can
be exploited in an interface, the more refined and efficient the interaction may
be. This is especially valid for interfaces which mimic to a large extent certain
aspects of our everyday physical environment to create what we call virtual
environments or virtual reality.

One of the underlying assumption of these interfaces is that the more a virtual
environment perceptually resembles the environment we are familiar with, the
easier it will be for us to orient, navigate, and act in such an environment. But
it has to be doubted seriously if technology will ever be able to create a
synthetic sensory experience completely indistinguishable from the one we
experience in our everyday world. Fortunately this is not a drawback of VR
technology but its most interesting aspect, because it forces us to develop
efficient interaction metaphors which refer to our cognitive skills but which do
not necessarily attempt to mimic interaction as it happens in our everyday
world. This is how new interaction techniques evolve and become candidates
for developing into a new framework or language of expression. This
phenomenon can be observed whenever new media are explored in a culture.
As cinema or television had to develop their own expressive means adapted to
the idiosyncrasies of their media, VR is currently developing its own language
of expression which is still very rudimentary.

Cultural techniques of expression tend to mix and merge, reference each other,
and are transformed and rethought in the context of new media. They form the
rich tissue of a culture's means of expression most consequently explored and
developed in its art. But we don't need to get into contemporary art theory to
illustrate what is meant here. As an analogy, think of today's advertisement
design which more and more often refers in adds to the desktop metaphor of
current computer graphics user interfaces. The concept of a window, a menu-
bar or pull-down menus suddenly can be used to present different aspects of a
product. Such an add never would have been understood before a significant
fraction of members of a society became acquainted with modern computer
interfaces.

There are two aspects we wanted to clarify in this little excursion. Firstly,
virtual environments cannot only be modeled after our everyday world but
they have to develop their own interaction metaphors and means of expression.
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Secondly, the kind and quality of integration of different sensory channels into
one simulation and display system determines to a large extent the basic
vocabulary available for the development of an expressive framework which
will eventually become part of a culture's communication skills.

1.1 Display Systems

1.1.1 CyberStage

CyberStage is a CAVE-like 4 side room size stereo display system which
creates the illusion of immersion within a computer generated virtual
environment. Users see large virtual spaces, hear spatially distributed sound.
R&D aims to develop intuitive man machine interfaces and cooperation
techniques for humans in virtual environments. Projection systems like
CyberStage allow a direct and body centered human interaction within virtual
worlds as well as team work. Users immersed in a virtual world are physically
standing within the display system. The Stage has a 3x3 meter floor on which
the virtual space is generated by high performance graphics workstations.
CyberStage is a CAVE, the image quality is much more improved and an 8
channel audio display is integrated. The significant characteristic of the Stage is
the acoustic floor which allows to generate the sense of vibrations.
AVOCADO, the operating software system for the Stage distributed virtual
environments has been developed by GMD. It also operates the Responsive
Workbench (RWB).

Three wall size rear projection systems are installed orthogonal to the floor
projection, each with a size of 3x3 meters. A dual pipe Onyx IR generates 8
user controlled images. The user position is tracked with Polhemus Fastrak
sensors. Crystal Eyes shutter glasses are used for stereo image reception. The
display resolution is 1024 x 68 pixels at 120 Hz for each of the 4 displays.
While the first CyberStage installation in September 96 was fixed in a building,
the new version has been developed for ãmobileÒ usage. Both installations use a
wooden skeleton to minimize noise for the electromagnetic tracking. An 8-
channel-surround-sound system is fed by the IRCAM«s room acoustic software
Spatilisateur. The AVOCADO software allows to import live video sources as
well as prefabricated animations into virtual worlds. Virtual actors can be
found on Stage in both ways, either in an on-line performance or in a pre-
produced manner. Interaction within virtual environments is based on
electromagnetic tracking using devices such as 3D pointers or 3D joysticks.

1.1.2 Responsive Workbench

The Responsive Workbench concept is an alternative to the multimedia and
virtual reality models of the past decade. In this new concept, the user no
longer experiences simulations of the world on the computer, but the computer
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is (invisibly) integrated into the users world. Everyday objects and activities
become inputs and outputs for this environment. Computers are considered as
a part of daily life and are no longer isolated on desks. The computer system
can use and adapt to the rich human living environment. The project aims to
transform the usual dialog concept for man-machine communication. For
example adapting multi-media workstations into a more application-oriented
form for use in science, medicine and architecture. The display is designed as
part of the human working environment. For instance, objects are displayed on
a table in 3D. The user interacts with this virtual scenario, manipulates it as if
real, an upon request obtains information from the computer in the
background.

Virtual objects and control tolls are located on a real workbench. The objects,
displayed as computer-generated stereoscopic images are projected onto the
surface of a table. The computer screen is changed to a horizontal, enlarged
work top version and replaces the two-dimensional flat screen. This view
corresponds to the actual work situation in an architect's office, at surgery
environments, on the workbench, for three-dimensional atlases, etc. The work
action is virtual. A guide uses the virtual working environment while several
observers can watch events through shutter glasses. The guide operates within
a non-immersive virtual reality environment. Depending on the application,
various input and output modules can be integrated, such as gesture and speech
recognition systems which characterize the general trend away from the
classical human-machine interface. Several guides can work together locally or
use global communication networks such as broad-band ISDN.

Responsive Environments, consisting of tracking systems, cameras, projectors
and microphones, replaces the traditional computer and is increasingly adapted
to human needs. The control tools implement complex actions that can be
easily achieved by intuitive movements of the users hand. Each control
instrument is represented as a small virtual object that can be activated by
grabbing it with the hand and moving it onto an object, which is to be
manipulated. Rotations of objects then can be done just by turning the hand.
The zoom operation is accomplished by simple up and down movements of a
small virtual magnifier, which has been grabbed by the hand.

1.2 Application Areas

1.2.1 Engineering

Ever since Hamming postulated 'the purpose of computing is insight not
numbers' visualization has been attached to computation with the purpose to
create a visual representation of mostly non-visual phenomena. Computation
complexity is steadily increasing, visualization techniques follow. The overlay
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of different visualization techniques for the simultaneous exploration of many
dimensions within data now challenges again the understanding of data.
Additional presentation layers like audio, stereo graphics and animations for
transient data have augmented the visualization techniques and turned the
discipline of scientific visualization more towards a 'multi media experience'
of physical phenomena, simulated by a computer. Consequently, virtual reality
technology is applied and data visualization has changed to a highly interactive,
individual virtual data exploration.

Several approaches have been published in applying virtual reality techniques
for scientific visualization. Haase [Haase 97] has done a classification of those
approaches reported so far, either using a virtual reality package and adapting
visualization techniques to it, or using a visualization package and exporting
geometry to a virtual reality presentation. Most work reported, like Bryson's
Virtual Windtunnel [Bryson 92] is using head coupled display technology, but
more and more experiments are reported in using projection systems.

The Responsive Workbench [Kr�ger 94] for example, developed 1993 by
Wolfgang Krueger, has also been applied for scientific visualization. After 2
years of development together with the engineering research department of
Daimler-Benz, it became obvious that the Responsive Workbench Virtual
Environment together with a tailor made interactive visualization package is an
ideal workspace for engineering applications, filling the gap between
immersive and desktop environments.

1.     Visualization of Fluid Dynamics

Three dimensional simulations of fluid dynamics reduce costs and time of
development processes, especially in the car industry. Conventional
visualization tools merely provide a 2D representation or are not able to deal
with complex unsteady simulation data.

In our system, a parallel computer (IBM-SP2) and a graphics computer (SGI
Onyx RE2) were linked together via a HIPPI connection. The parallel
computer has the task of preprocessing the results of the (already concluded)
simulation computation and to create appropriate visualization primitives for
the rendering on the graphics system.
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Fig. 1: Fluid dynamics.

As a visualization platform, the Responsive Workbench offers powerful
control and manipulation mechanisms to the engineer. He is free to choose
from a wide variety of visualization methods and presentation modes. Positions
can easily be located directly in the space of the simulation area. This
flexibility helps evaluating results quickly and therefore reduces the time for
the whole simulation and evaluation phase. The user is enabled to have deeper
insight into the structure of flow fields in the simulation space, because he
perceives the information in 3D, together with the geometry.

2.     Interactive Steering

The coupling of parallel super computers, running simulations of time
dependent airflow with projection systems like the Workbench or the
CyberStage over broad band networks leads to a powerful tool for interactive
steering. Although today the resolution of most simulations has to be reduced
to match bandwidth and real-time constraints, reasonable visualization is
produced. The incoming data has to be converted into computer graphical
primitives like surfaces, lines or points. There is no time for a conversion of
the
multiblock
curvilinear
grids into
more regular
structures,
therefore a
special set of
data
structures
was
developed. In
combination
with a
cascade like,
multithreade
d data flow,
a real-time
visualization
of color
coded
surfaces,
isolines, vector fields, or particles is possible.
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Fig. 2: Visualization of the airflow simulation in an aircraft engine.

3.     Surface Modeling

Most applications in virtual environments today are more or less visualization
or navigation systems, presenting objects and scenes that can be manipulated
mainly through transformations controlled by some interface. Other changes in
the shape of objects are mostly results of some background computation.
Modeling environments extend the field of applications. On the Responsive
Workbench, a free-form surface modeler is being implemented, that allows the
user to define an arbitrary network of curves, over which a surface is skinned.
Manipulating and changing a curve results in a new triangulation of the
adjacent patches. For this purpose, multisided patches are used, because they
eliminate some of the problems arising from skinning a B-spline or NURBS
surface over sectional curves. The boundary curves of multisided patches need
not be compatible in the sense of common knot vectors, degrees and control
points. The user is completely free in the shape design of the boundary curves.
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As the numerical computation power of the graphics systems increases, surface
triangulation can be achieved in real time.

4.     Molecular Modeling

Molecular modeling represents another field of application for the Responsive
Workbench. Such applications are basically the examination and/or
manipulation of complex molecules like protein complexes or other
macromolecular systems. Spatial relations of an enzyme/substrate or
enzyme/inhibitor complex can be examined stereoscopically. On the
Responsive Workbench, molecules can actually be touched, grabbed, and
moved manually, which simplifies the detailed examination of distinct
molecular regions as well as manual docking. Linked to surface examination
algorithms in relation to certain physical and topographical properties, surface
segments can be cut out and viewed separately.

Fig. 3: Molecular modeling.

1.2.2 Teleport

Personal computers equipped with microphone, speakers, camera, and perhaps
additional video monitors, are now widely used for desktop video
conferencing. Conference participants appear in video windows, or on
adjoining monitors, and may access shared applications shown simultaneously
on each participant's screen. Several desktop video conferencing systems have
been described in the literature [Bly 93, Buxton 92] and commercial products
are available. But, while desktop video conferencing has certainly been shown
to be useful for a variety of tasks and has many advantages when compared to
earlier forms of video conferencing involving special meeting rooms, it is still
recognized that there are many situations where desktop video conferencing is
not appropriate.
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Fig. 4: TELEPORT Display Room

The TELEPORT environment is designed to overcome disadvantages of
desktop video-conferencing and to establish life-like conference sessions that
bring people together as if face-to-face. TELEPORT has been developed at the
Visualization and Media Systems Design Group of GMD, by S. Gibbs, C.
Breiteneder, and C. Arapis [Breit 96]. TELEPORT mimics a shared physical
context, using 3D modeling and rendering, and provides life-sized display of
remote group members placed within a virtual space. The system is based
around special rooms, called display rooms, where one wall is a "view port"
into a virtual extension as shown in Figure 4. The geometry, surface
characteristics, and lighting match the real room to which it is attached. When
a teleconferencing connection is established, video imagery of the remote
participant (or participants) is composited with the rendered view of the
virtual extension (see Figure 5).

Fig. 5: Remote Participant in Virtual Meeting Area
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The viewing position of the local participant is tracked, allowing imagery
appearing on the wall display to be rendered from the participant's
perspective. The combination of viewer tracking, a wall-sized display, and
real-time rendering and compositing, give the illusion of the virtual extension
being attached to the real room. The result is a natural and immersive
teleconferencing environment where real and virtual environments are merged
without the need for head-mounted displays or other encumbering devices. The
current system uses a 3m x 2.25m rear-projected video wall attached to a 3m
square room. The video-wall is driven by a pair of high luminosity video
projectors. Both projectors can display mid-resolution video signals and high-
resolution RGB signals. A camera is placed on a stand or a table and set at
approximately eye height. The field of view is wide enough to take in a full
upper body shot of the local participant. A viewer tracking system determines
the position of the local participant within the display room, from which their
viewpoint is derived. Two techniques are used for segmentation (for
determining the regions of the video signal where a participant appears)
chroma-keying and delta-keying. The virtual extension is rendered from the
viewpoint of a tracked participant located in the display room. Because this
person is free to move within the display room, the virtual extension must be
continuously re-rendered. Currently an SGI RealityEngine2 is used to achieve
rendering rates, with texturing and full anti-aliasing of up to 25 frames per
second. The video imagery of remote participants is combined with the
rendered virtual extension (compositing). For audio, each participant wears a
small microphone. The audio signals from remote participants are mixed
together and sent to speakers mounted on either side of the video wall.

1.2.3 Statistics

Dynamic statistical graphics enables data analysts in all fields to carry out
visual investigations leading to insights into relationships in complex data that
consists of many different variables. The data consists of multiple observations
taken on the same object or measured at the same place. Dynamic statistical
graphics involves methods for viewing data in the form of point clouds or
modeled surfaces. Higher dimensional data can be projected into 1-, 2- or 3-
dimensional planes in a set of multiple views or as a continuous sequence of
views which constitutes motion through the higher dimensional space
containing the data. There is a strong history of statistical graphics research on
developing tools for visualizing relationships between many variables.

In the C2 environment [Sym 97] which is similar to a CAVE or Cyberstage
familiar tools are being examined in a new technology and the special features
of this virtual reality environment are used to develop completely new tools
for the visualization of high dimensional data. The applications of the work
will extend to almost all areas of science. In particular spatially dependent data,
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for example, data collected over geographical domains for environmental
assessment, and agricultural applications are being examined.

Fig. 6: This image shows the cube containing the data and one of the
paint tools.

Several tools allow a user to interact with the environment. The features
include a toolbox to select color, glyph type and size. Creating a custom brush
is supported by the design box which enables a user to create a paintbrush for
marking different data points. The rotation interface allows the user to
examine the entire data set from different angles. All interaction employs
audio feedback in addition to visual response. People involved at this stage
were Uli Lechner, Dianne Cook , Carolina Cruz-Neira , J�rgen Symanzik at
Iowa State University.
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1.2.4 Artificial Life

Fig. 7: Evolution of Simple Virtual Robots (Symbots) Using Genetic
Algorithms

John Walker with Dan Ashlock, Allen Bierbaum, and James Oliver
Iowa State University, Ames Iowa USA
Contact: volker@icemt.iastate.edu
Funded by the National Science Foundation Young Investigator Award: Grant
#DDM-9258114.

This project demonstrates how a genetic algorithm can be used to optimize
problems of guidance and control for simple autonomous agents, which we call
Symbots. The Symbots are controlled by simple neural networks with input
parameters designed by a genetic algorithm. The Symbots learn to find food
sources while avoiding collisions with each other.

The evolution is driven by a measure of relative fitness of a group of candidate
designs. Fitness is the number of food sources hit without colliding with
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another Symbot. Once the fittest of the candidate designs are determined, the
control system parameters (which can be thought of as a `gene') are cross
combined and/or mutated to create new candidate designs.

Users interact in real-time with the resulting evolved Symbots by placing food
sources, controlling evolution, and guiding a movable food source. The user
may also navigate within the symbot world and capture the preformance of
individual symbots for later analysis or rendering in an animation package.

This interactive experimentation facilitates a greater understanding of the
Symbot's behaviors and gathering strategies than is possible with a traditional
display system. The user gains immediate feedback about the Symbot's
performance in the environment, allowing the design and testing of scenarios
for training robots to perform tasks in hostile or hard-to-model environments.
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2 AVOCADO Framework

The following section shows our approach towards a software system to handle
all the devices and types of installations mentioned before. The system is meant
as a framework to develop all kinds of applications. We first try to find the
way from a more general point of view to the implementation details to use the
system afterwards in an example to solve some complex problems.

2.1 VR context

To design a software system in the VR context, we first have to develop an
abstract model for the description of virtual worlds. It«s obvious to use an
object oriented approach for this description. Everything included in this
world is encapsulated in objects and can be manipulated by a variation of the
objects attributes. This fits well with the current dominance of object oriented
programming languages like C++ and the broad availability of software
libraries with C++ Api«s. A directed acyclic graph is used as topological model
to describe the relationships between the objects in a so called modeling
hierarchy. Objects are nodes of this graph. Together the state of these nodes
and their relationship to each other define the state of the virtual world. This
state should be complete. This means, all the different display systems aimed at
the sensory channels of human perception should be addressed by the nodes in
the modeling hierarchy. Every node includes its way of evaluation or better
rendering for all available displays. This is very important, since most of
todays software approaches are vision oriented, while there are already
auditory- and tactile- or even climatic- and olfactory displays in use. Strictly
speaking, the objects in the virtual world implement generalized abstractions of
the features of the real world, recognized by our sensory channels. The used
abstractions normally aim at the possibillities of their target displays and the
rendering mechanisms which are used to make them perceptable. For example
the visual features of a bird may be described by some geometric primitives
and their light interaction, while its auditory features are expressed by a sound
sample and its radiation. Every feature domain should have its own set of
nodes to describe it. What`s common to all domains, is their localization in
space and in time.

Nodes refer to each other as parent and children. A node can have more than
one parent, therefore the modeling hierarchy is a graph and not a tree. This is
usefull for multiple references to the same object without copying all the data
related to this object. To support multi user environments the objects and their
state must be shared between the different sites over a network connection. To
reduce the amount of data that has to be transferred, only state changes should
be transmitted. To handle a virtual world as a state machine, is a big advantage
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for solving this distribution problem and can also be used to store a copy of the
world on disk at any time.

If you think of a virtual world as a 4 dimensional system, the first 3
dimensions describe the euklidian space, which is coded into the modeling
hierarchy by nested transformations and some leaf nodes, which define the
representation of a part of the virtual world for all available displays.
Especially for the visual part a lot of modeling software and description
formats are available. Even if this limit seldom is reached, it should be
mentioned that the resolution of this euklidian space is limited by the floating
point precision of the used hardware. For example it is difficult to represent
the relative size of a single atom and the whole galaxy in the same continuous
space.

The fourth dimension manipulates the state of the virtual world over time.
This leads us to the necessity of some active parts, which control the behavior
of each object. For the above mentioned bird, this can be his sole movement or
his paticipation in a swarm. To keep things simple, every node in the modeling
hierarchy can change his state and the distribution of information about state
changes is done through a data flow network, which is orthogonal to the
modeling hierarchy. This enables us to encapsulate complex behaviours in
single objects or even chains of objects and postulate the results to other
objects, defining the visual or auditory features for example. Before
addressing the details of the implementation, the limited temporal resolution
and absence of temporal continuity of the rendering processes should be
mentioned here. A different update rate must be guaranteed for each of the
human sensory channels addressed by the already mentioned displays. The
visual display for example should have a video rate of more then 50 Hz for
each eye to prevent the user of growing weary. The rendering frame rate,
which is independent from the video rate, should reach a value of something
more then 20 Hz, to give the illusion of continuity or realtime. If there are
different realtime systems involved in the same virtual world, which all have
their own definition of what the resolution of realtime should be, the software
design must support this asynchronous needs.

2.2 AVOCADO System description

To design a system as open as possible, the representation of the virtual world
should not be biased by any of the sensory channels addressed by the display
system used to experience it. Nevertheless, we had to accecpt such a bias since
the system AVOCADO is based on the C++ API of IRIX Performer 2.1 and
therefore vision oriented. The development of AVOCADO was started by
Henrik Tramberend in April «96 with the publication of an internal paper
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named «Fields for Performer«, which included the following definition of the
main goal of such a system:

"This is supposed to be the mission statement for the project. The system has to
integrate a variety of different interface devices currently in use at VMSD.
Most notably these are the Responsive Workbench, the CAVE, the
Communication Wall and the Virtual Studio. It has to be sufficiently general
purpose to support application development for all these devices. As new
devices are likely to be invented by the more creative minds at VMSD, it has to
be easily extensible and adaptable. Most of those interfaces come with a mix of
more or less exotic input devices. The system has to be highly interactive and
responsive. VMSD is a demo pit. The system must support a rapid prototyping
style of application development, without the need to adhere to a tedious write-
compile-execute-kill cycle. It has to support the development of truly
distributed applications. The System is targeted at high-end SGI workstations
not less powerful than the Onyx RealityEngine and has to deliver every jota of
performance these machines are capable to deliver."

Since we had been very hungry when looking for a name of the system just
described, we descided to call it: AVOCADO. A rationale for this name was
quicly found, since the seed, the pulp, and the peel of the avocado fruit
perfectly represent the design of our system. There is the core library, which
is represented by the seed and which implements the basic functionality of our
VR toolkit. The pulp stands for a rapidly developing set of lower and higher
level tools derived from the core library, used to configure applications, which
build the peel of the system. To achieve the goals defined in the mission
statement, we support the following general concepts:

 ¥ Browser:

All kinds of configurations of input and output devices can be assembled to so-
called browsers. The browser builds up the interface between the user and the
virtual world. Typical elements of a browser are the visual, auditory and
tactile displays as output devices and spacial trackers, audio or video sources as
input devices. In a multiuser environment every user configures his or her
own browser.

¥ Scripting:

All relevant parts of the system's API are mapped to an interpreted scripting
language (Scheme). This enables us to specify and change scene content,
browser features and object behavior in a running system. This eliminates the
rather disagreeable write-compile-execute-kill cycle of the application
development process.

 ¥ Streaming:
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All objects know how to read and write their state from and to a stream.

 ¥ Persistence:

Together with streaming support for objects this enables us to write the
complete state of the system to a disk file at any time. An initial system state
can be read from a disk file as well.

 ¥ Distribution:

All objects can be distributed. Their state is shared by any number of
participating browsers. Object creation, deletion and all changes at one site are
immediately and transparently distributed to every participating browser.

 ¥ Extensions:

The System is extendable by subclassing existing C++ system classes. This
concerns object classes as well as classes which encapsulate browser features.
Compiled extensions can be loaded into the system at runtime via DSOs.

 ¥ Interaction:

Browsers provide input/output services which can be mapped to objects in the
scene. Objects can respond to events generated from input devices or other
objects and can deliver events to output devices.

IRIX 6.2

OpenGL

RMPPerformer

Avocado

Scheme

User Applications

Fig. 8. System Overview

2.3 Implementation details

Because we are focusing on the field of high performance rendering, our
system is very hardware-dependent. Performer runs only on SGI machines and
even there it is mainly designed to be used on the high end platforms. It uses
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multiprocessing to work on different tasks in parallel and OpenGL for the
visual rendering. OpenGL alone is available on different platforms but there
are a lot of extensions only available on SGI machines. It is a very low level
library, which does not implement any of the general concepts mentioned
earlier and therefore is not used directly. Figure 8 shows an overview of the
AVOCADO framework, including Scheme as scripting language and a reliable
multicast protocol for the distribution. User applications are mainly build
using AVOCADO objects and Scheme. Sometimes it's usefull to have access to
Performer directly but most features are allready wrapped by AVOCADO.

Performer can be described from two points of view. First, there is the data
processing organized in a pipeline and computed in parallel. This so called
rendering pipeline consists of a set of optional units, for:

¥ a database connection
¥ a user application
¥ the visual culling of the scene
¥ the intersection of objects
¥ the drawing of the scene

The second view focuses on the data structures used to describe the visual
virtual world. There are different types of nodes available which can be
connected by parent/child relationships to form a directed acyclic graph.
Because Performer only supports visual displays, the nodes contain the
information useful to describe the visual portions of the virtual world. If we
look at AVOCADO from these points of view, the data processing of
Performer is extended by a sound rendering and a tactile feedback which all
can be configured through the scripting interface to meet the specific needs of
different hardware installations. The data structures available in performer are
extended, to meet the stated general concepts. These extensions to the data
structures are only available in the application process and have to be
Performer compatible, to be used in the processes involved in the pipeline
afterwards. This compatibility is achieved by deriving all AVOCADO objects,
which have to be rendered visually, from Performer node classes.

2.3.1 Fields

In AVOCADO every object encapsulates its attributes, which describe the state
of the object, in fields. All objects are subclasses of a common base class. This
base class provides a public interface which allows the retrieval of all field
related information. Therefore all objects, even those which are added later as
extensions, can be manipulated through a common API. This mechanism
allows the effective implementation of the scripting interface, persistence, run-
time loading of new object classes and distribution, as the work needs only be
done for the common base class. Because there can be more then one field
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Table of available field types:

fpSFInt
fpSFUInt
fpSFLong
fpSFULong
fpSFFloat
fpSFDouble
fpSFBool
fpSFString
fpSFVec3
fpSFVec2
fpSFVec4
fpSFMatrix
fpSFQuat
fpSFSeg
fpSFPlane
fpSFSphere

fpSFBox
fpSFNode
fpSFGroup
fpSFGeoSet
fpSFGeoState
fpSFHighlight
fpSFMaterial
fpSFScreen
fpSFWindow
fpSFBlock
fpSFIntBlock
fpSFUshortBlock
fpSFVec2Block
fpSFVec3Block
fpSFVec4Block

attached to a single object every object is a fieldcontainer. The set of fields
available for a specific object is static, which mean that it cannot be changed at
runtime. Every field has a name and is typed and therefore can be accessed
from the scripting interface easily.

Performer 2.1 has a method based object API with getters and setters for all
the different fragments of object state information. This is translated into our
field API by subclassing all Performer object classes once using special
AdaptorFields to encapsulate method declarations. Further extensions are
subclasses only from these adapted Performer classes. This approach ensures
full Performer object functionality as a basis for extension development.

fpTyped

fpBase

fpStreamable

fpDistributed

fpFieldContainer

fpPerformerNode

fpGroup

fpDCS

fpSwitch

fpGeode

fpMaterial

fpPerformerObject

fpHighlight

fpGeoSet

fpGeoState

fpIntBlock

fpUshortBlock

fpFloatBlock

fpVec2Block

fpVec3Block

fpVec4Block

fpBlock

Fig. 9: List of Performer
nodes available in

AVOCADO and their
C++ inheritance structure:

Fields come in four different flavors. A
SingleField holds a single, arbitrary
typed value. A MultiField holds any
number of values of the same type. To
adapt the Performer method based object
API to our field based API a
SingleAdoptorField and a
MultiAdaptorField are used. All fields
are derived from a single base class, and
have methods to set and get field values.

Fields can be connected to each other,
i.e. field A that is connected from
another field B will receive B's value whenever field B is changed. This allows
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fpTyped

fpBase

fpStreamable

fpDistributed

fpFieldContainer

fpInterface

fpSensor

fpTimeSensor

fpXvsSensor

fpADSensor

fpScreen

fpWindow

fpStereoWindow

fpStereoScreen

fpViewActuator

fp6dofSensor

fpDeviceSensor

Fig. 10: Inheritance graph for sensors.

Table of basic sensor types:
fpSensor
fpTimeSensor
fp6dofSensor
fpXvsSensor
fpDeviceSensor
fpADSensor

fpViewActuator
fpScreen
fpWindow
fpStereoScreen
fpStereoWindow

for a dataflow network to be constructed orthogonally to the object hierarchy.
This dataflow network is evaluated for each simulation frame. Loops are
detected and handled properly.

2.3.2 Object representations

While fields are the basic model to represent data and the dataflow in the
AVOCADO system, at a higher level of abstraction (and inheritance) there are
3 types of object representations:

1. Nodes are the already mentioned classes adapted to the performer node
classes for the description of the modeling hierarchy. They are field containers
and their state is plainly described by their individual set of fields. In a
distributed multi user environment only nodes must be shared with other users.
While Performer only knows about static visual focused objects, in
AVOCADO also audible and tactile properties can be defined.

Table of basic node types:

fpGroup
fpDCS
fpGeoSet
fpGeode
fpSwitch

fpIntBlock
fpUshortBlock
fpFloatBlock
fpVec2Block
fpVec3Block
fpVec4Block

fpMaterial
fpHighlight
fpGeoState
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2. Sensors are field containers, but not inherited from Performer objects. They
are used for data import and export from the AVOCADO system to the outer
world. Sensors are not "visible", "audible" or "tangible" on the different
displays and therefore don«t have to be part of the modeling hierarchy. They
implement the local features of an AVOCADO application and therefore must
not be distributed. An example for a typical sensor object are the windows on a
workstation screen used as visual display or a graphical user interface used to
control some global parameters.

3. Services are neither field containers nor inherited from Performer classes,
but they provide a functional Api to unique system features. They are even
more local then sensors and therfore must not be distributed either. A service
would implement the access to an external device like 6 dof-trackers for
example, which exists only a limmited time and therfore should be used from
only one location inside the application. A sensor may use this service to access
a tracker and to maintain the data related to it to the modeling hierarchy via its
fields.

Field

Sensor
Field

Field

Field

Sensor
Field

Sensor
Field

Field

Node
Field

Field

Field

Node
Field

Node
Field

Field

Field

Node
Field

Field

Field

Node
Field

Field

Field

Node
Field

Field

Field

Service Service Service Service

Field Connection

Node Reference

Field

Fig. 11: AVOCADO Application layout. Field connections are
orthogonal to the modeling hierarchy and distribute data generated in
nodes or imported by sensors. The browser is configured by services

and sensors, only the modeling hierarchy is distributed.

2.3.3 Rendering

The different displays all have their own rendering mechanism applied to the
modeling hierarchy. Only the visual rendering has a direct access through the
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performer pipeline involved. The auditory and the tactile rendering are
calculated on a second computer, connected to the "master" by a fast network.
For the visual rendering the different tasks involved are divided into the
already described processes of the pipeline. After the modeling hierarchy was
updated to its actual state in the application process it is passed on to the culling
process to strip it from all invisible objects. It's important to support this
technique by dividing large geometries into smaller, cullable objects. The part
of the scene left over after the culling is passed on to the drawing process
where it is rendered to the screen with OpenGL. For configurations with more
then one visual display system involved, the appropriate number of pipelines is
used.

¥ Auditory Rendering

Rendering the auditory scene has to take into account the position of the
observer's head in the virtual world and in the auditory display as well as the
characteristics of the auditory display (i.e. the loudspeaker configuration). The
auditory rendering process is a two stage process. In the first stage a source
signal is synthesized which is then spatialized in the second stage. In the first
stage, only the sound model parameters are needed by the rendering process.
In the second stage, the signals driving the auditory display are computed as a
function of the distance between observer and sound source, the radiation
characteristics of the source and the signature of the acoustic environment.
With these signals the auditory display produces a sound field creating the
illusion of a sound source emitted from a certain position in a certain acoustic
environment shared by the observer and the source. The sound rendering
process has to be a dynamic process, i.e. movements of the observer's position
in the display or in the virtual world or movements of the sound source have
to be taken into account. If these movements are faster than about 30 km/h, the
pitch changes due to Doppler shift have to be simulated as well.

¥ Tactile Rendering

The CyberStage display system includes a set of low-frequency emitters built
into its floor. This allows to generate vibrations which can be felt by users
through feet and legs. There are two main areas of application of this display
component. First, low frequency sound (which cannot be localized) can be
emitted that way and thus complement the loudspeaker projection. Second,
specially synthesized low-frequency signals can be used to convey attributes of
objects displayed such as roughness or surface texture. From the point of view
of rendering, the vibration display is handled like sound. Sound models are
used to generate the low-frequency signals. Sound synthesis techniques
generally referred to as granular synthesis are very well suited to produce
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series of band-limited impulses which may represent surface features. Such
features can be displayed through user interaction. For instance, a virtual
pointing device can be used to slide or glide over an object's surface which,
depending on the gliding speed, provokes the corresponding impulses are
produced. Additionally, higher-frequency sound can be produced if necessary.
Some of what can be felt usually through the skin of our fingers when sliding
over object is presented to our feet. Although the quality of touch cannot be
reached with this approach, it can complement sound and vision dramatically.

2.4 Example

To get a better idea of how the described object representations can be used to
solve some complex problem, the next section will show an example in the area
of interactive steering. It is based on the results of a shared project between
GMD and the German Airospace Research Center in Cologne, DLR, finished
in November 96, which was funded by the German Research Network, DFN.
The simulation is done on a IBM SP2 at the DLR and connected via ATM to a
Onyx RealityEngine2 at GMD, where the visualization takes place. The
choosen test case simulates the air flow between the turbin blades of an aircraft
engine and was already mentioned in the introduction chapter. Three modules
had to be developed:

¥ a distributed, parallel, numerical solver for the SP2,
¥ a visualization module running on the Onyx,
¥ and a coupling module, using IP over ATM.

We will focus on the visualization module where the data reduction of
multiblock curvilinear grids to some visualisation primitives like points lines
or surfaces for AVOCADO is done and skip the simulation and connection
details.

2.4.1 Data Structures

We deal with an online problem, therefore we have to handle the incoming
data as fast as possible. This leads to a specialisation of the used algorithms to
fit the requirements of the incoming data very closly. For example the
geometry of the test case include some rotation symmetrie which leads to a
subdivision of the whole engine into 12 equal segments, of which only one has
to be simulated. Several data structures were developed to represent and
analyse the curvilinear grids:

¥ A cell, which represents the volume covered by 8 corner values and the
connections to the 6 neighboured cells. Each corner value consists of a
location in space and some scalar values, which represent a physical
dimension such as pressure or velocity.
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Fig. 12: Cell

¥ A block, to represent the single elements of the multiblock structure. This
blocks are the smallest logical units in the dataflow managment and contain
a 3 dimensional grid of cells.

¥ A block container, which represents the total of one simulation step.

¥ A block connection, which represents the neighbourhood of blocks on cell
level.

¥ A particel, which
traces the
appropriate cell
for a given
position in space
with respect to
some time and
space dependent
heuristics. A new
position is always
searched for by
navigating
through the grid
of cells relative to
the current
position. To jump between neighbouring blocks, the just mentioned block
connection is used.
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Fig 13: Two blocks consisting of cells, connected by block connections
and traced by a particle.

2.4.2 Visualization

The original implementation of this project was done with Open Inventor and
the porting to AVOCADO is not finished yet. The object representations are
very similar in both systems, therefore the overall structure remains the same.
As we are in a realtime environment, which means: the rendering pipeline
must not be stoped by any time consuming calculation. Every object has to use
a further asynchonous process, to achieve its desired task. Reading and writing
of global data, like the simulation grid must be protected by semaphores and
kept to a minimum. For the connection with the broadband network (or for the
import of some simulation steps from disk for testing or demo purposes) we
use a service - sensor combination. The service manages an IP socket
connection via ATM and the asychronous data receival. All neccessary data
structures are created or updated at this point. The sensor uses this service to
check for incomming data and distributes this data to all connected post
processing objects by using a special field, which holds a pointer to the current
simulation step. After importing the data, the next step is the conversion to a
specific visual feature. This is done in a separate sensor for each feature. All
this sensors do the feature extraction in an asynchronous process. They are



Virtual Spaces - AVOCADO Framework

25

activated by new arriving simulation steps or run permanently, if the feature
shows some dynamic properties. Until now, 4 different kinds of visualisations
are implemented.

1. A polygonal surface, with a optional color coding of any scalar value
available in the grid. The surface assembles a slice of the grid and every
gridpoint, lying on the surface corresponds to a vertx in an indexed triangle
strip set (fig 14) defining the surface. An average of 50.000 triangles per
second computing time was benchmarked on a R10000 Mips processor.

Fig. 14: Visualisation of the surface of 3 segments of the simulated
engine with a color coding of the density Rho. The surface consists of

about 30000 triangles per segment.
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Fig. 15: Structure of an indexed triangle strip set. Every vertex is
defined and indexed only once. 6 vertices define 5 triangles with correct

ordering (1. triangle [0 1 2], 2. triangle [1 3 2]).
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2. Isolines of any of the available scalar values for a given threshhold. The
lines are generated as nurbs curves and can be switched on and off for each
block individualy. The calculation is done by a 2d adaption of the marching
cubes algorithm with a benchmark of 400.000 cells per second.

Fig. 16: Visualization of the isolines for the velocity values by a given
threshhold of mach 1 for all blocks. This would be to complex in a

realtime environment where only single blocks can be viewed.



Virtual Spaces - AVOCADO Framework

27

3. A swarm of particles to visualize velocity values in a local area. The particle
sources can be manipulated by changing position and frequency directly in the
virtual scene and are shown as points. The calculation of their movement is
complicated by the distortions of the simulation grid and the transitions
between the different blocks. The calculation is done permanently and about
2000 particles per second can be traced.

Fig. 17: Visualization of a swarm of particles with its interactive
manipulator. The particle sources are bound to this manipulator and can

be positioned freely in the entire simulation area.
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4. A matrix of velocity vectors, whose position, size and density can be
manipulated freely. Every vector in the matrix corresponds to a static particle
and only a user related variation of the matrix leads to the tracing also used for
the swarm.

Fig. 18: Visualization of a matrix of velocity vectors whose length and
direction correspond to the velocity values at their location. They can be

translated, rotated and scaled by the surrounding manipulator.
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Fig.19: Overall structure of the modularisation

Figure 19 shows the overall structure of the described sensors and their
connection to the modeling hierarchy. The calculated graphical data is
propagated to specific nodes in the modeling hierarchy via fields. Because the
normal copy mechanism of field connections would be to slow, only pointers
are used. The modularisation allows an easy scalability for better calculation
results by a simple duplication of one of the sensors. For example the amount
of particles can be doubled by a second engine, if there are enough CPUs
available. It«s very importand to keep track of all the different processes
involved. Every sensor and the import service needs its own CPU, if a smooth
transition of the simulation data into the virtual world should be achieved and
there are already some other processes running which build the performer
rendering pipeline.
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3 Applications Toolbox

Applications can be seen as special arrangements of several selected tools to
solve a given problem. The application areas were already discussed in the
introduction chapter and we now will focus on the different parts, neccessary
to construct the virtual environments. Several different tools, which means
objects with some special behaviour or effect, were already build on top of
AVOCADO. Some of them implement only a very simple idea and can be seen
as the principal building blocks of the desired virtual worlds, while others
represent higher level abstractions and metaphers.

3.1 Lower Level Tools

It is very easy to extend AVOCADO by a simple object, which implements a
time or event related behaviour. The following list is a subset of this rapidly
growing toolbox.

¥ Swarm node
¥ Video texture node
¥ Motif gui sensor
¥ Wave node
¥ Button node
¥ Tighten node
¥ Guard node
¥ Texture stack node
¥ Metronom node
¥ Explosion node
¥ Interpolator nodes
¥ Pendulum node
¥ Rotation node
¥ Rotation motor node
¥ Linear motor node
¥ 6 degree of freedom sensor
¥ Mouse screen
¥ Intersection service
¥ Pick node
¥ Dragger nodes

3.2 Controlling

This section describes general concepts and ideas what types of mechanisms are
necessary or desirable for controlling a virtual world. Not all of the concepts
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have been fully implemented yet. There are two main things that need to be
controlled while developing and running a virtual environment:

Hardware Resources

User Interaction and Navigation

3.2.1 Hardware Resources

By resources we think of

CPU time

Texture memory and main memory

Number of triangles that can be rendered in real-time

Number of sound sources that can be rendered in real-time

External Hardware

Virtual worlds tend to be very complex. The geometrical representation
requires lots of the hardware resources. While developing an application you
have to keep in mind that you need to keep a very high frame rate in order to
guarantee a satisfying experience. Therefore the number of triangles that can
be rendered at 20 frames per second or higher is strictly limited since you
need to render eight images at a time if you run a CyberStage. In addition you
cannot allow your application to start swapping main memory or texture
memory which causes noticeable delays and disturbs your virtual experience.
The same is true for the number of sound sources. The experience gets lost if
you cannot render the sound fast enough to display the sound at the same time
when it's geometrical representation is visually displayed. While developing
custom and special effects you have to make sure that there is enough CPU
time left for the main processes like culling, rendering and application
management.

External hardware resources like the Sirius video board, which allows the
import and export of video signals to the graphics subsystem of high end SGI
machines, are also limited. To plug in a camera for some conferencing
application or a performance means that there is no possibility for another
video source to be connected. Because this limits are underestimated often,
they have to be present while any application is designed.

How do we manage our limited resources now? We can separate the
mechanisms into three groups:

1.     time control
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Switching scenes allows you to enable and disable CPU and rendering intensive
processes like vertex animations and explosions. It gives you the opportunity to
use a storyboard for effects and complexity of the geometrical representation
to manage the CPU load and the utilization of your graphics engine. The sound
resources can be handled accordingly. Time controlling also enables you to
define animations paths a user may follow while exploring the virtual world
passively according to a storyboard.

2.     spatial control

Spatial control means to manage the resources according to the user's position
in the virtual world. There is no need to animate geometry if a user is in a
different room or miles away. There are a couple of ways you can accomplish
spatial scene management. One possibility is to turn on effects according to a
level of detail switch within your geometrical scene graph. Another way is to
compute the distance of a user from a effect and turn it on only if a user is
getting closer. Computing the distance requires only a minimum of CPU time
compared to vertex animations used in an effect. In addition these so called
"guards" may be enabled only if a specific scene is switched on via a level of
detail.

3.     general requirements

There are always a couple of general issues you have to keep in mind while
designing your virtual world. Give low priority and asynchronous behaviour
to non crucial processes like animation effects. While modeling use level of
details as many as possible. Minimize the number of triangles while maximize
the texture usage (considering the hardware limits) if texture handling is
hardware supported.

3.2.2 User Interaction and Navigation

User related control techniques have to be developed with respect to our
trained background in terms of interaction and navigation. Although we are in
the virtual world not limited by the physical constraints of the real world, the
perception and the acceptance of VR applications strongly depend on the users
familiarity with the implemented interaction techniques. This means not, that
real worlds interaction and navigation metaphers, like driving or flying for
example, are the appropriate choice for controling every virtual environment.
On the other hand getting lost in the virtual world because of a more or less
exotic response to user interaction is a common problem in many VR
applications. Until now for virtual worlds nothing like desktop, windows or
menues as for monitor related man machine interaction is available. Even if
not every problem can be solved perfectly  by these abstractions, they are at
least known to a broad community of users, while any VR installation and
application comes with its own, unique set of controling devices and



Virtual Spaces - Applications Toolbox

33

metaphers. There is no common input device like the mouse, but a broad range
of spacial sensors, with or without buttons, and gloves, bodysuites, eyetrackers,
... . Additionally a lot of experiments with even more complex interfaces like
speach and gesture recognition are reported. The reaction of the virtual world
upon some input from this devices happens always according to an abstraction,
like a pointing gesture for instance, which is assigned to the specific device. In
a second step this pointing may lead to an reaction of sensitive objects in the
virtual world, which interpret this pointing in their own way. A button may
generate a single event or a draggable object may move with the pointer, until
it«s released.

A very important field of user interaction is the navigation in the virtual
world. This means not only to control the movement in euklidean-, but also in
information space. Although this information is always arranged in space and
time, the navigation metapher should be completely different with respect to
the specific topic of information. In the area of scientific visualization for
example, the navigation possibilities have to meet the coding principals of the
scientific data, to open any included secret spot, whereas applications in the
area of training simulators do not explore the virtual world itself, but focus at
the navigation or interaction process and its realness directly. If not for
training purposes, the neccessity for navigation possibilities increases with the
complexity of the virtual world. As in the real world, a guidance of the user
through the information space is the basis for a successful navigation. This
guidance can passively show the parallel layers of information available, or
activaly push and pull the user, who«s in this case more and more changing to a
passive consumer, through a sequential story.

3.3 Actors

We all behave with respect to things we can look at and feel, or smell and taste
and events we can listen to [Gibs66]. The environment depends on what you
can perceive with your sense organs. Gibson named this kind of perception :
"direct perception". The sizes and masses of the things in our environment are
comparable with that of the humans. You can see a moving car, but not the
movement of electrons in an atom. So we can perceive only a special part of
the physical processes. Processes in our environment are passing relative to the
motions of a mechanical clock.

processes at the level of time measured in

atom millionths of a second
environment of the human seconds, minutes, years
universe millions of years
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Table: Relationship between time and environment

Virtual worlds may also help to understand what happens at a different level.
For example we can walk through a virtual molecule and "feel" the distances
between the atoms.

3.3.1 Data Representation of Objects

What is a model?

Johnson [John95] defines a model as an encapsulation of the shape, shading, and
state information of a character. Shape refers to the geometry of objects. This
includes what geometric primitives they're composed of (spheres, polygons,
patch meshes, etc.), as well as what geometric transformations are acting on
them (scale, skew, translate, rotate, etc.). Shading refers to the subtle surface
qualities of an object due to the material properties of the objects in the scene,
local illumination effects, and global illumination effects. State refers to other
more ineffable, but still perceivable qualities, like elements of personality. The
properties of a model that can change over time are called articulated
variables.

1.     Physically-based Modelling

Physically-based modelling is used to describe dynamic objects by giving
physical constraints for the motion of these objects. Objects move according to
physical laws, e.g., Newton's Laws of motion. The task is to describe the force
or force field which causes the movement of an object. The motions are then
calculated using the object's mass properties. Objects within a scene influence
each other's movements, e.g. if they are attached to each other or if they
collide with each other. All this information must be considered to simulate
realistic movement of objects. If objects posess a complex mechanical
structure, this structure must be taken into account since all the parts may
interact with each other.

Generally speaking, each object in a dynamic scene interacts with any other
object of this scene. According to the type of these relations, different motion
rules and constraints are derived: geometric contact directs the motion of
objects; kinematic links require calculation of a kinematic solution (forward
and inverse kinematic); a magnetic relation leads to a force which depends on
the distance between the two objects, etc. Physical and heuristic rules are used
to simulate these systems. [Ast93b,Bar91].

The following list contains some categories of events, that change the layout of
the environment. Some of them will consider objects, such as collisions or
deformations and others describe changes of the layout at the level of the
surface, for example deformations and disruptions [Str96,Gib79].
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¥ Rigid translations and rotations of an object These are displacements, such
as open a drawer or turns, for example open door. Furthermore
combinations consist of both, translations and rotations, for example a
rolling ball is such a movement.

¥ Collisions of an object, we can differ between collisions with or without
rebound.

¥ Nonrigid deformations of an object. Objects can be classified as inanimate
or as animate. An example for deformations of inanimate objects are the
drops of fluid. An example for animate objects is the change of posture of a
human.

¥ Surface deformations, examples for surface deformations are waves, or the
flow of a liquid. Deformations can cause elastic or plastic changes of a
surface. Note that a deformation will not cause a disruption of the surface
or disturbing the continuity of the surface.

¥ Surface disruptions, rupture occurs when the continuity of a surface fails. A
surface can be disrupted for example by rupturing, cracking, disintegration
or an explosion.

2.     Objects in Virtual Space

The possibilities to interact in the real world are enormous. It's impossible to
find an categorization for all possible objects in the world. There are 20,000 -
30,000 everyday objects [Norm88] and nobody knows all the objects in the
world . There are natural objects, such as stones and artificial objects, such as
furniture. New objects are also created or available objects are changed by
phenomens of nature or by manufacture. J.J.Gibson [Gib 97] is trying to find a
description of the different objects. He is talking for example about hollow,
elongated and rigid objects. But finally he is saying: "The list of examples
could go on without end". So he almost only distinguishes between attached and
detached objects or between animate and inanimate objects. For a first attempt
we will follow this cathegorization, but further cathegorizations are maybe
useful to learn about special domains.

Inanimate Objects are described in terms of the environment, e.g. by their
surfaces. They are static, but they have of course a function. E.g. the ground
can support walking or a hole affords to fill something in.

Animatable Objects have the Potential for Change. What happens, if you pull
on this part, if you push here, or prod there? A model is an immutable thing;
static and stiff. An animated model is one which is changing in some particular
way over time. Each animated part can be accessed through an articulated
variables. Looking at a model from the outside, the only thing that is visible
are the variables (or the fields). Some of the variables are read only, some are
both readable and writable. Some change over time, some don't. To manipulate
the model is to write a value to one of the model's variables. In order to write
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to a variable, a process must first attach to a variable. Once they've
successfully attached to a variable, a process can write new values to it. When
they are done writing to the variable, they must detach from it.

3.     How to build a model

In animation, the "actor" is a combination of the animator drawing the scene
and the voice talent doing the character's voice. Many an animated character's
look is directly informed by the voice talent that makes them speak. Johnson
suggests:"The animator has to step into the character and look into the
mirror."

1. Before you can start to build a character you have to write down it's role.
The character is the particular instantiation of that role for a given
performance situation. It is constrained by the role, which itself must work
with in the bounds of the story. Available choices are always constrained by
the role and its place in the story.

2. Now you should describe it's physical appearance, it's typical body postures
and the contact points with physical objects. How does the character hold itself?
Is it happy or unhappy? Does it walk like a soldier or like a frightened
schoolboy? An important part of an actor is the face. This has not to be a
human face with eyes, a nose and a mouth. Here a "face" refers more to the
meaning of the character What does this character's face look like? Is it warm,
denying, uncomfortable, obtrusively, affords it some kind of communication
or is it only a blank undefined nothingness.

3. Now it is time to specify the activities that the character will be asked to
perform. Again: Does it physically has everything it needs? What are it's
everyday objects? Is it able to interact with the objects in it's environment and
to perform the required tasks? At this point, we're still building up the
character. If we suddenly realize that our character needs some particular
property, we might look in the script to see if there's any information. A
system has to have features to recognize such missing parts to change
interactively parts of a character or to exchange an agent by another.

4. On which level have we to interact with the character? Zeltzer discusses a
three part taxonomy of animation systems: guiding, animator level, and task
level. Guiding includes motion recording, key-frame interpolation, and shape
interpolation systems. Animator level systems allow algorithmic specification
of motion. Task level animation systems must contain knowledge about the
objects and environment being animated; the execution of the motor skills is
organized by the animation system.

4.     The Illusion of a lifelike and autonomous Character
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The creature must be able to adapt and to learn from past experience and its
behavior should be lifelike. Maes [Maes95] defined this term as non-mechanic,
non-predictable and spontaneous. That means:

¥ the character must react
¥ the character must be seen as having an independent existence
¥ the character must have choices to make
¥ the character must adapt (e.g. to the situation, to the experience level of the

user)
¥ the character must display variability in movement and response

With a few exeptions, the behavioral complexity of the creatures created to
date has been limited. Typically the creatures pursue a single goal or display a
single competence. For example work has been done in locomotion
[Zel90b,Bad93], flocking [Rey87], grasping [Kog94], and lifting [Bad93] Tu
and Terzopoolos' autonomous animated fish [Terz94] which incorporate a
physically based motor-level, synthetic vision for sensing, and a behavior
system which generates realistic fish behavior. But learning is not integrated in
the actrion-selection mechanism , the fish address only one goal at a time, and
the action-selection architecture is hard-wired, reflecting the specifics of the
underlying motor system and the repertoire of behaviors they wished to
demonstrate. Tosa [Tos93] used neural networks to model an artificial baby
that reacts to the sounds made by an user. McKenna and Zeltzer [Zel90a,
Zel90b]. demonstrated an articulated figure with 38 degrees of freedom, that
uses the gait mechanism of a cockroach to drive a forward dynamic simulation
of the creature moving over even and uneven terrain. It is an example of how
successfully biologically-based control schemes can be adapted for computer
animation.  Sims designed a system for making creatures that, using inverse
kinematics and simple dynamics, could navigate over uneven terrain [Sims87].
This system was notable in that the notion of "walking" was generalized
enough that he could generate many different kinds of creatures that all
exhibited different behavior very quickly. More recently, Sims has developed a
system for quickly prototyping creatures embodying a set of physically-based
behaviors by breeding them [Sims94]. He presents a genetic language that he
uses to describe both the shape and the neural circuitry of the creatures. His
work is most interesting in the context of building systems in which creatures
are bred by using aesthetic decisions as fitness functions. This work, more than
any other, shows the power of genetic techniques when applied to complex
computer graphic character construction problems. Even more recently,
Blumberg and Galyean [Blum95a] demonstrated a "directable" dog character
that can respond autonomously, in real-time to user input in the context of a
larger, scripted narrative activity. He is using etological theories for his work,
but he is also looking at classical animation.

5.     Designing Reactive Behavior
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It has been learned that Artificial Intelligence is not sufficient to build reactive
behavior as in the real world. Here is the process of knowledge or reasoning
less important than adaption and learning. Biology and especially ethology
helps to understand the mechanism which animals use to demonstrate adaptive
and successful behavior. So a number of action-selection algorithms have been
proposed by etholists, for example Lorenz in [Lor73], Tinbergen [Tin50] and
Toates [Toat91]. But more important is very often the observed behavior over
time in a special domain and not to study is biological theories. Blumberg
paraphrases Papert "biology should be on tap, not on top" [Blum96b]. It is
important to describe behavior on the right level, to find a good level of
abstraction in a model. Important features should be described, but the
description and the implementation should still be understandable. It should be
possible to decompose a complex system in many independent parts and also to
exchange parts, to debug parts and to change the configuration of the system.
Very useful in this context may be Marvin Minsky's definition, how our mind
might be organized (in his book "The Society of Mind"):

"Any part or process of the mind that by itself is simple enough to understand
- even though the interactions among groups of such agents may produce
phenomena that are much harder to understand."

Think about a world which consists of thousands of autonomous sources. Each
source is able to produce a short colored flash followed by a beeping sound. If
a source in it's neighbourhood will hear or see this event, it will also beep and
flash, but in a little bit different color. A source will sample it's environment
time by time. To make these autonomous sources to individuals we give each
of them a different sample rate, a different beep and a different color. An
observer who is walking around in this scenario will find sources which are
building sequences. He will walk through centers of confusion, see harmony
and disharmony in very close neighborhood, chaos and regularity and then
there is only dark silence. It is hard to describe your impression, to figure out
how it works, to see the structure behind these irregular structures.

3.3.2 Autonomous Agents

Autonomous agents are computational systems that inhabit some complex
dynamic environments, sense and act autonomously in the environment, goals
or tasks. They can "live" in 2D or 3D physical worlds. Maes describes in
[Maes94] "knowbots", software or interface agents, which inhabit the digital
world of computers and computer networks. A real world agent [Nag96] can
support its user in performing tasks in real world environments, such as place-
to-place location guidance, instruction in physical tasks, and augmentation of
human knowledge related to the physical environment. Animated autonomous
objects are endowed with the possibility to decide what to do and to change
their skills or to modify their geometry accordingly or the structure of the
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system itself. The animation arises out of the actions of these autonomous
objects rather than from the keyframes of an animator. Johnson defines as a
software module; an autonomous black box that has a well defined purpose, a
separate namespace and its own thread of control it explicitly refers to such a
black box [John95]. It explicitly refers to a black box. If you open this black
box you will find a process inside which should not be too complex and easily
understandable by a programmer.

1.     Implementing Reactive Behavior

¥ Perceiving the Environment

Following Rasmussen [Ras83] we characterize knowledge about the figure and
the world as follows:

"Signals represent sensor data-e.g., heat, pressure, light-that can be processed
as continuous variables. Signs are facts and features of the environment or the
organism."

In a virtual world signals are directly messurable in the environment. This can
be an open door, the elbow position of a character or the curvature of a
surface. Signals are discretely sampled using a mechanism called a receptor.
Receptors are used by agents to discretely sample signals variable at a given
frequency. Each receptor has a sampling frequency associated with it that can
be modified by the agent. If their value changes by some epsilon from one
sample to the next, they transmit a message containing the new value to the
appropriate agents, which prompts the agent to recalculate itself. All receptors
can be embedded into a single system process, but it's also possible to distribute
them in several processes accessable over a network.

A sensor agent computes a boolean value using the information gathered by its
receptors. It produces an assessment of the item it perceives (i.e. LightIsOn,
ItIsToLoudHere, FriendIsNearby, iAmSitting, aCupIsNearby, etc.). Sensor
agents corresponded directly to signs. They enable the character to perceive
itself and its environment at a level above the articulated variables of a model.
Sensor agents does not depend on available hardware or on the current
environment. They have not to differ between real and virtual actors, between
the real and the virtual world. So different characters and installations can use
the same sensor agents, but the result may look completely different, because
the receptors are handled in a different way. A receptor will be evaluated
many times relative to the sensor agent. They represent an assumption that
communication is expensive compared to computation; it is cheaper for a
sensor agent to embed a computation somewhere else than to keep asking for
the value and determining itself if the value has changed enough for it to
recalculate itself. The sample frequency corresponds to the minimum reaction
time of a character. It can also be used to model the attention of virtual actors.
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E.g. it can be changed, if the character is awake or falling in sleep or if it
should pay less attention to events happening in greater distance.

¥ Skill Agents

The skill agent has some activity that it's trying to perform over some period
of time, and it does this by measuring and manipulating the variables that it has
access to. A skill can be executed, if it's preconditions are true. These
preconditions are calculated by sensor agents. As the skill agent begins, it
attaches to the variables in the character and the environment that it will be
manipulating. When the skill agent finishes, it detaches from the variables in
the character and the environment that it was manipulating. Many times the
best way is to begin by constructing the skill agent is simply as a process which
invokes single reflex, where the skill agent merely sets the articulated variables
of the parts of the model it is concerned with. When building a skill agent,
ideally, we want to always be thinking about how to write it for more general
use.

¥ Goal Agents

Goal agents embody an explicit goal, and are described in terms of sensor
agents. Different kinds of goals, characterized by their lifespan are:

- persistent, constant goal: e.g. stay alive
- transitory: e.g. hold the book, be hungry, get tired

¥ Motor Goal Parser

A motor goal parser will take care of translating a given task from a natural
language interface to a set of task primitives which can then be passed to the
skill network. The skill network will be responsible for finding out which
skills need to be executed in what order and for invoking the appropriate skill
agents corresponding to those skills. Complex activities like "making
breakfast" are composed of component acts such as "make coffee" which are in
turn composed of yet other behaviors - get the coffeepot, boil the water and so
on. That means also a task has to be devided in a number of sub-tasks. For
example "grasp a cup" is a sub-task in the example above. Such a sub-task can
furthermore be devided in subtasks until you get task-primitives. Task
primitives limit the decomposition of a task. Schanks Conceptual Depency
(CD) theory [Scha75] introduce a set of primitive "ACTs", some of which
describe physical actions and some of which describe abstract "mental actions".
Zeltzer and Johnson develop in [Zel94] a set of task primitives, which are
based on Schanks theory.

2.     Virtual Humans
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The model of the virtual actor has to be realistic enough to be believable, but it
has also to match realtime requirements. To perceive the posture of a human
body it is not required that cloth of the suit of the virtual actor will be perfect
deformed during moving. The posture can be perceived, if the limbs are in a
natural configuration. We try to make the face and the hands of the actor as
realistic and movable as possible. The rest of the body will be builded by more
rigid elements. However added textures and video textures will equip these
parts with the required realism. The kinematic structure of the model is based
on a human skeleton. Forward kinematic skills can be realized by finite state
machines with usually more than one state. Inverse kinematic skills usually
have just one state and contain an inverse kinematics calculation procedure.
Realistic walking is also a hard problem, because humans are skilled to see
even small mistakes in the way other people walk. An interaction environment
can be inhabited by different types of virtual actors, e.g. personal agents or
agents offering a special service to the user.

¥ Virtual Representants

A virtual actor can act instead of a real person in some domains, e.g. to
arrange a meeting or to introduce somebody in a domain or to present a
product. The face of the human could be captured and mapped onto the face of
the virtual actor. This representant could be dressed like it's owner. Some
gestures and postures of the human can be recorded in the cave, by the parrot
or by cameras which are installed at the terminals. This data can be used to
improve the movements of the representant. The virtual actor has then some
characteristics in common with it's owner and all actors move in a different
way.

¥ Social Interaction

Interactions between humans are multimodal. A composition of verbal and
nonverbal communication improves the believability of a virtual actor. Such a
virtual actor can be part of a "social interface". It can replace parts of common
interfaces. Instead of pressing buttons, filling in forms it could be easier to
interact instead with a virtual actor and tell him the task of the system. Since
nonverbal communication is an important part of such an interface we will
give a short introduction in this field.

¥ Nonverbal communication

Nonverbal communication is used e.g. to express interest, friendliness, anger,
disgust, fear, happiness and sadness. This form of communication can serve as
a fast feedback and reduces the complexity of verbal communication. It tells
about the context of a conversation. Furthermore it shows how interested the
communication partner is in a communication and if he is experienced in this
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domain or not. The communicating partner has to observe and to react to
special postures or facial expressions.

¥ face-to-face communication

One of the major features of face-to-face communication is its multiplicity of
communication channels that act on multiple modalities . 65 percent of a face
to face communication is conveyed by nonverbal elements [Bech96].To realize
a natural multimodal dialogue, it is necessary to study how humans perceive
information and determine the information to which humans are sensitive. A
face is an independent communication channel that conveys emotional and
conversational signals, encoded as facial expressions integrates speech dialogue
and facial animation. A virtual actor can be equipped with a number of facial
patterns, belonging to conversational situations like "yes", "no", "I donot
understand","thanks" . While the actor is speaking they will be displayed on it's
face belonging on the actual context. Nagao and Takeuchi display a artificial
face on a monitor and use it for a human computer dialog [Nag94]. Their
experiments have shown that facial expressions are helpful, especially upon
first contact with the system. They mention also that featuring facial
expressions at an early stage improves subsequent interaction.

¥ Body Postures

Changes of the body modulate ongoing activities. Movements of the arms will
support the way of talking to another person. The emotinal state of a person
will affect the way he walk or move.

3.4 Conferencing

Today's technology and advances in telecommunication rapidly change the way
business is carried out, making it a globally distributed and thus a more
electronically-based process. Support for interaction, coordination and group
work in the emerging distributed businesses, should be adapted accordingly,
both in terms of the way it is carried out and in terms of the tools used. Social
interaction, between members of widely dispersed working groups, becomes
more difficult and must be supported by appropriate collaboration facilities.
CSCW systems, video-conferencing and electronic meeting systems, facilitate
the process of preparing and carrying out meetings, and at producing material
via a group effort in a distributed business. Although desktop video-
conferencing or electronic meeting systems address such situations, it is still
recognized that there are many situations, such as distributed negotiation,
conflict resolution meetings or remote seminars and teaching, where body-
language and eye contact become important. Ideally, in such situations, we
would like to provide geographically separated group members with a
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sensation of being in the same room at the same time and meeting face-to-face.
This is what is called "co-presence".

The degree of co-presence can be enhanced by providing the group with a
sensation of sharing the same physical space, by maintaining body size, eye
contact and gaze awareness. However, meetings of local or geographically
dispersed groups require additional support for preparing documents, use of
visual aids and generation of various artifacts during and after a meeting. A
variety of tasks are performed by different members of the group during this
process. Members might need to schedule co-presence sessions, prepare slides
or electronic documents, generate reports, review diagrams or charts
depending of the nature of the enterprise. Therefore, before, during and after
a co-presence session support is needed also for co-working.

3.4.1 Requirements

A system that provides high degree of co-presence and was described in a
previous section, is TELEPORT. It is an experimental teleconferencing system
aimed at enabling small groups of people, which are geographically separated,
to meet as if face-to-face. The prototype has been used in various applications
areas such as tele-conferencing, telelearning for the academic or business
communities, and distributed musical rehearsal. From our experience, while
using the TELEPORT system for co-presence, became evident that additional
support is needed for co-working. For example, remote meetings would
normally include the use of documents, slides or other visual aids; tele-learning
requires teaching material to be prepared in advance and included in the tele-
conferencing session; collaborative architecture design requires 2D or 3D
models to be shared. In addition, various CSCW tools are commonly used by
members to facilitate different aspects of group work. The tools used vary
from shared calendars, editors and shared workspaces, to collaborative
modeling and design tools. Advanced tools such as visualization, animation and
simulation tools, already in common use for architecture design, engineering
and manufacturing, are also becoming a major support for teaching in the
academic as well as in the business community.

Therefore, tele-conferencing sessions in order to be successful and cost
effective, should not only provide a high degree of co-presence but also
support the different tasks that are performed by geographically dispersed
groups. The following sections present ways of achieving co-presence and
support co-working by the use of VR systems, such as TELEPORT and
CyberStage. To exemplify the approach, different applications areas are
considered, ranging from business seminars and teleteaching to collaborative
modeling and manufacturing.
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3.4.2 Meeting example

A variety of CSCW tools provide facilities for collaborative information
sharing and co-working. Such tools could be used before, during and after a
TELEPORT session to provide support for preparing and changing any
material necessary for the session and most importantly for supporting the
brainstorming, structuring and evaluation of ideas during the session. Real-
time composition of live-video, synthetic backgrounds and electronic
documents is then projected on the wall-sized display of TELEPORT.
However, artifacts needed for the co-presence session such as documents,
spreadsheets, tables etc., should be prepared prior to the meeting. The
preparation process might involve participants from different organizations in
different locations. For the preparation phase of the co-presence meeting a
system such as the BSCW Shared Workspace system [Bent 97] could be used.
BSCW (Basic Support for Cooperative Work) is a system developed by
GMD.FIT, which provides support for cross-platform information sharing for
groups of users over the World-Wide Web.

Fig. 20: Remote participant with virtual projection wall in
TELEPORT's virtual extension

Once the preparation phase is completed, group members from different sites
are ready to meet in the TELEPORT display rooms in each site. During the
co-presence session information in the form of electronic documents,
presentation material and shared workspaces is displayed on a virtual
projection wall which is blended together with video imagery from remote
participants into the virtual extensions of the display rooms, as shown in
Figures 20 and 21.
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Fig. 21: Session between two remote sites as seen from within a
TELEPORT's display room

This is achieved by introducing a virtual projection wall that is mixed in the
3D model of the virtual rooms whenever that is necessary. This virtual
projection wall is directly connected, for example, to the participant's
notebook. Thus group members can choose what to show to the other
participants, i.e. slides, pie charts or the way a software tool it's been used.

3.4.3 Telelearning example

In today's distributed companies seminars and skill improvement courses could
be very costly both in terms of time and money, because of the travelling
involved, either for the expert giving the seminar or for the people
participating. Also seminars very often are about or make use of specific
software tools which require the use of a well prepared seminar room with the
necessary hardware and software installed for this particular situation. To save
time and reduce costs of traveling, in our approach the expert and students
meet in a TELEPORT session and are able to view teaching material, ask
questions and have a seminar that provides the illusion of been in a seminar
room together with other participants and face to face with the expert.
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Fig. 22: Integrating teaching material in a co-presence session

Universities so far dispense courses only regionally to their students. However,
instruments for global delivery of teaching content exist and are becoming
cheaper by the day. In the fall term of 1996, a weekly high-bandwidth ATM
connection between the University of Geneva and GMD headquarters in Bonn
has been used to conduct regular tele-learning sessions. Our goals were to gain
experience with high quality video conferencing technology and to broaden the
perspective of course presentations while simplifying the logistics for remote
participants. During these sessions, the teacher's image was extracted from a
controlled background and blended with teaching material and virtual
backgrounds, as shown in figure 22.

Another important aspect of this approach, is the possibility of using animation
and visualization tools to enhance the understanding and facilitate the learning
process. Animation and visualization tools have been extensively used for
teaching within the academic community [Brown 88, Brown 92] and proved to
be a successful teaching aid. Different possibilities exist for incorporating
animation and scientific visualization in a co-presence session. For example,
animations could be shown to students as pre-recorded video displayed on a
virtual video wall, in a way similar to that of displaying transparencies.
Another possibility, is to integrate the 2D or 3D visualization as part of the 3D
model of the synthetic background of a TELEPORT session.

3.4.4 Collaborative VR example

Collaborative Virtual Reality systems are currently used in various application
areas, such as landscape architecture or automobile manufacturing. Co-
working in such application areas requires a higher level of interaction and
model manipulation, making CAVE and VR systems an ideal tool. However,
the high communication and hardware costs still limit the extensive use of
CAVE systems.
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The AVOCADO system presented earlier, will provide the possibility of
connecting different VR systems, such as TELEPORT, Responsive Workbench
and Cyberstage, thus reducing the cost of hardware and allowing sites with
different VR systems to be connected for collaborative work. One or more
TELEPORT rooms can be connected to CyberStage. The 3D model used in the
CyberStage site could become part of the virtual extension of a TELEPORT
room. In addition, the video image of the remote participants can be extracted
and blended into the virtual extensions of the TELEPORT rooms. For the
Cyberstage site, the participants of the remote TELEPORT rooms could also
be included within the virtual 3D space. Interaction and manipulation of the 3D
model could be restricted to the CyberStage site, or also allowed within the
TELEPORT rooms, depending on the infrastructure of each site.

3.5 Sound Rendering

3.5.1 Integrating Visual and Auditory Display

It is generally agreed on that in our vision-centered culture the second
important sensory channel is the auditory channel. Once the visual channel has
been sufficiently developed in a new medium, usually the next one to be
integrated is the auditory one. This can be seen for instance in the evolution of
cinema, which was mute in the beginning or in the development of the
computer, which hardware manufacturers like to call multi-media workstation
today. Which aspects have to be taken into account when combining a visual
with an auditory display can be clarified by a comparison of visual and
auditory scene analysis. Both analyses carried out by the human sensory system
are concerned with grouping problems. We can think of scene analysis as a
process of forming hypotheses about the way the sensory evidence is to be
grouped in order to form as unambiguous entities as possible. In vision, it is
mainly color, texture, and spatial information combined with a set of rules
(e.g. concerning occlusion and extension) which allows us to identify objects in
a visual scene and organize them in an inner representation called reality. All
information is carried by light, which reaches our eyes as reflections from
objects.

Auditory perception works similarly but with a completely different type of
sensory evidence. First of all, sound doesn't represent objects but events.
Sound is only generated if there is some sort of motion or action (i.e. an
energy source) is involved. Information about acoustic events in our
environment is transported to our ears by sound waves. The problem to be
solved by the auditory scene analysis process is to decide which auditory cues
(spectral and temporal aspects of the sound signal) belong to which sound
source. Our ears are not primarily concerned with reflections (they may even
become a source of confusion) but they are interested in the nature of the
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energy source. Vision uses the reflections of light and usually cares less about
the light sources themselves.

These and many other differences account for the different, often
complementary kinds of information about our environment the two sensory
channels can supply us with. When looked at separately, the visual and the
auditive channel provide us with different perspectives of the environment we
analyze. But when experienced together, they form a whole which is more than
the combination of its parts. Sensory cues from both channels are used to
analyze an audio-visual scene. Evidence from one channel can be used to
complement missing information in the other one. Sound informs us about
events we cannot see because they are not in our field of view (e.g. happen
behind us or behind other objects), or they are too small or move too fast to be
seen (e.g. vibrating objects), or can't be seen at all (e.g. vibrating air volumes).
Through sound we learn about the material of an object colliding with another
one or about the texture of an object sliding over another one. Sound informs
us about the nature of interaction between objects and about the forces
involved. And, last but not least, sound informs us about the environment in
which we perceive it and in which it was produced and emitted. This is how we
distinguish inside from outside spaces, small and large, empty and fully
furnished rooms.

So there are many good reasons for combining auditory cues with visual cues
in virtual environments. We saw that this combination provides virtual
environments with redundant information (e.g. spatial or temporal cues),
which is important to reduce perceptual ambiguity. We showed how auditory
cues complement visual cues in an integrated audio-visual scene analysis
process. And we may add two other aspects here. Firstly, the presence of
sound in an interface masks environmental sounds and therefore increases the
degree of immersion in a virtual environment. And secondly, experience has
shown that fine grain auditive feedback to user actions enhances the sense of
presence in virtual spaces.

3.5.2 Integrated Simulation of Image and Sound

But integrating visual and auditory displays into one display system is not
enough. Such an integration has to be reflected also on the level of the
simulation process which generates the visual and auditory stimuli. These have
to be presented such that they don't contradict but support each other with
respect to a set of constraints characterizing the kind of reality to be simulated.
When simulating an environment structured by the laws of causality as we
know them from our everyday world (which is the normal case), then the
coherence of presentation mainly concerns spatial and temporal cues. In such a
reality, a sound produced by a (visible) sound source has to be emitted at
exactly the same position at which the source is visible, i.e. visual and auditory
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space have to be coincide. What has to hold for spatial cues in such a world is
also required with respect to time. Visual and acoustic aspects of the same
event have to happen, i.e. have to be simulated at the same time. Since sound
propagates much slower (~340 m/s) than light (~300000 km/s) it always
reaches the observer later than light stemming from the same event. Whilst the
propagation delay of light can be ignored in the simulation process, the speed
of sound has to be taken into account for distances bigger than about 10 m (i.e.
~30 ms time delay) between the observer position and the event location.

Since other types of realities, as we can find them for instance in artistic
applications, may need other sets of constraints to be met, it is important that
the simulation system is flexible enough to allow for modeling of such realities
as well. As an example we may think of experimental interaction metaphors,
which may need special simulation modes (e.g. cut-like discontinuous
navigation). Furthermore, a system architecture open at this level would invite
for experimentation, as it is required to discover innovative interaction or
navigation metaphors. Generally speaking, an ideal audio-visual simulation
system should allow any relationship between visual and auditory cues to be
expressed explicitly. Naturally, this would include the special relationships
necessary to simulate worlds similar to our everyday causal world, which still
is the first requirement and most important validation criterion for a virtual
reality system today.

3.5.3 Auditory Scene Synthesis

Realizing an integrated image and sound simulation system means integrating
sound synthesis and its control into the well understood and validated scene
graph based framework of visual simulation. Auditory scene synthesis (the
counterpart to auditory scene analysis) serves as the conceptual framework
underpinning this integration. By auditory scene synthesis we understand the
whole process of defining auditory scene elements, organizing them in an
audio-visual scene, and rendering this scene for an auditory display. The result
of the auditory scene synthesis process is a sound field which is presented to
the user through the auditory display. The user (re)constructs the auditory
scene by analyzing the synthetic sound field.

1.     Auditory Scene Elements

An auditory scene element represents the sound to be produced upon a certain
event. An event is usually generated in the simulation process as a direct or
indirect (scheduled, scripted) reaction to a user action. In the simplest case, an
event only triggers the playback of a prepared sound sample (e.g. sound of a
switch to be played once the switch is operated). But an event may also include
event attributes or it may consist of several sub-events, each of them carrying
its own attributes. Such compound events control more complicated auditory
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scene elements. Typically such scene elements represent continuous sounds,
which start at some time in some specified way and stop later in another
controlled manner (e.g. a motor switched on, running for a while, eventually
changing speed, and then switched off again). Event attributes are used to
characterize the event and are used to shape the sound accordingly (e.g.
intensity of a collision sound depending on the velocities of the objects
involved). Thus, event attributes can be used as (or are mapped on) sound
model parameters. A sound model [Eckel 93] describes a class (in the
perceptual sense) of sounds. Instances of this class are distinguished by their
model parameter values, which are needed to synthesize the sound. There are
models that simulate the sound production mechanism (e.g. physical modeling
[Cadoz 91] ) and others which directly model perceptual attributes of the sound
signal (e.g. spectral modeling). Examples of physical modeling parameters are
mass, stiffness, velocities, spatial position whereas spectral modeling
parameters specify amplitudes, frequencies, durations.

Which model to choose depends on the sound quality needed, the control
needed over the sound, and the computational resources available. As a rule of
thumb it can be said that physical modeling usually needs more CPU cycles
than signal oriented synthesis techniques, which do not simulate the total
comportment of a vibrating object but only mimic the sound signal resulting
from all these vibrations. Physical models are preferable when the sound
radiation is an important aspect in an auditory scene, because they often use
spatial representations, i.e. they distinguish how an objects vibrates on one or
the opposite side. Naturally, physical models are better suited to simulate
complex interactions between objects (e.g. brushing or scratching) but they are
usually much harder to control than signal models. This is why mostly signal
models are used when sampled sounds cannot be used in an auditory scene. The
disadvantage of sound samples is that they can only be transformed (i.e.
parametrized by event attributes) in a very narrow range. Individual
perceptual attributes of sampled sound material are not accessible because of
the lack of a real sound model (the sample is class and only instance at a time).
Sound samples can only be transformed by being reproduced at different
pitches, amplitudes, and durations (by playing only a fragment of a sample).
Sound models using a combination of sound samples and signal modeling
techniques can combine advantages of both (e.g. modeling sound by filtering
and mixing sound samples).

2.     Auditory Scene Structure

Auditory scene elements represented by sound models and parametrized by
events are assembled in what we refer to as an auditory scene. It is in the
auditory scene where the scene elements are provided with a spatial location, a
radiation pattern, and their acoustic environment. The auditory scene is
naturally represented in the same scene graph than the visual scene - visual and
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auditory scene elements form together what we call the audio-visual scene.
From the point of view of representation in the scene graph the only difference
between auditory and visual elements are the node types used. Auditory scenes
are composed of Avocado nodes (c.f. [2.3.2]) representing the sound model,
the sound radiation, and the sound environment. The sound model node defines
the sound synthesis process used to create the source signal. The sound model
parameters are accessible as fields (c.f. [2.3.1]) of the sound model node,
which will be connected to event generating nodes used to control the synthesis
process. The sound radiation node defines the spatial position of the sound
source and its radiation pattern, which may be omni-directional or directed in
a frequency dependent manner. The acoustic environment in which the source
signal will be propagated is defined by the sound environment node which
defines the acoustic signature of the space the sound source is located in.

How do these nodes compare to nodes defining visual scene elements? The
radiation and environment nodes define how the sound source will be rendered
and are thus comparable to visual property nodes (e.g. transformation and
appearance node; actually, the radiation node is a transformation node). And
the sound model node is comparable to the visual shape nodes.

3.5.4 Example System: CyberStage

So far only the conceptual framework of the auditory scene synthesis process
has been discussed. In the next paragraphs we will report on a concrete
implementation of the process in the CyberStage II audio-visual display system.

1.     Sound Projection

While the first generation CyberStage system (1996) used only 4 loudspeakers
providing 2d localization, the second generation (CyberStage II, 1997) uses 8
loudspeakers in the classical cube configuration for full 3d localization. We use
Genelec 1030A active near-field studio monitors which we chose for their
sound quality, small size, integrated amplifiers and overload protection (an
important feature when working and especially when experimenting with
direct sound synthesis). The upper 4 loudspeakers are mounted directly above
the 4 corners of the cubical projection screen frame (3 x 3 x 3 m). The 2
lower speakers in the back are mounted on the floor at the lower corners of
the projection frame. A special arrangement had to be made for the 2 lower
speakers in the front as they have to be positioned behind the projection
screens in order not to occlude the visual projection. The deformation of the
frequency response caused by the screen has been measured and filters are used
to compensate this effect. The acoustics of the room behind the front
projection screen has been adapted to avoid reflections and prevent sound paths
other than through the front projection screen. All 8 loudspeakers are oriented
towards a point in the center of the projections system at average ear level.
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Additionally to the 8 speakers there are 4 low frequency vibration emitters
installed in the floor of the CyberStage. These are used to generate vibrations
up to around 100 Hz which can be perceived directly through the body via feet
and legs. Unlocalizable high-amplitude low-frequency components are
presented that way.

2.     Sound Server

The 8 loudspeakers and the 4 vibration emitters are fed by a sound server
designed in the context of a GMD research project on the integrated simulation
of image and sound (ISIS). In order to meet the requirements described above,
the sound server architecture has to be as open as possible. Therefore we
decided to build the sound server entirely in software and minimize the amount
of external hardware required. The sound server runs on an SGI Octane
machine using an Alesis ADAT recorder connected via a fiber optic link as 8-
channel D/A converter. The vibration emitters are fed by the analog stereo
output of the Octane which is passed though an external low-pass filter and a
dynamic limiter before being sent to power amplifiers.

The sound server is based on IRCAM's Max/FTS real-time sound processing
system originally built for computer music applications [Lindemann 90,
Dechelle 95]. FTS is an extensible signal processing kernel providing all
necessary low-level modules to build sophisticated sound synthesis and
processing applications. Max is a graphical programming environment
[Puckette 95] used to interactively build FTS programs. Max allows to control
and monitor the state of a signal processing program running in FTS. The
spatialization algorithms used in the sound server are based on IRCAM's
Spatialisateur toolkit [Jot 95] developed in Max/FTS. The software built on top
of these components consists of parts realized in Max (synthesis control,
resource management, message parsing) and FTS extensions written in C
(efficient spatialization modules, sound sample manager, custom synthesis
algorithms, network communication). The sound server is not a closed
application but an open toolkit adapted to a large class of applications. The
application designer chooses among many templates provided by the server to
solve standard problems.

3.     Controlling the Sound Server from Avocado

The information represented in the auditory scene by a graph of Avocado
nodes has to be passed to the sound server to invoke the corresponding sound
synthesis and rendering processes. The Avocado sound nodes use the Avocado
sound service abstraction (c.f. [x]) to communicate with the sound server. The
sound service defines a message passing protocol for this communication which
is based on the Internet User Datagram Protocol (UDP) to insure low-latency
and low-jitter control as it is needed to meet the mentioned synchronization
requirements of an integrated simulation of image and sound. Since UDP is an
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unreliable protocol we use a dedicated Ethernet link and a simple message
counting scheme to prevent messages from being lost. Whenever a state change
in the scene graph concerns an aspect of the auditory scene (i.e. when some
kind of sound-related event occurs), the sound nodes notify the sound server
by sending the corresponding messages. We distinguish two kinds of messages:
messages which allocate or free synthesis and rendering resources and
messages which update active synthesis or rendering processes.

4.     Summary: Features of the Sound Server

The sound server defines a set of general purpose sound synthesis and
rendering modules which are selected by the application designer through
parametrization of the Avocado sound nodes. As sound sources the sound
server currently supports real-time sound input (e.g. from a microphone or
CD player), sound sample playback from memory, sound file playback from
disk, and direct sound synthesis based on sound models as described above.
Real-time sound input, sound sample and sound file playback works for 1 to 8
channel input, samples, or files. For sound rendering (i.e. spatialization) a
collection of modules are available ranging from very fast and to very
sophisticated solutions among which the application designer may choose. For
instance, static simple spatialization which ignores the movements of the source
and the observer (which is reasonable for short percussive sound) is very fast
and thus many sound sources can be rendered at a time. On the contrary, fully
fetched spatialization including directivity effects, Doppler shift, propagation
delay, fine-grain early reflections simulation, and high-quality diffuse
reverberation [Jot 95] allows only a couple of sound sources to be rendered on
the same hardware. And in the case of ambient sound sources, (e.g.
background music) no spatialization is needed at all. This scalability allows the
application designer to optimize and balance the use of computational
resources.

Since the base system used to implement the sound server (FTS) doesn't allow
dynamic allocation of modules for efficiency reasons, static banks of modules
are allocated at startup time and individual modules (therefore also called
voices) are switched on and off on demand. This implies that the application
designer has to foresee the maximum number of each module type ever needed
at the same time in an application. This may be tedious, but the application
designers are rewarded by a maximum use of the available processing power.

5.     Example Application: Sound Spheres

Sound spheres is a sound installation conceived as a part of the virtual
environment caveland (c.f. [x]). The installation explores the basic features of
the CyberStage audio-visual display system with the aim of shaping some of the
yet unstructured vocabulary of musical expression and experience in virtual
space. The concentration on a few fundamental aspects of integrated audio-
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visual simulation was a conscious decision in the design process and led to the
abstract and minimalist character of the installation.

¥ Description

In essence, sound spheres is about localization of moving sound and light
sources. The audience is immersed in a space of weightlessness enclosed by a
large sphere. This space is populated by small rotating spheres slowly moving
along circular paths. The audience activates these spheres by inflating them
with a virtual pump. The more a sphere is inflated, the longer it will keep on
emitting percussive sounds and light flashes in simple rhythmical patterns. But
pointing the virtual pump at a sphere for too long a time will lead to its
explosion accompanied by a violent detonation flash and noise. While freely
floating in between the flashing and sounding spheres, the audience experiences
an ever changing rhythmical tissue of spatialized sound and light. The
perceptual plausibility and coherence of this experience is achieved by a
careful adjustment of the dynamic behavior of the light flashes, the light model
parameters, the sound material, and the room acoustics attributes. Sound
spheres also serves as an example for the high degree of immersion achievable
by perfect synchronization of image and sound rendering.

¥ Sound Model

The sound model used in Sound Spheres is a good example for the sound
modeling capabilities of the sound server and shall therefore be described in
some detail here. The rhythmical patterns audible in Sound Spheres are formed
by streams of sounds of a certain timbre presented in regular repetition. The
complexity of the resulting pattern is achieved by slightly different repetition
rates. The resulting temporal phasing effect typical for minimal music can only
be obtained through a careful choice of the sound material. The sound material
has to meet three requirements. First, each sound should be easily localizable
in space. Therefore we decided to use percussive sounds. Second, each sound
should be easily identifiable by its timbre in order to form a clear perceptual
stream when presented in repetition. The identification should work even if
several streams were audible at a time. Third, since the rhythmical structure is
based on repetition, each time a sound is presented, it should sound slighly
different, every time displaying another facet of its class. This can be obtained
by micro-variations in the spectrum which are typical for all percussive
sounds.

It is clear that these requirements are hard to be met with sound sampling
which cannot provide such richness of variation and strength of identification
at the same time. Model-based direct sound synthesis was chosen instead. A
bank of 10 resonating 2nd-order filter is used in a subtractive synthesis setup.
The filter parameters (center frequency, bandwidth, amplitude for each filter
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describe one partial in the spectrum) are generated by a spectral model
describing are large but perceptually clearly characterized class of wood-like
sounds. The spectra are described by ranges of possible variation for each of
the 30 parameters. Within these ranges random decisions are taken to produce
an instance of the sound class. The filter bank is excited by short noise bursts.
Due to the random nature of noise, the burst vary slightly from excitation to
excitation and thus excite the filters differently every time. The timbre
variations achieved this way carry a high degree of perceptual plausibility
because the model mimics a typical case of excitation/resonance based sound
generation we know very well from our everyday world (all percussive sounds
are generated that way).

Fig. 23 shows one voice of the described
sound model as a visual Max program. The
voice receives messages from the Avocado
sound service. A parser directs the messages
to the corresponding objects. The excitation
object can receive a trigger message to
generate one noise burst. Whenever the
spectrum object receives a change message, it
will generate a new spectrum. The new
spectrum is passed to the right input of filter-
bank object which receives at its left input the
signal from the excitation object. The output
of the filter-bank is sent to the left input of
spatialzer object which can receive space
messages from Avocado on its right input.
These space messages indicate where the
sound source is located with respect to the
observer and his or her position with respect
to the loudspeakers. The output of the
spatializer object is sent to the 8 loudspeakers.

6.     Summary: Audio features of the CyberStage

The auditory display of the CyberStage can be characterized by the specific
combination of the following key features:

¥ An open sound field is created by 8 loudspeakers in cube configuration.
¥ Sound projection is complemented by vibration emitters built into the floor

to produce low-frequency vibrations.
¥ Model-based real-time sound synthesis is used to overcome sample-based

approaches (complements sample playback).



Virtual Spaces - Applications Toolbox

56

¥ Life-audio input and sound file playback from disk are possible.
¥ Scalability of sound rendering (from a few high-quality up to 50 low-

quality concurrent voices).
¥ Entirely software-based sound server (no special DSP or "off-the-shelf"

MIDI sound processing hardware needed) using 32-bit floating-point digital
signal processing for high audio quality.

3.6 Physical Simulation

3.6.1 Problem Statement

Virtual reality can make a quantum progress towards a higher level realism,
when the virtual objects are able to react and change in a similar way as their
counterparts in the real world. Indeed, adding temporal and reactive behavior
to the objects in the virtual world is one of the most important issues of VR
[Baldler 91] and the key feature of VRML 2.0. It is hardly possible to rely on
the animator's intuitive specification and intervention in achieving this goal, so
that computer programmed mathematical models are indispensable. As
classical physics, i.e. Newtonian physics, is the well established mathematical
theory about behavior of physical objects, it becomes naturally the theoretical
basis for this domain, therefore it is commonly referred to as physically based
modelling. In fact, robotics represents another important theoretical basis of
physical simulation, since their problems have much in common.

In principle, all the attributes of a physical object, e.g. position, orientation,
shape, colour, etc. may change. However, at the actual state of the art,
physically based modelling deals mainly with motion and deformation of
physical objects [Dai 97]. In this section, we will focus on the problem of
motion control of solid bodies in VR. In this case, we may view our task as

¥ building movable or animatable objects representation

An animatable object representation is a visual data base which has an
appropriate structure to allow on-line specification of motion variables. A data
representation of a human skeleton, for example, needs to be sectioned into
parts, and the spatial parameters, i.e. position and orientation of each part are
represented by on-line modifiable variables. In walk-through type virtual
reality, the world model is most often not animatable.

¥  adding guidance model - building guided moving objects

A guided moving object is an animatable object, associated with a guidance
model. This guidance model is typically a one-to-one mapping from animator
input variables to the motion parameters of the animatable data structures. We
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qualify it guided because the model itself contains no information about how to
move, and such information is provided completely by the animator.

¥ adding autonomy - building semi-autonomous  and autonomous moving
bodies

Autonomy of a virtual physical body here means the capacity that enables it to
behave like the real counterpart without the animator's intervention. Adding
autonomy implies the embedment of object dynamics.

It is possible that some objects are only guided and some others are only
autonomous, however the actual trend is towards multi-modal motion control,
that is an autonomous object should have different control modes, ranging
from low level to high level autonomy.

3.6.2 Major Issues and Approaches

It turns out that models offered by classical physics are not sufficient for the
task of the domain. Principle problems that remain to be treated include the
following.

1.     Interference Handling

Newtonian physics helps us much in finding mathematical models of physical
behaviour of virtual objects. However it provides us in fact only with
piecewise mathematical formulations. If a free physical body is in the air, we
can model the external forces including gravity, air drag, and magnus force
and use the second Newtonian law to formulate the ball motion. When it
collides against other body, the external force becomes infinitely big and the
second Newtonian law can no more directly be employed. We need instead the
conversation of momentum principles. Therefore, we can only have segmental
behavior models for its flight, rebound, and sliding. A higher level behavior
model has to implemented to detect its qualitative state and control the above
low level behaviors. This is the task of the important problem of collision
detection and response or more generally interference handling [Baraff 95].

Indeed, the essential difficulty in interference handling is not the correct
formulation of the collision detection models, but the improvement of the run
time efficiency. The efforts to speed up the collision detection include the
following:

¥ specialization

The most general formulation of the collision would be based on the free-form
object assumption. It is obvious that more specific formulations for collisions
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between special types of forms such as particles, plan, sphere, box, cylinder,
polygons, etc., should be much more efficient.

¥ spatial approximation

Replacing complex geometry by simpler ones, e.g. sphere, box, etc. is an
important method to speed up collision detection, of course at the cost of the
precision. On the other hand, we can also represent the virtual space with
rough "points", e.g. cubic regions - the Octree-method [DAI 97] falls into this
category.

¥ temporal coherence exploitation

Every physical body has inertia, so that the continuity of motion is one of the
most basic assumptions. Therefore the past results of the collision detection
may be used to reduce the computation time for that of the present. In
addition, a more precise dynamic model of objects can be also used to predict
the next collision, which is important to avoid the detection error when objects
are moving too fast.

¥ optimal scheduling

When a large number of physical bodies are involved, the problem of choosing
the best order in which pairwise detections are processed becomes very
important. This scheduling may be based on the possibility of collision and the
computation complexity of each pair.

2.     Kinematics and Dynamics of Multibody

The classical physics does not provide us with a solution to the problem of
modelling physical bodies with complex structures. This becomes a special
problem commonly referred to as multi-body modelling. The most interesting
structures are body chain and body tree. Many concepts and methods
introduced by robotics, such as those described in the following, provide the
basis for physical simulation of multibodies.

¥ multibody kinematics

Kinematics of a multibody is the relationship between the motion variables, i.e.
position, velocities and accelerations of its body parts. Forward kinematics of a
body chain is the mapping form the joint motion variables to those of its
terminal part. Inverse kinematics is the inverse mapping of the forward
kinematics.The major difficulty of inverse kinematics resides in redundancy,
real-time computational speed, and joint limits. The solutions to the inverse
kinematics fall mainly into two categories: algebraic (i.e. closed form) and
iterative.
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¥ multibody dynamics

The dynamics of a body (including multibody) is the relationship between its
motion variables and torques or forces applied to it. Forward dynamics of a
body chain is a mapping from the applied joint torques or forces to their
motion variables. Inverse dynamics refers to the mapping from the motion
specifications to the desired joint torques or forces. Implementation of
dynamics is essentially the problem of solving a system of differential
equations. Methods used here can be also grossly divided as closed form,
iterative and recursive.

Although methods in robotics are very helpful, they are not fully suitable for
the simulation of bodies of virtual animals and humans, as those have more
complex structure than most of the existing robots. Therefore new methods
have to be studied. The closed form solution is more efficient than the iterative
ones, and has no problem of convergence, while the iterative ones have the
advantage to be more general.

Normally, the physical simulation of multibodies needs only the forward
kinematic and dynamic models, and the inverse kinematics and dynamics are
used for goal oriented object like robots and living beings. However, they are
employed for inanimate objects simulation in the approach called teleological
modelling [Baldler 91].

3.     Physical Activities of Virtual Living Beings

Simulating physical activities of living beings, especially those of humans is a
very interesting and hard topic.

¥ action primitives

Motion of virtual living beings involves coordinated motions of a very big
number of degrees of freedoms, so that we need some higher level
abstractions, e.g. actions, instead of treating them directly in terms of numeric
formulations. Much effort has been made by many researchers on locomotion
and manipulation [Zel 90b, Badler 93, Magnenat-Thalmann 96]

¥ perception

Visual and other exterioceptive perception of humans are essential, because
they can hardly rely on their previous knowledge about their environment and
apply open loop control to succeed in their physical activities.

¥ reflexive and intelligent behavioral controls
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The control mechanism needed for connecting the perception to actions is one
of the most interesting research topics. It has a very strong flavour of AI and
automatic controls.

Traditional approaches in AI tends to represent an intelligent entity such as a
human as a centralized system consisting of perception, reasoning and action
modules, while actually the distributed intelligence approaches dominate either
the domain of AI and the simulation of virtual creatures. These are known as
emergent behaviors, autonomous agents, sensor actuator network etc. They are
successfully applied in the examples such as the artificial fishes [Terz 94], Jack
[Badler 93]. A generic programming method is also applied to modelling of
structural behaviour, i.e. evolution [Sims 94].

3.6.3 AutoMove - An Autonomous Movement Simulation System

AutoMove is an experimental system which aims at integrating the major
aspects of physical simulation into a unified framework based on system
theoretical concept.

1.     A System Theory based Unified Approach

As the complexity of the virtual world increases, a general framework
becomes important. This fact for example was also stressed by David Zelter
and Tom Calvert in [Badler 91]. Our approach is based on general system
concepts [Yang 89, Mesarovic 89, Lin 93], so that we can represent the
physical world and our physical simulation system in more formal and
systemic terms.

On the one hand, such general framework may be useful in putting actually
rather ad hoc and piecemeal methods into a more coherent theoretical
structure. On the other hand, such formulations are especially adequate for the
Object Oriented programming paradigm, and may further provide high level
intuitive programming interfaces for physical simulation.

Additionally, we also try to combine the results from robotic visual servoing
[Dai 90, 92, 93a, 93b] techniques and qualitative modelling and reasoning
[Patrick 85] into our general framework.

2.     Implementation

AutoMove is first directly implemented on the top of the C++ API of
Performer. Its actual integration with the AVOCADO system and the
CyberStage display environment is achieved through plug-in technology, and
tighter integration is ongoing.

Unlike conventional animation where the data update more frequently than the
frame rate, which is a waste of computing power, dynamic behaviour
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simulation gets more accurate as its updating frequency increases. Therefore,
in our system, physical behaviour simulation is executed in a process running
concurrently with the visualization process, and its update frequency is
adjusted based on a compromise between its precision and time consumption
balanced with that of the visualization process.

Up to now, the following specific models and scenarios have been
implemented.

¥ An Autonomous Moving Ball

A physically realistic ball in the virtual world is a simple yet basic example of
physical bodies. The ball has the general structure of a general behavioral
model, in which the sensor's task is to detect collision and a high level logic
controls its lower level behavoirs. i.e. flight, rebound and sliding. In order that
the ball behaves physically, its static environmental objects need to be all
physical. In the caveland scenario, the visitor can pick-up this ball and throw
it. It can then fly, bounce or slide in the environment accompanied by a
coordinated sound effect produced by the sound server in AVACADO. It adds
some physically realistic interaction between the visitor and the caveland
world.

Fig. 24: An interactive autonomous ball in caveland
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¥ A kinematics and dynamics based human body

This human body model can be guided through three modes: forward
kinematics, inverse kinematics, and dynamically constrained inverse
kinematics. Figure 2 shows a snapshot where the right arm is guided under
dynamic constraint to follow the moving target, which is controlled by the
user.

¥ A virtual ping-pong game

The virtual ping-pong game integrates all the important ingredients discussed
above, so that it provides a good testbed of our unified approach. Some
theoretical study and a simple implementation based on Open Inventor has been
done previously [Dai 96]. Here the ping-pong scenario under the system
AutoMove, consists of a guided player which is the participant's avatar, an
autonomous virtual player, a virtual ping-pong ball, and the game
environment. The virtual player perceives the ball motion, predicts its
trajectory, then invokes some appropriate playing actions such as push, lob and
side stepping etc. The trajectory predictor and decision maker of the player
involve some qualitative modelling and reasoning about the ball, the
environment and his own body. The playing actions are themselves sensor-
controller-actuator loops at lower levels.

Fig. 25: A kinematics and dynamics based human body
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Fig. 26: A virtual ping-pong game
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4 Caveland on Cyberstage

Many people wonder about the process of
building a complex application for a
virtual space like the CyberStage. The
following describes the making of caveland
that was first shown in a CyberStage at
Cebit 1997 in Hannover/Germany.

4.1 Team and Tasks

People involved can be ranged in the
following areas:

¥ project coordination (5 people)
¥ software supervision (1 people)
¥ art supervision (1 people)
¥ software development (9 people)
¥ modeling (7 people)
¥ custom effects (5 people)
¥ music and sound rendering (5 people)
¥ system installation and support (2

people)
¥ special support (11 people)

4.1.1           project coordination

The most important job is to coordinate
the whole project. It starts with the
planning and developing of a storyboard
while considering and evaluating the
existing resources including software,
hardware, manpower, time, money. It has
to be decided whether additional resources
need to be provided. The second step is to
divide the task into subtasks and to assign
them to the people involved in the project.
All not-yet existing resources like software
tools or additional specialists have to be
ordered or hired. After the project has
started the coordinators are responsible for
controlling the schedule, the integration
process and the managing of alternative
solutions if unresolvable problems occur.
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1.     software supervision

One person is supervising the whole
software development process. His job
is to

¥ decide which extensions need to be
programmed

¥ estimate efforts and time ("nice
effect but takes years to develop")

¥ supervise integration process ("do
the pieces work together?")

¥ estimate the complexity and resulting
performance of the whole
application ("cool but too slow?")

¥ give guidance for software developer
("help me guru!")

¥ evaluate modules and suggest
improvements ("still too time
consuming?")

¥ communicate with modelers due to
special requirements for certain
special effects

2.     art supervision

Another person is supervising the whole
modeling process. His job is to

¥ estimate efforts and time ("nice idea
but takes years to model")

¥ supervise integration process ("do
the pieces fit together?")

¥ give guidance for modelers ("how do
I create shadows?")

¥ evaluate the different models and
suggest improvements ("doesn't look
good in the CyberStage
environment")

3.     software development

A couple of people are necessary to
extend the current software system.
Their job is to
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¥ develop new modules including sound rendering and special effect modules
¥ integrate the modules in the software system
¥ test, evaluate and improve the modules especially considering performance

issues
¥ communicate directly with modelers while working on a specific effect

4.     modeling

Several modelers need to create the geometric representation of the virtual
world. Their job is to

¥ create models while considering the special requirements (limited number
of polygons, textures, ...)

¥ cooperate with software developers and adjust models due to the needs for
special effects

¥ test and evaluate the models in the virtual environment due to the different
light conditions etc.

5.     custom effects

Since we wanted to include virtual actors guiding a user through certain parts
of the virtual world we started a cooperation with a small company specialized
in real-time virtual actors. Their job includes

¥ modeling of the virtual actors including geometric representation
     considering behaviour and gestures
¥ synchronization of sound and model
¥ cooperation with software developers to create a interface to the Avocado

system

6.     music and sound rendering

In order to provide music and real-time sound effects a couple of people has to
take care of various issues including

¥ edit, process, and synthesize sound material
¥ synchronize image and sound
¥ test and evaluate the spatial sound experience
¥ compose music and record samples

7.     system installation and support

At least two people are necessary to take care of the system. Their job is to

¥ administer the system while developing the project
¥ reconfigure the system according to the specific needs (sirius
     video,...)
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¥ supervise the moving of all the hardware to the demo location
¥ reinstall and test everything at the event location

8.     special support

You always need a couple of people assisting you. These people

¥ prepare video material used for special effects
¥ just make things possible by paving the way
¥ support you with ideas or give software tips
¥ represent models scanned in for special effects
¥ provide samples of their speech

9.     scheduling

We started planning and developing the caveland project at the beginning of
January 1997. Cebit took place in the middle of March. The internal deadline
was the 28th of February, although all the modeling had to be finished by
February 21th in order to plug in all the effects. The assembling of all parts
and final adjustments of the software took one week with three people working
25 hours a day at Cebit location.

4.2 Software Tools

We used the following software packages while creating caveland:

4.2.1 CyberStage rendering

¥ Avocado 1.5 (in house) based on

o SGI IRIS Performer 2.1
o Scheme

1.     geometrical modeling

¥ Alias|Wavefront Advanced Visualizer
¥ MultiGen II
¥ SoftImage
¥ In House Converter
¥ SGI Converter
¥ SGI Inventor Tools

2.     image pre and post processing

¥ PhotoShop
¥ SoftImage Eddie
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¥ SoftImage StudioPaint
¥ SGI Tools

3.     sound synthesis and sound processing

¥ Digidesign SoundDesigner II
¥ Digidesign ProTools III
¥ Emagic LOGIC Audio 2.6
¥ Emagic SoundDiver
¥ IRCAM AudioSculpt

4.     sound rendering

¥ IRCAM Max/FTS
¥ IRCAM Spatialisateur
¥ CCRMA snd

4.3 Special Effects

A lot of special effects and unique features of the Avocado system contribute to
the life and beauty of caveland:

¥ vertex and norms animations make water swashing and glinting and let
suspension bridges swinging

¥ texture and material animations create blazing flames
¥ moving animations make a lift working, a pendulum swinging, wheels

turning
¥ interpolated paths a user may follow to explore the world
¥ live video input (video textures)
¥ reflection maps and reflection faces makes it look realistic
¥ quicktime movies imported as texture generate a lava stream
¥ localized sound sources enhance the visual effects
¥ level of detail effect switches
¥ exploding sound objects
¥ virtual actors accompanying a user

4.4 @ Cebit location

4.4.1 graphics installation

¥ SGI Onyx 2 Pipes IR-Graphics, 4 RM6 RasterManager, 10 R10000 CPUs, 1
GB

     RAM, 64 MB Texture Memory, 2 Sirius video boards
¥ CyberStage projection system, wooden projection room 3m^3
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¥ Polhemus tracking system (head, two input devices)
¥ 16 CrystalEyes shutter glasses
¥ video cameras used for live video input

1.     sound installation

¥ SGI Indy R5000, 160 MB RAM
¥ 4 channel surround sound system
¥ acoustic floor

2.     schedule

The installing took approximately one week. Assembling of all parts and final
adjustments of the software required three people working 25 hours a day.
Almost all modules have been included in the final version of caveland. In
parallel the installing of the projection system was completed.

3.     presentation

For the presentation we needed to have counter personal taking care of the
mass of people and arranging the schedule. Two presenters were showing
caveland at a time. One responsible for handing out glasses and giving short
instructions another showing the demo. Several people presented the demo
alternately. Over 2700 visitors have seen the caveland. Fortunately nobody got
injured or sick.

4.     comments

A couple of problems arise when we started showing our project: The air
condition to cool the projection room didn't work properly which caused high
temperature within the CyberStage. In addition the air was not very fresh.
Since our projection mirrors were mounted on the same floor as the rest of the
CyberStage the mirrors began to waggle a little while the visitors entered the
CyberStage. Due to the number of visitors a tight schedule had to be met.
Showing the caveland was very exhausting for the presenters. Fortunately the
caveland project itself ran very stable during the entire Cebit conference.
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