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Figure 1: A selection of scenes simulated inside the position-based dynamics framework.

Abstract
The physically-based simulation of mechanical effects has been an important research topic in computer graphics
for more than two decades. Classical methods in this field discretize Newton’s second law and determine different
forces to simulate various effects like stretching, shearing, and bending of deformable bodies or pressure and
viscosity of fluids, to mention just a few. Given these forces, velocities and finally positions are determined by a
numerical integration of the resulting accelerations.
In the last years position-based simulation methods have become popular in the graphics community. In contrast
to classical simulation approaches these methods compute the position changes in each simulation step directly,
based on the solution of a quasi-static problem. Therefore, position-based approaches are fast, stable and con-
trollable which make them well-suited for use in interactive environments. However, these methods are generally
not as accurate as force-based methods but still provide visual plausibility. Hence, the main application areas of
position-based simulation are virtual reality, computer games and special effects in movies and commercials.
In this tutorial we first introduce the basic concept of position-based dynamics. Then we present different solvers
and compare them with the classical implicit Euler method. We discuss approaches to improve the convergence
of these solvers. Moreover, we show how position-based methods are applied to simulate hair, cloth, volumetric
deformable bodies, rigid body systems and fluids. We also demonstrate how complex effects like anisotropy or
plasticity can be simulated and introduce approaches to improve the performance. Finally, we give an outlook and
discuss open problems.

Keywords: physically-based animation, position-based dynamics, deformable solids, rigid bodies, fluids

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Animation
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1. Tutorial Details

1.1. Presenters

Jan Bender Until 2002 Jan Bender studied computer sci-
ence at the University of Karlsruhe with the majors computer
graphics and software engineering. Afterwards, he started
with his PhD studies at the Institute for Computer Graph-
ics at the University of Karlsruhe. In the beginning of 2007
he received his doctoral degree with distinction. The topic
of his thesis was the dynamic simulation of multibody sys-
tems in VR applications. In the following years he worked
in a research department for driver assistance systems in in-
dustry. Since 2010 he is employed as Assistant Professor at
the Department of Computer Science, TU Darmstadt and
works at the Graduate School of Computational Engineer-
ing in Darmstadt which has been recognized as a center for
top-level research by the highly competitive ’Excellence Ini-
tiative’ of the German government. His current research ar-
eas include: interactive simulation of multibody systems, de-
formable solids and cloth, position-based methods, collision
detection and resolution, fracture, fluid simulation and real-
time visualization. Since 2009 Jan Bender is program chair
of the Virtual Reality Interaction and Physical Simulation
conference.

• email address: bender@gsc.tu-darmstadt.de
• URL: www.interactive-graphics.de

Matthias Müller Matthias Müller received his PhD in
atomistic simulation of dense polymer systems in 1999 from
ETH Zürich. During his post-doc with the MIT Computer
Graphics Group (1999-2001), he changed fields to macro-
scopic physically based simulations. He has published pa-
pers on particle-based water simulation and visualization, fi-
nite element-based soft bodies, cloth simulation, and fracture
simulation. The main focus of his research are uncondition-
ally stable, fast and controllable simulation techniques for
the use in computer games. Most relevant to this tutorial, he
is one of the founders of the field of position based simula-
tion methods.

In 2002, he co-founded the game middleware company
NovodeX (acquired in 2004 by AGEIA), where he was head
of research and responsible for extension of the physics sim-
ulation library PhysX by innovative new features. He has
been head of the PhysX research team of NVIDIA since that
company acquired AGEIA Technologies, Inc. in early 2008.

• email address: matthiasm@nvidia.com
• URL: www.matthias-mueller-fischer.ch

Miles Macklin Miles Macklin is a researcher on the PhysX
research team at NVIDIA. Since 2013, he has been working
on a unified physics library called NVIDIA Flex, built using
Position-Based Dynamics. The technology in Flex has been
the subject of two papers at SIGGRAPH and has now been
released to several games and visual effects studios. Prior

to joining NVIDIA, Miles worked in the games industry as
a visual effects engineer at Sony Computer Entertainment
on early Playstation3 development, Rocksteady Studios in
London on the Batman Arkham series, and LucasArts in San
Francisco on the Star Wars franchise. His current research is
focused on real-time methods for simulation and rendering
using GPUs.

• email address: mmacklin@nvidia.com
• URL: www.mmacklin.com

1.2. Length

This is a half day tutorial (180 minutes).

1.3. Necessary Background

In our tutorial we will make a short introduction in the basics
of physically-based animation. However, general knowledge
in this area is recommended.

1.4. Potential Target Audience

This tutorial is intended for researchers and developers in
the area of computer animation who are interested in inter-
active physically-based simulation methods. This will be an
intermediate level tutorial.

© The Eurographics Association 2015.
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2. Introduction

The simulation of solid objects such as rigid bodies, soft
bodies or cloth has been an important and active research
topic in computer graphics for more than 30 years. The
field was introduced to graphics by Terzopoulos and his
colleagues in the late eighties [TPBF87a]. Since then, a
large body of work has been published and the list is grow-
ing rapidly. There exists a variety of survey papers [GM97,
MTV05, NMK∗06, MSJT08, BET14] which document this
development.

In this tutorial we focus on a special class of simulation
methods, namely position-based approaches [BMO∗14].
These methods were originally developed for the simulation
of solids. However, some recent works demonstrated that the
position-based concepts can even be used to simulate fluids
and articulated rigid bodies. Classical dynamics simulation
methods formulate the change of momentum of a system as a
function of applied forces, and evolve positions through nu-
merical integration of accelerations and velocities. Position-
based approaches, instead, compute positions directly, based
on the solution to a quasi-static problem.

Physical simulation is a well studied problem in the com-
putational sciences and therefore, many of the well estab-
lished methods have been adopted in graphics such as the Fi-
nite Element Method (FEM) [OH99], the Finite Differences
Method [TPBF87b], the Finite Volume Method [TBHF03],
the boundary element method [JP99] or particle-based ap-
proaches [DSB99, THMG04]. The main goal of computer
simulations in computational physics and chemistry is to
replace real-world experiments and thus, to be as accurate
as possible. In contrast, the main applications of physically
based simulation methods in computer graphics are special
effects in movies and commercials and more recently, com-
puter games and other interactive systems. Here, speed and
controllability are the most important factors and all that is
required in terms of accuracy is visual plausibility. This is
especially true for real-time applications.

Position-based methods are tailored particularly for use in
interactive environments. They provide a high level of con-
trol and are stable even when simple and fast explicit time
integration schemes are used. Due to their simplicity, robust-
ness and speed these approaches have recently become very
popular in computer graphics and in the game industry.

Collision detection is an important part of any simulation
system. However, an adequate discussion of this topic is be-
yond the scope of this tutorial. Therefore, we refer the reader
to the surveys of Lin and Gottschalk [LG98] and the one of
Teschner et al. [TKH∗05].

3. Background

The most popular approaches for the simulation of dynamic
systems in computer graphics are force based. Internal and

external forces are accumulated from which accelerations
are computed based on Newton’s second law of motion. A
time integration method is then used to update the veloci-
ties and finally the positions of the object. A few simulation
methods (most rigid body simulators) use impulse based dy-
namics and directly manipulate velocities [BFS05, Ben07].
In contrast, geometry-based methods omit the velocity layer
as well and immediately work on the positions. The main
advantage of a position-based approach is its controllabil-
ity. Overshooting problems of explicit integration schemes
in force based systems can be avoided. In addition, collision
constraints can be handled easily and penetrations can be re-
solved completely by projecting points to valid locations.

Among the force based approaches, one of the simplest
methods is to represent and simulate solids with mass-spring
networks. A mass spring system consists of a set of point
masses that are connected by springs. The physics of such a
system is straightforward and a simulator is easy to imple-
ment. However, there are some significant drawbacks of the
simple method.

• The behavior of the object depends on the way the spring
network is set up.

• It can be difficult to tune the spring constants to get the
desired behavior.

• Mass spring networks cannot capture volumetric effects
directly such as volume conservation or prevention of vol-
ume inversions.

The Finite Element Method solves all of the above prob-
lems because it considers the entire volume of a solid instead
of replacing it with a finite number of point masses. Here,
the object is discretized by splitting the volume into a num-
ber of elements with finite size. This discretization yields a
mesh as in the mass spring approach in which the vertices
play the role of the mass points and the elements, typically
tetrahedra, can be viewed as generalized springs acting on
multiple points at the same time. In both cases, forces at the
mass points or mesh vertices are computed due to their ve-
locities and the actual deformation of the mesh.

In this tutorial we focus on position-based simulation
methods which omit the velocity and acceleration layer and
directly modify the positions. In the following we first in-
troduce the basics of physically-based simulation, before we
present the position-based concept in the next section.

3.1. Equations of Motion

Each particle i has three attributes, namely its mass mi, its
position xi and its velocity vi. The equation of motion of a
particle is derived from Newton’s second law:

v̇i =
1
mi

fi, (1)

where fi is the sum of all forces acting on particle i. The
relationship between ẋ and v is described by the velocity

© The Eurographics Association 2015.
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kinematic relationship:

ẋi = vi. (2)

While particles have only three translational degrees of
freedom, rigid bodies have also three rotational ones. There-
fore, a rigid body requires additional attributes, namely its
inertia tensor Ii ∈ R3×3, its orientation, which is typically
represented by a unit quaternion qi ∈ H, and its angular ve-
locity ωi ∈ R3. For a rigid body generally a local coordinate
system is chosen so that its origin is at the center of mass and
its axes are oriented such that the inertia tensor is diagonal
in local coordinates.

Newton’s second law actually applies only to particles.
By viewing rigid bodies as collections of infinite numbers of
particles, Euler extended this law to the case of rigid bod-
ies. Therefore, the equations of motion for rigid bodies are
also known as the Newton-Euler equations. The equation of
motion for the rotational part of a rigid body is:

ω̇i = I−1
i (τi− (ωi× (Iiωi))) , (3)

where τi is the sum of all moments. A moment can be a pure
moment or a byproduct of a force τ = (p−x)× f if the force
f acts at a point p and x is the center of mass of the body.
The velocity kinematic relationship for the rotational part is
defined by

q̇i =
1
2

ω̃iqi, (4)

where ω̃i is the quaternion [0,ωx
i ,ω

y
i ,ω

z
i ].

3.2. Time Integration

A simulation step for an unconstrained particle or rigid body
is performed by numerical integration of Equations (1)-(2)
or Equations (1)-(4), respectively. The most popular integra-
tion method in the field of position-based dynamics is the
symplectic Euler method which is introduced in the follow-
ing.

In contrast to the well-known explicit Euler, the symplec-
tic Euler uses the velocity at time t0 +∆t instead of time t0
for the integration of the position vector. The time integra-
tion for a particle is then performed by the following equa-
tions:

vi(t0 +∆t) = vi(t0)+∆t
1
mi

fi(t0)

xi(t0 +∆t) = xi(t0)+∆t vi(t0 +∆t).

In the case of a rigid body also Equations (3) and (4) must
be integrated. Using the symplectic Euler method this yields:

ωi(t0 +∆t) = ωi(t0)+∆t I−1
i (t0) ·

(τi(t0)− (ωi(t0)× (Ii(t0)ωi(t0))))

q(t0 +∆t) = q(t0)+∆t
1
2

ω̃i(t0 +∆t)qi(t0).

Note that due to numerical errors the condition ‖q‖ = 1,
which must be satisfied by a quaternion that represents a ro-
tations, can be violated after the integration. Therefore, the
quaternion must be normalized after each time integration
step.

Symplectic Euler is a first-order integrator, and is used
only for the prediction step of the algorithm. In Position
Based Dynamics (PBD), constraint forces are integrated im-
plicitly as described in Section 4.2.4.

3.3. Constraints

Constraints are kinematic restrictions in the form of equa-
tions and inequalities that constrain the relative motion of
bodies. Equality and inequality constraints are referred to as
bilateral and unilateral constraints, respectively. Generally,
constraints are functions of position and orientation vari-
ables, linear and angular velocities, and their derivatives to
any order. However, position-based simulation methods only
consider constraints that depend on positions and in the case
of rigid bodies on orientations. Hence, a bilateral constraint
is defined by a function

C(xi1 ,qi1 , . . . ,xin j
,qin j

) = 0

and a unilateral constraint by

C(xi1 ,qi1 , . . . ,xin j
,qin j

)≥ 0,

where {i1, . . . in j} is a set of body indices and n j is the car-
dinality of the constraint. Typically, the constraints used in
PBD only depend on positions and time but not on velocities.
Such constraints are called holonomic.

Since constraints are kinematic restrictions, they also af-
fect the dynamics. Classical methods determine forces to
simulate a dynamic system with constraints. This is done,
e.g. by defining a potential energy E = k

2C2 and deriving the
forces as f =−∇E (soft constraints) or via Lagrange multi-
pliers derived from constrained dynamics (hard constraints)
[Wit97]. In contrast to that position-based approaches mod-
ify the positions and orientations of the bodies directly in
order to fulfill all constraints.

© The Eurographics Association 2015.
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4. The Core Of Position Based Dynamics

In this section we present Position-Based Dynamics (PBD),
an approach which omits the velocity and acceleration layer
and immediately works on the positions [MHHR07]. We
will first describe the basic idea and the simulation algo-
rithm of PBD. Then we will focus specifically on how to
solve the system of constraints that describe the object to be
simulated.

In the following the position-based approach is introduced
first for particle systems. An extension to handle rigid bodies
is presented in Section 5.9.

4.1. The Algorithm

The objects to be simulated are represented by a set of N
particles and a set of M constraints. For each constraint we
introduce a stiffness parameter k which defines the strength
of the constraint in a range from zero to one. This gives a
user more control over the elasticity of a body.

4.1.1. Time Integration

Algorithm 1 Position-based dynamics
1: for all vertices i do
2: initialize xi = x0

i , vi = v0
i , wi = 1/mi

3: end for
4: loop
5: for all vertices i do vi← vi +∆twifext(xi)
6: for all vertices i do pi← xi +∆tvi
7: for all vertices i do genCollConstraints(xi→ pi)
8: loop solverIteration times
9: projectConstraints(C1, . . . ,CM+MColl ,p1, . . . ,pN )

10: end loop
11: for all vertices i do
12: vi← (pi−xi)/∆t
13: xi← pi
14: end for
15: velocityUpdate(v1, . . . ,vN )
16: end loop

Given this data and a time step ∆t, the simulation proceeds
as described by Algorithm 1. Since the algorithm simulates
a system which is second order in time, both the positions
and the velocities of the particles need to be specified in (1)-
(3) before the simulation loop starts. Lines (5)-(6) perform
a simple symplectic Euler integration step on the velocities
and the positions. The new locations pi are not assigned to
the positions directly but are only used as predictions. Non-
permanent external constraints such as collision constraints
are generated at the beginning of each time step from scratch
in line (7). Here the original and the predicted positions are
used in order to perform continuous collision detection. The
solver (8)-(10) then iteratively corrects the predicted posi-
tions such that they satisfy the Mcoll external as well as the

M internal constraints. Finally, the corrected positions pi are
used to update the positions and the velocities. It is essential
here to update the velocities along with the positions. If this
is not done, the simulation does not produce the correct be-
havior of a second order system. As you can see, the integra-
tion scheme used here is very similar to the Verlet method. It
is also closely related to Jos Stam’s Nucleus solver [Sta09]
which also uses a set of contraints to describe the objects to
be simulated. The main difference is that Nucleus solves the
constraints for velocities, not positions.

4.1.2. Damping

The quality of dynamic simulations can generally be im-
proved by the incorporation of an appropriate damping
scheme. As a positive effect, damping can improve the sta-
bility by reducing temporal oscillations of the point posi-
tions of an object. This enables the use of larger time steps
which increases the performance of a dynamic simulation.
On the other hand, damping changes the dynamic motion
of the simulated objects. The resulting effects can be either
desired, e.g. reduced oscillations of a deformable solid, or
disturbing, e.g. changes of the linear or angular momentum
of the entire object.

Generally, a damping term CẊ can be incorporated into
the motion equation of an object where Ẋ denotes the vector
of all first time derivatives of positions. If the user-defined
matrix C is diagonal, absolute velocities of the points are
damped, which sometimes is referred to as point damping. If
appropriately computed, such point damping forces result in
an improved numerical stability by reducing the acceleration
of a point. Such characteristics are desired in some settings,
e.g. in the context of friction. In the general case, however,
the overall slow-down of an object, caused by point damp-
ing forces, is not desired. Point damping forces are, e.g.,
used in [TF88] or in [PB88], where point damping is used
for dynamic simulations with geometric constraints such as
point-to-nail.

In order to preserve linear and angular momentum of
deformable objects, symmetric damping forces, usually re-
ferred to as spring damping forces, can be used. Such
forces can be represented by non-diagonal entries in the ma-
trix C. Damping forces are, e.g., described by Baraff and
Witkin [BW98] or Nealen et al. [NMK∗06]. These forces
can also be applied to position-based methods. However, as
the approaches of Baraff and Witkin and Nealen et al. rely on
topological information of the object geometry, they cannot
be applied to meshless techniques such as shape matching.

Point and spring damping can be used to reduce cur-
rent velocities or relative velocities. However, it is generally
more appropriate to consider predicted velocities or relative
velocities for the next time step.

An interesting damping alternative has been presented
in [SGT09]. Here, the idea of symmetric, momentum-
conserving forces is extended to meshless representations.

© The Eurographics Association 2015.
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Global symmetric damping forces are computed with re-
spect to the center of mass of an object. While such forces
conserve the linear momentum, the preservation of the an-
gular momentum is guaranteed by force projection onto rel-
ative positions or by torque elimination using Linear Pro-
gramming. The approach presented in [SGT09] iteratively
computes damping forces. The paper, however, also shows
the convergence of the iterative process and how the solu-
tion can be computed directly without performing iterations.
Therefore, the approach is an efficient alternative to com-
pute damping forces for arbitrary position-based deforma-
tion models with or without connectivity information. The
approach can be used to damp oscillations globally or lo-
cally for user-defined clusters.

4.2. Solver

4.2.1. The System to be Solved

The goal of the solver step (8)-(10) in Algorithm 1 is to cor-
rect the predicted positions of the particles such that they
satisfy all constraints. In what follows and in contrast to Al-
gorithm 1, we will use the symbol x for the positions of the
particles the solver works on which is a more common sym-
bol for positions. In Algorithm 1 we have a larger context
and used the symbol p to distinguish the predicted positions
from the positions of the previous time step.

The problem that needs to be solved comprises of a set
of M equations for the 3N unknown position components,
where M is now the total number of constraints. This system
does not need to be symmetric. If M > 3N (M < 3N), the
system is over-determined (under-determined). In addition
to the asymmetry, the equations are in general non-linear.
The function of a simple distance constraint C(x1,x2) =
|x1− x2|2− d2 yields a non-linear equation. What compli-
cates things even further is the fact that collisions produce
inequalities rather than equalities. Solving a non-symmetric,
non-linear system with equalities and inequalities is a tough
problem.

Let x be the concatenation [xT
1 , . . . ,x

T
N ]

T and let all the
constraint functions C j take the concatenated vector x as in-
put while only using the subset of coordinates they are de-
fined for. We can now write the system to be solved as

C1(x) � 0

. . .

CM(x) � 0,

where the symbol � denotes either = or ≥. Newton-
Raphson iteration is a method to solve non-linear symmet-
ric systems with equalities only. The process starts with a
first guess of a solution. Each constraint function is then lin-
earized in the neighborhood of the current solution using

C(x+∆x) =C(x)+∇C(x) ·∆x+O(|∆x|2) = 0.

This yields a linear system for the global correction vec-
tor ∆x

∇C1(x) ·∆x =−C1(x)
. . .

∇CM(x) ·∆x =−CM(x),

where∇C j(x) is the 1×N dimensional vector containing the
derivatives of the function C j w.r.t. all its parameters, i.e. the
N components of x. It is also the j-th row of the linear sys-
tem. Both, the rows ∇C j(x) and the right hand side scalars
−C j(x) are constant because they are evaluated at the loca-
tion x before the system is solved. When M = 3N and only
equalities are present, the system can be solved by any lin-
ear solver, e.g. a preconditioned conjugate gradient method.
Once it is solved for ∆x the current solution is updated as
x← x+∆x. A new linear system is generated by evaluat-
ing ∇C j(x) and −C j(x) at the new location after which the
process repeats.

If M 6= 3N the resulting matrix of the linear system is non-
symmetric and not invertible. Goldenthal et al. [GHF∗07]
solve this problem by using the pseudo-inverse of the sys-
tem matrix which yields the best solution in the least-squares
sense. Still, handling inequalities is not possible directly.

4.2.2. The Non-Linear Gauss-Seidel Solver

In the PBD approach, non-linear Gauss-Seidel is used. It
solves each constraint equation separately. Each constraint
yields a single scalar equation C(x) � 0 for all the parti-
cle positions associated with it. The subsystem is therefore
highly under-determined. PBD solves this problem as fol-
lows. Again, given x we want to find a correction ∆x such
that C(x+∆x) � 0. It is important to notice that PBD also
linearizes the constraint function but individually for each
constraint. The constraint equation is approximated by

C(x+∆x)≈C(x)+∇C(x) ·∆x� 0. (5)

The problem of the system being under-determined is solved
by restricting ∆x to be in the direction of∇C which is also a
requirement for linear and angular momentum conservation.
This means that only one scalar λ - a Lagrange multiplier -
has to be found such that the correction

∆x = λM−1∇C(x) (6)

solves Equation (5), where M = diag(m1,m2, . . . ,mN). This
yields the following formula for the correction vector of a
single particle i

∆xi =−λ wi∇xiC(x), (7)

where

λ =
C(x)

∑ j w j|∇x jC(x)|2
(8)
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and wi = 1/mi. Formulated for the concatenated vector x of
all positions we get

λ =
C(x)

∇C(x)T M−1∇C(x)
. (9)

As mentioned above, the solver linearizes the constraint
functions. However, in contrast to the Newton-Raphson
method, the linearization happens individually per con-
straint. It is important to note that linearization does not af-
fect the projection of an individual distance constraint. This
is because despite being non-linear globally, a distance con-
straint is linear along the constraint gradient which happens
to be the search direction. This is true for other constraints
as well like the tetrahedral volume constraint we will discuss
in Section 5.5.1. Constraints of this type can be solved in a
single step. Because the positions are immediately updated
after a constraint is processed, these updates will influence
the linearization of the next constraint because the lineariza-
tion depends on the actual positions. Asymmetry does not
pose a problem because each constraint produces one scalar
equation for one unknown Lagrange multiplier λ. Inequali-
ties are handled trivially by first checking whether C(x)≥ 0.
If this is the case, the constraint is simply skipped.

The fact that each constraint is linearized individually be-
fore its projection makes the solver more stable than a global
approach in which the linearizations are kept fixed for the
entire global solve of a Newton iteration.

We have not considered the stiffness k of the constraint
so far. There are several ways to incorporate it. The simplest
variant is to multiply the corrections ∆x by k∈ [0 . . .1]. How-
ever, for multiple iteration loops of the solver, the effect of k
is non-linear. The remaining error for a single distance con-
straint after ns solver iterations is ∆x(1−k)ns . To get a linear
relationship we multiply the corrections not by k directly but
by k′ = 1−(1−k)1/ns . With this transformation the error be-
comes ∆x(1− k′)ns = ∆x(1− k) and, thus, becomes linearly
dependent on k and independent of ns as desired. However,
the resulting material stiffness is still dependent on the time
step of the simulation. Real time environments typically use
fixed time steps in which case this dependency is not prob-
lematic.

4.2.3. Hierarchical Solver

The Gauss-Seidel method is stable and easy to implement
but it typically converges significantly slower than global
solvers. The main reason is that error corrections are propa-
gated only locally from constraint to constraint. Therefore,
the Gauss-Seidel method is called a smoother because it
evens out the high frequency errors much faster than low
frequency errors.

A popular method to increase the convergence rate of
the Gauss-Seidel method is to create a hierarchy of meshes
in which the coarse meshes make sure that error correc-
tions propagate fast across the domain. A smoother works

Figure 2: The construction of a mesh hierarchy: A fine level
l is composed of all the particles shown and the dashed con-
straints. The next coarser level l + 1 contains the proper
subset of black particles and the solid constraints. Each fine
white particle needs to be connected to at least k (=2) black
particles – its parents – shown by the arrows.

on all meshes of the hierarchy one by one while the er-
ror corrections are carried over across meshes of different
resolutions typically in multiple cycles from fine to coarse
levels and back. This technique is called the multi-grid
method [GW06]. Transferring corrections from coarse to
fine meshes and from fine to coarse meshes is called pro-
longation and restriction, respectively. Multi-grid methods
differ in the way the hierarchy is created, in how the restric-
tion and prolongation operators are defined and in what order
the meshes are processed.

In [Mül08], Müller et al. used this technique and intro-
duced Hierarchical Position Based Dynamics (HPBD). They
define the original simulation mesh to be the finest mesh of
the hierarchy and create coarser meshes by only keeping a
subset of the particles of the previous mesh. The hierarchy
is traversed only once from the coarsest to the finest level.
Therefore, they only need to define a prolongation opera-
tor. By making sure that each particle of a given level is
connected to at least two particles in the next coarser level
(see Figure 2), prolongation amounts to interpolating the in-
formation from adjacent particles of the coarser level. They
also propose a method to create distance constraints on the
coarse meshes based on the constraints of the original mesh.
It is important to note that these coarse constraints must be
unilateral, i.e. only act if the current distance is larger than
the rest distance otherwise they would prevent bending and
folding.

In Section 5.6 we describe a much simpler and effective
way to speed up error propagation for the specific but quite
common case of cloth that is attached to a kinematic or static
object.

4.2.4. Connection to Implicit Methods

As Liu et al. [LBOK13] pointed out, PBD is closely related
to implicit backward Euler integration schemes. We can see
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this by considering backward Euler as a constrained mini-
mization over positions. Starting with the traditional implicit
Euler time discretization of the equations of motion:

xn+1 = xn +∆tvn+1 (10)

vn+1 = vn +∆tM−1
(

Fext + k∇Cn+1
)

(11)

where C is the vector of constraint potentials, and k is the
stiffness, we can eliminate velocity to give:

M(xn+1−2xn +xn−1−∆t2M−1Fext) = ∆t2k∇Cn+1.
(12)

Equation (12) can be seen as the first order optimality con-
dition for the following minimization:

min
x

1
2
(xn+1− x̃)T M(xn+1− x̃)−∆t2kCn+1 (13)

where x̃ is the predicted position, given by:

x̃ = 2xn−xn−1 +∆t2M−1Fext (14)

= xn +∆tvn +∆t2M−1Fext . (15)

Taking the limit as k → ∞ we obtain the following con-
strained minimization:

min
x

1
2
(xn+1− x̃)T M(xn+1− x̃)

s.t. Ci(xn+1) = 0, i = 1, . . . ,n.
(16)

We can interpret this minimization problem as finding the
closest point on the constraint manifold to the predicted po-
sition (in a mass-weighted measure). PBD approximately
solves this minimization using a variant of the fast projection
algorithm of Goldenthal et al. [GHF∗07], which first takes a
prediction step and then iteratively projects particles onto the
constraint manifold. PBD follows this approach, but differs
in the method used to solve the projection step. In contrast
to [GHF∗07] PBD does not necessarily linearize and solve
the system as a whole in each Newton step. Instead, it lin-
earizes one constraint at a time in a Gauss-Seidel fashion as
discussed in Section 4.2.1. This helps to make PBD robust
in the presence of large constraint non-linearities.

Projective Dynamics [BML∗14] presents a modification
to PBD that allows treating constraints in an implicit manner
that does not depend on the constraints being infinitely stiff.
This is accomplished by adding additional constraints that
act to pull the solution back towards the predicted (inertial)
position.

4.2.5. Second Order Methods

Now we have established the connection to backward Eu-
ler, we can apply higher order integration schemes to PBD.
Following the derivation in [EB08] we will adapt BDF2, a
second order accurate multistep method. First, we write the

second order accurate BDF2 update equations:

xn+1 =
4
3

xn− 1
3

xn−1 +
2
3

∆tvn+1 (17)

vn+1 =
4
3

vn− 1
3

vn−1 +
2
3

∆tM−1
(

Fext + k∇Cn+1
)
.

(18)

Eliminating velocity and re-arranging gives

M
(

xn+1− x̃
)
=

4
9

∆t2k∇Cn+1, (19)

where the inertial position x̃ is given by

x̃ =
4
3

xn− 1
3

xn−1 +
8
9

∆tvn− 2
9

∆tvn−1 +
4
9

∆t2M−1Fext .

(20)
Equation (19) can again be considered as the optimality con-
dition for a minimization of the same form as (16). Once
the constraints have been solved, the updated velocity is ob-
tained according to (17),

vn+1 =
1
∆t

[
3
2

xn+1−2xn +
1
2

xn−1
]
. (21)

To evaluate this more accurate scheme we need only store
the previous position and velocity, and perform some addi-
tional basic arithmetic during the prediction and velocity up-
date steps, while the rest of the PBD algorithm is unchanged.
The benefits of this simple modification are an order of mag-
nitude less numerical damping, and faster convergence for
the constraint projection. This can be understood by consid-
ering the algorithm as using previous time-step information
in order to generate predicted positions that stay closer to the
constraint manifold, making projection faster.
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5. Specific Constraints

In the following we will introduce different constraints that
can be used to simulate a variety of materials such as articu-
lated rigid bodies, soft bodies, cloth or even fluids with PBD.
For better readability we define xi, j = xi−x j.

5.1. Stretching

To give an example, let us consider the distance constraint
function C(x1,x2) = |x1,2|−d. The derivatives with respect
to the points are ∇x1C(x1,x2) = n and ∇x2C(x1,x2) = −n
with n =

x1,2
|x1,2| . The scaling factor λ is, thus, λ =

|x1,2|−d
1+1 and

the final corrections

∆x1 =−
w1

w1 +w2
(|x1,2|−d) n

∆x2 =+
w2

w1 +w2
(|x1,2|−d) n,

which are the formulas proposed in [Jak01] for the projec-
tion of distance constraints (see Figure 3). They can be de-
rived as a special case of the general constraint projection
method.

Figure 3: Projection of the constraint C(x1,x2) = |x1,2|−d.
The corrections ∆xi are weighted according to the inverse
masses wi = 1/mi.

5.2. Bending

In cloth simulation it is important to simulate bending in
addition to stretching resistance. To this end, for each pair
of adjacent triangles (x1,x3,x2) and (x1,x2,x4) a bilateral
bending constraint is added with constraint function

Cbend(x1,x2,x3,x4) =

acos
(

x2,1×x3,1

|x2,1×x3,1|
·

x2,1×x4,1

|x2,1×x4,1|

)
−ϕ0

and stiffness kbend . The scalar ϕ0 is the initial dihedral angle
between the two triangles and kbend is a global user parame-
ter defining the bending stiffness of the cloth (see Figure 4).
The advantage of this bending term over adding a distance
constraint between points x3 and x4 is that it is independent
of stretching. This is because the term is independent of edge
lengths. In Figure 9 we show how bending and stretching re-
sistance can be tuned independently.

Figure 4: For bending resistance, the constraint function
C(x1,x2,x3,x4) = arccos(n1 · n2)−ϕ0 is used. The actual
dihedral angle ϕ is measured as the angle between the nor-
mals of the two triangles.

5.3. Isometric Bending

A bending constraint for inextensible surfaces was intro-
duced in [BKCW14]. The definition of this constraint is
based on the discrete isometric bending model of Bergou
et al. [BWH∗06], which can be applied if a surface deforms
isometrically, i.e., if the edge lengths remain invariant. Since
many textiles cannot be stretched significantly, this method
is an appropriate choice in garment simulation.

For each interior edge ei a stencil s is defined which con-
sists of the two triangles adjacent to ei. The vector xs =
(x0,x1,x2,x3)

T contains the four vertices of the stencil and
the vector es = [x0x1,x1x2,x2x0,x0x3,x3x1] contains the
five stencil edges starting with the common edge (see Fig-
ure 5).

x0

x1

x2 x3e0

e2 e3

e1 e4

Figure 5: The isometric bending constraint is defined using
the the stencil of an interior edge e0.

Using the isometric bending model the local Hessian
bending energy of a stencil is determined by

Q =
3

A0 +A1
KT K,

where A0 and A1 are the areas of the adjacent triangles and
K is the vector

K = (c01 + c04, c02 + c03, −c01− c02, −c03− c04),

where c jk = cot∠e j,ek. The matrix Q ∈ R4×4 is constant
and can be precomputed with the initial configuration of the
stencil. The local Hessian bending energy can be used to de-
fine a bending constraint as

Cbend(xs) =
1
2 ∑

i, j
Qi, j xT

i x j.

Since the Hessian bending energy is constant, the gradients
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Figure 6: A heavy sphere is pushing down a piece of cloth
that is thrown over four statues. Realistic wrinkles evolve
due to the isometric bending constraint.

Figure 7: Constraint function C(q,x1,x2,x3) = (q− x1) ·
n−h makes sure that q stays above the triangle x1,x2,x3 by
the cloth thickness h.

are determined by

∂Cbend
∂xi

= ∑
j

Qi, jx j.

Figure 6 shows a cloth simulation with the introduced
bending constraint.

5.4. Collisions

5.4.1. Triangle Collisions

Self collisions within cloth can be handled by additional uni-
lateral constraints. For vertex q moving through a triangle
x1, x2, x3, the constraint function reads

C(q,x1,x2,x3) = (q−x1) ·
x2,1×x3,1

|x2,1×x3,1|
−h,

where h is the cloth thickness (see Figure 7). If the vertex
enters from below with respect to the triangle normal, the
constraint function has to be

C(q,x1,x2,x3) = (q−x1) ·
x3,1×x2,1

|x3,1×x2,1|
−h.

Figure 8: A sand castle before collapse (left). After 300
frames the position-based friction model maintains a steep
pile (middle), while the velocity level friction model has al-
most completely collapsed (right).

5.4.2. Environment Collisions

Collisions between particles and kinematic shapes, repre-
sented as e.g.: triangle or convex meshes, can be handled by
first detecting a set of candidate contact planes for each par-
ticle, then for each contact plane normal n, a non-penetration
constraint is introduced into the system of the form

C(x) = nT x−drest = 0, (22)

where drest is the distance the particle should maintain from
the geometry at rest.

5.4.3. Particle Collisions

Collisions between particles can be handled in a similar
manner to the environment by linearizing and introducing
a contact plane, however, it is often more robust to maintain
the non-linear nature of the constraint, in the form:

C(xi,x j) = |xi j|− (ri + r j)≥ 0, (23)

where ri and r j are the radii of the two particles. This con-
straint can be used to model granular-like materials as shown
in [MMCK14].

5.4.4. Friction

Müller et al. [MHHR07] handled friction by introducing
damping forces applied after the constraint solve. This ap-
proach is suitable for weak frictional effects, but cannot
model static friction, because the positional constraints can
freely violate the frictional forces. To model situations where
friction is strong relative to the constraints (see Figure 8),
Macklin et al. [MMCK14] include frictional effects as part
of the position level constraint solve.

Once interpenetration between particles has been re-
solved, a frictional position delta is calculated based on the
relative tangential displacement of the particles during this
time-step. The relative displacement is given by

∆x⊥ =
[
(x∗i −xi)− (x∗j −x j)

]
⊥ n, (24)

where x∗i and x∗j are the current candidate positions for the
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colliding particles, including any previously applied con-
straint deltas, xi and x j are the positions of the particles at the
start of the time-step, and n = x∗i j/|x∗i j| is the contact normal.
The frictional position delta for particle i is then computed
as

∆xi =
wi

wi +w j

{
∆x⊥, |∆x⊥|< µsd
∆x⊥ ·min( µkd

|∆x⊥| ,1), otherwise
(25)

where d is the penetration depth, and µk,µs are the coef-
ficients of kinetic and static friction, respectively. The first
case in Eq. (25) models static friction by removing all tan-
gential movement when the particle’s relative velocity is be-
low the traction threshold. The second case models kinetic
Coulomb friction, limiting the frictional position delta based
on the penetration depth of the particle. The position change
on particle j is given by

∆x j =−
w j

wi +w j
∆xi. (26)

Friction with kinematic shapes is handled using the same
method, with the shape treated as having infinite mass and
the contact plane defined by its geometry.

5.5. Volume Conservation

The conservation of volume plays an important role in the
dynamic simulation of deformable bodies [HJCW06, ISF07,
DBB09]. Since most soft biological tissues are incompress-
ible, this is an essential extension in the field of medical sim-
ulation. However, it is also used in the field of shape model-
ing [vFTS06] since volume conserving deformations appear
more realistic.

5.5.1. Tetrahedral Meshes

For tetrahedral meshes it is useful to have a constraint that
conserves the volume of single tetrahedron. Such a con-
straint has the form

C(x1,x2,x3,x4) =
1
6
(
x2,1×x3,1

)
·x4,1−V0,

where x1, x2, x3 and x4 are the four corners of the tetrahe-
dron and V0 is its rest volume. In a similar way, the area of a
triangle can be kept constant by introducing

C(x1,x2,x3) =
1
2

∣∣x2,1×x3,1
∣∣−A0.

5.5.2. Cloth Balloons

For closed triangle meshes, overpressure inside the mesh as
shown in Figure 10 can easily be modeled with an equality
constraint concerning all N vertices of the mesh:

C(x1, . . . ,xN) =

(
ntriangles

∑
i=1

(xt i
1
×xt i

2
) ·xt i

3

)
− kpressureV0.

Here t i
1, t

i
2 and t i

3 are the three indices of the vertices belong-
ing to triangle i. The sum computes the actual volume of the

closed mesh. It is compared against the original volume V0
times the overpressure factor kpressure. This constraint func-
tion yields the gradients

∇xiC = ∑
j:t j

1=i

(xt j
2
×xt j

3
)+ ∑

j:t j
2=i

(xt j
3
×xt j

1
)+ ∑

j:t j
3=i

(xt j
1
×xt j

2
).

These gradients have to be scaled by the scaling factor given
in Equation (8) and weighted by the masses according to
Equation (7) to get the final projection offsets ∆xi.

Figure 10: Simulation of overpressure inside a character.

5.5.3. Surface Meshes

In the following we introduce the position-based approach
for volume conservation of Diziol et al. [DBB11]. This
method considers only the surface of a simulated object and
does not require interior particles which reduces the compu-
tational effort. The volume V of a volumetric 3D shape V can
be determined by using the divergence theorem as proposed
in [Mir96] and [HJCW06]:∫∫∫

V

∇·xdx =
∫∫
∂V

xTndx = 3V, (27)

where ∂V is the boundary of the shape and n is the surface
normal. If the boundary is given as triangle mesh, the inte-
gral can be written as sum over all triangles i:

V (X) :=
1
3

∫∫
∂V

xTndx =
1
9 ∑

i
Ai(xi1 +xi2 +xi3)

Tni, (28)

where Ai is the area and i1, i2 and i3 are the vertex indices
of the i-th triangle. Now we can define a volume constraint
C := V (X)−V0 = 0 and compute a corresponding position
correction (see Section 4):

∆xV
i =− wiC(X)

∑ j w j‖∇x jC(X)‖2∇xiC(X). (29)

The weights wi are used to realize a local volume conserva-
tion (see below). The gradient can be approximated by

∇C(X)≈ 1
3
[nT

1 , . . . ,n
T
n ]

T,

where ni = ∑A jn j is the sum of the area weighted normals
of all triangles which contain particle i.

The weights in Equation (29) are chosen as follows:

wi = (1−α)wl
i +αwg

i , wl
i =

‖∆xi‖
∑ j ‖∆x j‖

, wg
i =

1
n
,
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Figure 9: The image shows a mesh that is simulated using stretching and bending constraints. The top row shows
(kstretching,kbending) = (1,1), ( 1

2 ,1) and ( 1
100 ,1). The bottom row shows (kstretching,kbending) = (1,0), ( 1

2 ,0) and ( 1
100 ,0).

where wl
i and wg

i are the weights for local and global vol-
ume conservation, respectively, and the user-defined value
α ∈ [0,1] is used to blend between both. The vector ∆xi con-
tains the total position change of the i-th. Hence, strongly de-
formed particles participate more in volume correction. The
weight of a colliding particle is set to zero in order to ensure
that a collision constraint is not violated during the position
correction for the volume conservation. Finally, the weights
are smoothed by a Laplacian filter.

Diziol et al. also propose another definition for the local
weights wl

i . To propagate volume changes through the ob-
ject, they first determine pairs of opposing particles in a pre-
processing step by intersecting the geometry with multiple
rays. For each particle i one particle k on the opposite side
of the volumetric body is stored. Then they choose a local
weight which does not only depend on the position change
∆xi of a particle but also on the distance changes ∆di of the
corresponding particle pairs:

wl
i =

βsi∆di +(1−β)‖∆xi‖
∑ j
(
βs j∆d j +(1−β)‖∆x j‖

) ,
where si is a user-defined stiffness parameter and β ∈ [0,1]
is used to define the influence of the distance changes.

Analogous to the positions correction we perform a veloc-
ity correction to fulfill the constraint ∂C/∂t = 0. This leads
to a divergence free velocity field.

In Figure 11 different configurations for the presented vol-
ume conservation method are compared with each other.

5.5.4. Robust Collision Handling with Air Meshes

As Müller et al. show in [MCKM15], per-element volume
constraints can also be used to robustly handle collisions. To

Figure 11: Four spheres with different volume conservation
squeezed by a plate. Left to right: global conservation, lo-
cal conservation with distance constraints, local conserva-
tion without distance constraints and no volume conserva-
tion. The maximum volume loss was 0.6%, 0.7%, 0.7% and
40% respectively.

this end, they tessellate the air between objects. Collisions
can then be prevented by making sure that the air elements
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Figure 12: With air mesh based collision handling, both the characters themselves as well as their spacial order is recovered
from a completely flat state.

Figure 13: Smooth recovery from a severely entangled cloth
state using an air mesh for collision handling.

do not invert with the unilateral constraints

Cair element(x1,x2,x3,x4) =
(
x2,1×x3,1

)
·x4,1 ≥ 0 and

Cair element(x1,x2,x3) =
∣∣x2,1×x3,1

∣∣≥ 0

in 3D and 2D, respectively. When the volume of an air ele-
ment is positive, the element is passive, does not disturb the
simulation and causes no computational cost. The main ad-
vantage of air meshes over existing collision handling meth-
ods is that air meshes have a memory. Even if a scene is com-
pletely flattened as shown in Figure 12, the objects pop up in
the correct order when released. This is particularly useful in
the simulation on complex clothing as shown in Figure 13.
Air meshes not only detect entangled states easily, they also
allow the smooth recovery from arbitrary entangled states
which is a hard problem as the literature on this topic shows.

Müller et al. note that when large relative translations and
rotations between objects occur, the air elements can lock
and report collisions in a collision free state. The authors
solve this problem by running a mesh optimization step.
They perform edge flips in 2D and generalized edge flips in
3D whenever they improve the mesh quality. This step pre-
vents locking - not provably but in all practical examples. In
2D, the optimization step is fast and allows the simulation
of arbitrary scenarios. In 3D, mesh optimization is signifi-

cantly more expensive. Fortunately, in the case of complex
clothing, locking does not cause disturbing visual artifacts.

5.6. Long Range Attachments

Recently, Kim et al. [KCM12] found a surprisingly sim-
ple and robust technique they call Long Range Attachments
(LRA) to prevent cloth from getting stretched globally with
low iteration counts. Their method exploits the fact that
stretching artifacts almost always appear when cloth is at-
tached. In this case, instead of only applying attachment con-
straints to the subset of the vertices near the region where
the cloth is attached and relying on error propagation of the
solver for all other vertices, they apply unilateral attachment
constraints to all the vertices by attaching each vertex to one
or more attachment point directly. The rest lengths of these
long range attachments can either be set to the Euclidean
distance in the rest state or via measuring geodesic lengths
along the cloth. Figure 14 demonstrates the method on a sin-
gle rope attached at one end. The method allows the simula-
tion of a piece of cloth with 90K vertices at interactive rates
as shown in Figure 15.

5.7. Strands

A similar approach was recently proposed by Müller et al.
[MKC12] to guarantee zero stretch in a single pass for the
case of attached ropes. This approach allows the simulation
of thousands of hair strands in real time (see Figure 16). Fig-
ure 17 visualizes the basic idea. Particle x1 is attached. To
satisfy the first distance constraint, particle x2 is moved to-
wards x1 such that their mutual distance is l0. Particle x3
is then moved towards the new position of x2 and similarly
along the chain until the last particle is reached. After this
single pass, all the distance constraints are satisfied. This
method is called Follow The Leader (FTL). While LRA guar-
antees zero stretch of all the particles w.r.t. the attachment
points, the constraint between consecutive particles can still
remain overstretched. On the other hand, in contrast to LRA
which is momentum conserving, FTL introduces unphysical
behavior. Not projecting distance constraints symmetrically
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Figure 14: The Long Range Attachments (LRA) method used
to simulate an inextensible rope attached at one end. Each
particle is constrained or remain inside a sphere centered
at the attachment point (red) whose radius is the initial dis-
tance from the particle to the attachment. For each config-
uration, target positions are shown in green when particles
need to be projected. Particles inside the constraint spheres
are allowed to move freely.

Figure 15: Simulation of a piece of cloth with 90K vertices
at 20fps on a GPU using LRA.

means that a system is simulated for which each particle has
infinitely more mass than its successor. To compensate for
this behavior, the authors replace the PBD velocity update
vi← (pi−xi)/∆t in Algorithm 1 by

vi←
pi−xi

∆t
+ sdamping

−di+1
∆t

,

where di+1 is the position correction applied to particle i+1
and sdamping ∈ [0,1] a scaling factor do influence damping.
While this modification of DFTL (dynamic FTL) hides the
unphysical behavior of FTL, it introduces a certain amount
of damping which is acceptable for the simulation of hair
and fur as the author’s results show.

l0

l0

l0

1x

2x

3x
4x

Figure 17: Follow The Leader (FTL) projection. Starting
from the attachment down, each particle is moved directly
towards its predecessor such that their mutual distance con-
straint is satisfied.

5.8. Continuous Materials

Recently, position-based methods based on a continuum-
based formulation were presented. In the following we in-
troduce two methods which use this formulation. The first
method defines a constraint for the strain energy of a de-
formable solid [BKCW14] while the second one directly
constrains the strain tensor [MCKM14].

5.8.1. Strain Energy Constraint

In continuum mechanics the deformation of a body is de-
fined by the function

φ(X) = X+u = x,

which maps a point X in material space to its corresponding
deformed location x in world space using a continuous dis-
placement field u. The Jacobian of this function F =

∂φ(X)
∂X ,

also known as deformation gradient, is used to determine the
non-linear Green strain tensor

ε =
1
2

(
FT F− I

)
, (30)

where I denotes the identity matrix. Hooke’s generalized law
gives us the relation between stress and strain

S = Cε,

where C is the elasticity tensor which defines the elastic be-
havior of the material. For isotropic materials this relation-
ship is called Saint-Venant Kirchhoff model, where C is de-
fined by two independent variables, often expressed by the
engineering constants Young’s modulus k and Poisson ratio
ν. The energy of a deformed solid is defined by integrating
the scalar strain energy density field

Ψs =
1
2

ε : S =
1
2

tr(εT S)

over the entire body Ω:

Es =
∫

Ω

ΨsdX, (31)
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Figure 16: Dynamic FTL allows the simulation of every hair strand in real time. From left to right: 47k hair strands simulated at
25 fps including rendering and hair-hair repulsion. Long hair composed of 1.9m particles at 8 fps. Curly hair using visualization
post-processing.

where tr(·) is the trace of a matrix.

In order to simulate deformable solids with the position-
based approach an energy constraint C(x) = Es(x) = 0 is
defined. A discretization of the solid is required to compute
the energy. We use tetrahedral meshes for volumetric bodies
and triangle meshes for surface models in combination with
linear Lagrangian shape functions to discretize the body. For
linear shape functions the deformation gradient of a tetrahe-
dral element is determined by

Ftet = DsD−1
m ,

where Ds is the deformed shape matrix and Dm the constant
reference shape matrix defined by the vertices of the tetrahe-
dral element

Ds =
(
x1−x4 x2−x4 x3−x4

)
Dm =

(
X1−X4 X2−X4 X3−X4

)
.

The deformation gradient Ftri ∈ R2×2 for a triangular ele-
ment is defined analogously in the two-dimensional space of
the triangle plane.

The constraint of a tetrahedral element can now be defined
as

C(x) = Es(x) =V Ψs(Ftet),

where V is the undeformed volume of the element. Addi-
tionally, the position-based solver requires the gradients of
the constraint∇Cxi = ∂Es/∂xi which are determined by[

∂Es

∂x1

∂Es

∂x2

∂Es

∂x3

]
=V P(Ftet)D−T

m ,
∂Es

∂x4
=−

3

∑
i=1

∂Es

∂xi
,

where P(F) = FCε is the first Piola-Kirchhoff stress tensor.

Note that common constitutive models are not designed
to handle degenerate or inverted tetrahedral elements. How-
ever, this problem can be solved by using the inversion han-
dling of Irving et al. [ITF04].

The constraint of a triangular element is defined analo-
gously

C(x) = Es(x) = AΨ(Ftri),

where A is the area of the undeformed triangle. The con-
straint gradients of the three vertices are determined by[

∂Es

∂x1

∂Es

∂x2

]
= AP(Ftri)D−T

m ,
∂Es

∂x3
=−

2

∑
i=1

∂Es

∂xi
.

The proposed energy constraint formulation [BKCW14]
has the advantage that it can handle complex physical ef-
fects like lateral contraction, anisotropy or elastoplasticity
(see Figure 18, right). Moreover, it is not limited to the in-
troduced Saint-Venant Kirchhoff model, also other material
models like e.g. the Neo-Hookean model are supported. Fi-
nally, Bender et al. [BKCW14] demonstrated that this ap-
proach is very efficient and even faster than shape matching.
Therefore, the method allows to simulate complex scenes
with a high number of elements (see Figure 18, left).

5.8.2. Strain Based Dynamics

In [MCKM14] the authors propose another position-based
method based on continuum mechanics which allows the
control of stretch and shear deformations independent of the
tessellation of the mesh. The basic idea is to force the com-
ponents of Green’s strain tensor ε defined in Equation (30)
to zero by introducing one constraint per independent com-
ponent

Cstretch(x) = Sii−1 (32)

Cshear(x) = Si j i < j, (33)

where S = FT F and x defines the positions of the four par-
ticles adjacent to a tetrahedral element or the three particles
adjacent to a triangle. In the soft body case there are three
stretch and three shear constraints where as there are two
stretch and one shear constraint in the cloth case. The paper
above gives the explicit update formulas derived from these
constraints.

The stretch constraints formulated as in Equation (32) are
quadratic along the gradient and can therefore not be solved
in a single step. This problem can be fixed by defining the
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Figure 18: Position-based simulation using the strain energy constraint. Left: 100 Stanford Armadillos with 371700 tetrahedral
elements falling through a funnel. Right: Elastoplastic Stanford Dragon is deformed persistently due to the weight of a heavy
sphere.

Figure 20: Varying soft body stiffness parameters. Figures (a) - (d) show the recovery of a torus from a heavily entangled state
by increasing the volume stiffness. For (e) we reduced all but the volume conservation stiffness values. As a result, the torus
heavily deforms but its volume is conserved. Figure (f) shows the result of only softening the volume stiffness and the stiffness
along the main axis of the torus. The result of high shear and low stretch resistance is shown in Figure (g) where angle distortion
is small while the shape is stretched. Figure (h) shows the opposite configuration. Here, stretching is small while the torus bends
heavily.

stretch constraints as

Cstretch(x) =
√

Sii−1,

which is linear along the constraint gradient.

The shear constraint function Si j can also be written as
Si j = fi · f j, where fi and f j are the ith and jth column vec-
tors of F. However, this function not only penalizes the an-
gle between the axes of the deformed coordinate system, i.e.
the dot product of the column vectors, but also the principal
stretches, i.e. the magnitudes of the column vectors. The fol-
lowing modification of Equation (33) decouples strain from
stretch

Cshear(x) =
fi · f j

|fi||f j|
.

Figure 19 shows Strain Based Dynamics on cloth in ac-
tion. Even though the tessellation of the mesh is not aligned
with the principal directions, stretch and shear w.r.t. to those

directions can be controlled. In Figure 20, the deformation of
a torus is controlled by varying the stiffnesses of the volume,
stretch and shear constraints.

5.9. Rigid Body Dynamics

The position-based simulation method is not limited to
particle-based models. It can also be used to simulate ar-
ticulated rigid body systems with joint and contact con-
straints [DCB14].

A particle has three translational degrees of freedom
(DOF). In addition a rigid body has three rotational ones.
We parameterize the rotation by a vector ϑ which repre-
sents a rotation of |ϑ| about the axis ϑ/ |ϑ| in order to define
constraint functions C(x,ϑ) for positions and orientations.
The vector ϑ is also known as the exponential map [Gra98].
Analogous to Equation (5) each constraint for rigid bodies is
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Figure 19: Varying the cloth stiffness parameters of dif-
ferent strain components. From top to bottom the resis-
tance to x-stretch, y-stretch and shear are: (high,high,high),
(hight,high,low) and (low,high,high). Our method allows the
control of these modes independently on triangle meshes
with highly non-regular tessellations as the one used here.

approximated by a linearization of the constraint equation:

C(x+∆x,ϑ+∆ϑ)≈ C(x,ϑ)+J(x,ϑ)
(

∆xT ,∆ϑ
T
)T

.

However, instead of formulating constraints with respect
to x and ϑ it is easier and more intuitive to use the con-
cept of connectors which was introduced by Witkin et
al. [WGW90]. A connector can be a point or vector in lo-
cal coordinates of a rigid body which is used to define a
constraint. The definition of connectors allows to formulate
generic constraints without knowledge about the body it-
self. For example a ball joint which removes all translational
DOFs between two linked bodies is defined by the constraint

C(P1,P2) = P1−P2 = 0,

where P1 and P2 are connector points in the first and second
body, respectively.

The world space position of a connector point Pi of a body
j with position x j and orientation ϑ j is defined by

Pi(x j,ϑ j) = x j +R(ϑ j)ri, (34)

where ri denotes the position of the connector in the local

coordinate system of the body. The Jacobian of a constraint
function C(P) which depends on a set of connector points P
is determined by

J =
∂C(P)

∂P︸ ︷︷ ︸
constraint

specific part

·
(

∂P
∂x

∂P
∂ϑ

)T

︸ ︷︷ ︸
connector

specific part

,

where the first term is constraint specific and can be com-
puted without knowledge of the body while the second term
only depends on the connector type.

For our ball joint example the constraint specific
part of the Jacobian is determined by ∂C(P)/∂P1 =
−∂C(P)/∂P2 = I, where I is the identity matrix. The
connector specific part for a point connector is obtained by
deriving Equation (34) with respect to x and ϑ. The first term
is determined by ∂P/∂x = I while the second term ∂P/∂ϑ

requires the computation of ∂R(ϑ)/∂ϑ which is explained
in detail by Grassia [Gra98].

In the following we describe how the position and orienta-
tion corrections are computed for rigid bodies. Analogous to
Equations (5)-(8) first a Lagrange multiplier λ is determined
by solving

JM−1JT
λ =−C(x,ϑ). (35)

Then the Lagrange multiplier is used to compute the position
and orientation change of the linked rigid bodies[

∆xT ,∆ϑ
T
]
= M−1JT

λ. (36)

The position-based solver for rigid bodies works analo-
gously to the one for particles. Each constraint is linearized
individually and position and orientation corrections are de-
termined in a Gauss-Seidel fashion.

Collisions can be simulated by defining inequality con-
straints for colliding rigid bodies (see Figure 21, right).
These constraints can be handled similar to unilateral par-
ticle constraints [DCB14]. Moreover, servo motors can be
simulated by combining hinge or slider joints with additional
constraints that define the goal positions and orientations for
the linked bodies (see Figure 21, left).

5.10. Fluids

It is also possible to simulate fluids in the PBD framework
even though it has been used almost exclusively for the sim-
ulation of deformable objects. We mention fluids simply as
an item in the list of possible constraints because all that is
needed to simulate liquids and gases is a specialized con-
straint.

A straightforward approach would be to model the fluid as
a system of particles constrained to maintain a minimum dis-
tance from each other, however this leads to granular-like be-
havior and will typically fail to reach hydrostatic equilibrium
when coming to rest. An alternative method is presented
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Figure 21: Left: Millipede with walking over several obstacles. The simulation model consists of 261 rigid bodies, 340 con-
straints and 240 motors. Right: 2000 rigid bodies collide with each other.

by Macklin and Müller [MM13] where fluid incompress-
ibility is enforced using density constraints. Borrowing the
concept of a density estimator from Smoothed Particle Hy-
drodynamics (SPH) [Mon94,Mon92], a density constraint is
constructed for each particle i in the system as follows

Ci(x1, ...,xn) =
ρi

ρ0
−1, (37)

where ρ0 is the fluid rest density and ρi is the density at
a particle, defined as the sum of smooth kernels [MCG03]
centered at the particle’s neighbor positions

ρi = ∑
j

m jW (xi−x j,h).

Note that here each particle’s mass is assumed to be one,
and the rest density adjusted accordingly. In order to solve
these density constraints using position-based dynamics, the
derivative of the constraint function (37) with respect to each
particle’s position is required. This can be calculated using
the gradient of SPH kernels

∇xkCi =
1
ρ0

∑
j
∇xkW (xi−x j,h) if k = i

−∇xkW (xi−x j,h) if k = j.

Then, by taking advantage of symmetry in the SPH smooth-
ing kernel W , the corrective change in position due to the
particle’s own density constraint, and the density constraints
of its neighbors is given by

∆xi =
1
ρ0

∑
j

(
λi +λ j

)
∇W (xi−x j,h),

where λ is the per-constraint scaling factor (see Equa-
tion (6)). Figure 22 shows a real-time water simulation using
this method.

5.11. Shape Matching

The geometrically motivated concept of shape matching
to simulate deformable objects was introduced by Müller

Figure 22: A wave pool scene consisting of 128k fluid parti-
cles simulated in 10ms/frame on the GPU. Incompressibility
is enforced using density constraints solved using position-
based dynamics.

et al. [MHTG05]. Shape matching is a meshless approach
which is able to simulate visually plausible elastic and plas-
tic deformations (see Figure 23). This approach is easy to
implement, very efficient and unconditionally stable.

Shape matching can be seen as a form of constraint pro-
jection which can directly be integrated in the position-based
dynamics algorithm. By performing shape matching in line
(9) of Algorithm 1 it can be easily combined with other
position-based constraints.

The basic idea of simulating elastic behavior with shape
matching is shown in Figure 24. For the simulation the ini-
tial configuration of the deformable object must be stored.
Since no connectivity information is needed, this configura-
tion is defined by the initial positions x̄i. In each time step the
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Figure 23: Robust and volume-conserving deformations using shape matching. Armadillos (32442 particles total), 20 ducks
and 20 tori (21280 particles total) and 20 balls (7640 particles total) were simulated in real-time on a GPU.
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x3

x0 x1

x2 x3
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g3
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Figure 24: The initial shape with the vertex positions x̄i is
matched to the deformed configuration xi to obtain goal po-
sitions gi. The deformed shape is pulled towards these goal
positions to simulate elastic behavior.

positions and velocities of the particles are updated without
considering any internal constraints between the particles.
Only external forces and collision response are taken into
account. Instead of using internal constraints, goal positions
are determined by matching the initial shape with the de-
formed configuration. Then, each particle is pulled towards
its goal position.

In the following we first describe how the goal positions
are determined. Then we show how large deformations can
be simulated using region-based shape matching and intro-
duce fast summation techniques for this approach. In the end
the concept of oriented particles and different extensions of
the shape matching method are presented.

5.11.1. Goal Positions

In order to obtain goal positions for the deformed shape the
best rigid transformation is determined which matches the
set of initial positions x̄ and the set of deformed positions
x. The corresponding rotation matrix R and the translational
vectors c and c̄ are determined by minimizing

∑
i

wi (R(x̄i− c̄)+ c−xi)
2 ,

where wi are the weights of the individual points. The opti-
mal translation vectors are given by the center of mass of the
initial shape and the center of mass of the deformed shape:

c̄ = 1
M ∑

i
mix̄i, c = 1

M ∑
i

mixi, M = ∑
i

mi. (38)

If we minimize the term ∑i(Ar̄i − ri)
2 with ri = xi − c

and r̄i = x̄i− c̄, we get the optimal linear transformation A
of the initial and the deformed shape. This transformation is
determined by:

A =

(
∑

i
mirir̄T

i

)(
∑

i
mir̄ir̄T

i

)−1

= ArAs. (39)

In our case we are only interested in the rotational part of
this transformation. Since As is symmetric, it contains no
rotation. Therefore, we only need to extract the rotational
part of Ar to get the optimal rotation R for shape matching.
This can be done by a polar decomposition Ar = RS of the
transformation matrix where S is a symmetric matrix.

Finally, the goal positions are determined by

gi = T
[

x̄i
1

]
,

where T =
[
R (c−Rc̄)

]
. These goal positions are used to

compute position corrections:

∆xi = α(gi(t)−xi(t)) ,

where α ∈ [0,1] is a user-defined stiffness parameter which
defines how far the particles are pulled to their goal posi-
tions.

5.11.2. Region-Based Shape Matching

The shape matching algorithm described above allows only
for small deviations from the initial shape. For the sim-
ulation of large deformations the concept of region-based
shape matching became popular, see e.g. [MHTG05, RJ07,
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Figure 25: The stiffness of the model depends on the re-
gion size. Smaller regions (top) allow larger deformations
than larger regions (bottom). The hexagons in the left im-
ages represent the overlapping regions of the model. The
right images show the goal positions after one particle is
moved away.

DBB11]. The idea is to perform shape matching on several
overlapping regions of the original shape. In each region we
can have a small deviation from the corresponding part of
the initial shape which results in a large deformation over all
regions.

Diziol et al. [DBB11] propose to define a region for each
particle of the model where the i-th region contains all parti-
cles in the ω-ring of the i-th particle in the original mesh of
the model. Shape matching is a meshless method but Diziol
et al. require a mesh to define the shape matching regions.
Rivers and James [RJ07] use a regular lattice instead to de-
fine their regions. No matter which kind of regions are used,
the stiffness of the model depends on the size of the overlap-
ping regions (see Figure 25). Enlarging the regions results in
a more global shape matching and therefore the stiffness of
the simulated model is increased.

In region-based shape matching a particle is part of multi-
ple regions. In the following we denote the set of regions
to which a particle i belongs by <i. Since particles can
belong to more than one region, Rivers and James [RJ07]
proposed to use modified particle masses m̃i = mi/|<i| for
shape matching. This ensures that a particle which is part of
many regions has not more influence than others. The opti-
mal translation vectors for a region i are determined by

c̄i =
1

M̃i
∑

j∈<i

m̃ j x̄ j, ci =
1

M̃i
∑

j∈<i

m̃ jx j, (40)

where M̃i = ∑ j∈<i
m̃ j is the effective region mass which can

be precomputed. The optimal rotation matrix R is computed
by extracting the rotational part of the following matrix:

Ar,i = ∑
j∈<i

m̃ jx jx̄T
j − M̃icic̄T

i . (41)

In this form the first term depends on the particles j of the
region while the second term depends on the region i. This

isolation of the dependencies is required for fast summation
techniques (see below).

After performing shape matching for all regions, we get
multiple goal positions for each particle. The final goal po-
sition for a particle is determined by blending the goal posi-
tions of the corresponding regions:

gi =
1
|<i| ∑

j∈<i

T j

[
x̄i
1

]
.

5.11.3. Fast Summation Techniques

In the case of region-based shape matching the stiffness in-
creases with growing region size ω. However, at the same
time the computation of the optimal translation c and the
transformation matrix Ar becomes a bottleneck since large
sums have to be computed for each region. For a mesh with
the dimension d and n regions, O(ωdn) operations are re-
quired with the naive approach.

5.11.3.1. Regular Lattices Rivers and James demon-
strated in [RJ07] how the number of operations for com-
puting the sums can be reduced to O(n) for regular lattices
(d = 3). Their optimization is closely related to the concept
of summed-area tables [Cro84]. In their approach they com-
pute the summation for a set of particles just once and reuse
it for all regions that contain this set. This reduces redundant
computations significantly for a system with large overlap-
ping regions. The fast summation of Rivers and James is
based on the usage of cubical regions. These cubical regions
can be subdivided in two-dimensional plate regions which
can again be subdivided in one-dimensional bar regions.
The region summation is performed in three passes. In the
first pass the sum for each bar is determined. The results
are used to compute the sums for the plates which are again
used to obtain the final region sum. Each pass requires O(ω)
operations. However, the region sum can even be deter-
mined in constant time if we take into account that the sum
of two neighboring bars, plates or cubes only differs by one
element. Lattice shape matching can be performed in linear
time if the sums in Equations (40) and (41) are evaluated
using the fast summation technique described above.

The FastLSM method of Rivers and James has several
limitations. To handle regions where the lattice is not reg-
ular, e.g. on the boundary, several sums are defined in a pre-
processing step for the corresponding node. In the case of
fracturing the definition of these sums must be performed
at run-time which is expensive to compute. Small features
need a fine sampling to obtain realistic results. Since a regu-
lar lattice is used, a fine sampling yields an explosion of the
computational costs. FastLSM does not support a varying
region size to simulate inhomogeneous material.

5.11.3.2. Adaptive Lattices Steinemann et al. [SOG08]
introduce an adaptive shape matching method which is based
on lattice shape matching to overcome these limitations. A
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fast summation is realized by an octree-based sampling and
an interval-based definition of the shape matching regions.
The hierarchical simulation model is created by starting with
a coarse cubic lattice and then performing an octree subdi-
vision. The subdivision process can be controlled by a user-
defined criterion. At the end of the process a simulation node
is placed at the center of each leaf cell and a virtual node at
the center of each non-leaf cell. A virtual node stores the
sum of all its descendant simulation nodes.

The fast summation for the hierarchical model is per-
formed by an interval-based method which requires O(1)
operations per region. For each simulation node ni a shape
matching region is defined by a region width ωi. To perform
a fast summation, all summation nodes of the region i are de-
termined in a pre-processing step. First, for each node n j of
the octree the interval of minimum and maximum distances
of all descendant leaves of n j to ni are determined. Then,
during a top-down traversal each node n j where the maxi-
mum distance is smaller than the region width is added to
region i. If the descendant leaf nodes are contained only par-
tially in region i, the current node must be refined. Only in
this case the traversal continues.

The top-down traversal assigns O(1) summation nodes to
each region. A fast summation can now be performed in two
steps. In the first step the sums of all nodes in the hierarchy
are determined. This is done by first computing the sums
for the simulation nodes which are the leaf nodes of the hi-
erarchy, and then updating the sums of the virtual nodes in
a bottom-up fashion. The second step sums up the values
of the summation nodes for each region. For a roughly bal-
anced octree the computation of the sums takes O(n) time
where n is the number of simulation nodes. Hence, the adap-
tive shape matching method requires linear time when using
the described fast summation technique to evaluate Equa-
tions (40) and (41).

5.11.3.3. Triangle Meshes In contrast to Rivers and
James, Diziol et al. [DBB11] only use the surface mesh of
a volumetric model to simulate its deformation. Therefore,
no interior elements are required for the simulation which
reduces the computational costs. Diziol et al. introduce a fast
summation technique for arbitrary triangle meshes (d = 2)
to compute the large sums of the region-based approach
efficiently. This technique only requires O(ωn) operations
instead of O(ω2n) and can be performed very efficiently in
parallel.

The fast summation technique of Diziol et al. is based on
a subdivision of all particles of the mesh in disjoint paths. A
path i is a set of vertices xi1 , . . . ,xin which are connected by
edges. The paths are determined in a precomputation step.
The goal of the path construction algorithm is that each re-
gion is intersected by a minimum number of paths. To de-
termine the optimal path layout is computationally expen-
sive. Therefore, a heuristic is used to find a good path layout.
Starting with a single vertex, adjacent vertices are added to a

P0

P1

P2

P3

P4

−
x0+x1+x2

−
x1+x2+x3

Path P0 sum
in regions

x0+x1x0 x0+x1+x2+x3x0+x1+x20Prefix sum P0

x0 x1 x2 x3

Figure 26: Fast summation technique for arbitrary triangle
meshes [DBB11]. First the prefix sums for the disjoint paths
are determined. Then the region sum is computed by adding
the difference of the intersection interval for each path.

path until the path length exceeds a maximum size or cannot
be extended any further. The heuristic tries to avoid gaps by
choosing vertices which have neighbors that are already part
of a path. To obtain paths which are as parallel as possible
we add the vertex which is closest to a plane passing through
the starting vertex of the current path, e.g. the xy-plane.

The fast summation is split in two phases (see Figure 26).
In the first phase the prefix sum for each path i is computed
with j ∈ [1,ni]:

cp
i j
=

j

∑
k=1

m̃ik xik , Ap
i j
=

j

∑
k=1

m̃ik xik x̄T
ik .

Since the prefix sums for all paths are independent of each
other, they can be computed in parallel. The sums for a re-
gion r are computed by first setting cr := 0 and Ar := 0.
Then for each path i which intersects the region in the inter-
val [ik, . . . , il ], the following terms are added:

cr := cr + cp
il − cp

ik−1
, Ar := Ar +Ap

il −Ap
ik−1

. (42)

The final translational vector and the affine matrix are de-
termined by cr := (1/M̃r)cr and Ar := Ar− M̃rcr c̄T

r respec-
tively.

5.11.4. Oriented Particles

For a small number of particles or particles that are close
to co-linear or co-planar (as in Figure 27), the matrix Ar in
Equation (39) becomes ill-conditioned and the polar decom-
position needed to obtain the optimal rotation tends to be
numerically unstable.

To solve this problem, Müller et al. [MC11] proposed to
use oriented particles. By adding orientation information to
particles, the polar decomposition becomes stable even for
single particles. The moment matrix of a single spherical
particle with orientation R ∈ R3×3 and finite radius r at the
origin is well defined and can be computed via an integral
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over its volume as

Asphere =
∫

Vr

ρ(Rx)xT dV = ρR
∫

Vr

xxT dV

=
4

15
πr5

ρR =
4

15
πr5 m

Vr
R

=
1
5

mr2R,

where Vr is the volume of a sphere of radius r. Since R is an
orthonormal matrix, Ai always has full rank and an optimal
condition number of 1. For an ellipsoid with radii a,b and c
we get

Aellipsoid =
1
5

m

 a2 0 0
0 b2 0
0 0 c2

R.

However, the moment matrices of the individual particles
cannot simply be added because each one is computed rel-
ative to the origin. We need the moment matrix of particle i
relative to the position xi− c.

Fortunately, this problem can be fixed easily. As we saw
above, the equation for computing the moment matrix

A = ∑
i

mi(xi− c)(x̄i− c̄)T (43)

can be re-written as

A = ∑
i

mixix̄T
i −Mcc̄T ,

where c̄ and c are the centers of mass of the initial and the
deformed shape, respectively (see Equation (38)).

Therefore, shifting the evaluation from the origin to the
position xi− c yields

Aglobal
i = Ai +mixix̄T

i −micc̄T .

Equation (43) now generalizes to

A = ∑
i

(
Ai +mixix̄T

i

)
−Mcc̄T

= ∑
i

(
Ai +mi(xi− c)(x̄i− c̄)T

)
.

As you can see, the last form looks like Equation (43) but
with all the individual particle moment matrices added in
the sum.

In addition to position x and velocity v, oriented particles
carry a rotation which can be defined as an orthonormal ma-
trix R as above or a unit quaternion q. They also carry the
angular velocity ω. In the prediction step of position-based
dynamics, these two quantities have to be integrated as well:

xp← x+v∆t

qp←
[

ω

|ω| sin(
|ω|∆t

2
),cos(

|ω|∆t
2

)

]
q.

For stability reasons, qp should directly be set to q if |ω|< ε.

After the prediction step, the solver iterates multiple times
through all shape match constraints in a Gauss-Seidel type
fashion as before. To simulate objects represented by a mesh
of linked particles, Müller and Chentanez [MC11] define one
shape matching group per particle. A group contains the cor-
responding particle and all the particles connected to it via a
single edge. The positions of the particles in a group are up-
dated as in regular shape matching by pulling them towards
the goal positions while the orientation of the center particle
only is replaced by the optimal rotation of shape matching.

After the solver has modified the predicted state (xp,qp),
the current state is updated using the integration scheme

v← (xp−x)/∆t

x← xp

ω← axis(qpq−1) · angle(qpq−1)/∆t

q← qp,

where axis() returns the normalized direction of a quaternion
and angle() its angle. Again, for stability reasons, ω should
be set to zero directly if |angle(qpq−1)| < ε. There are two
rotations, r = qpq−1 and −r transforming q into qp. It is
important to always choose the shorter one, i.e. if rw < 0 use
−r, where rw is the real part of the quaternion. As in tradi-
tional PBD for translation, changing the rotational quantity
qp in the solver also affects its time derivate ω through the
integration step creating the required second order effect.

The orientation information of particles cannot only be
used to stabilize shape matching but also to move a visual
mesh along with the physical mesh. With position and ori-
entation, each particle defines a full rigid transformation at
every point in time. This allows the use of traditional linear
blend skinning with particles replacing skeletal bones.

An additional advantage of having orientation informa-
tion is that ellipsoids can be used as collision volumes for
particles. This allows a more accurate approximation of the
object geometry than with the same number of spherical
primitives (see Figure 28).

5.11.5. Plastic Deformation

Shape matching can be extended in order to simulate plastic
deformations [MHTG05]. If we perform a polar decompo-
sition Ar = RS for the linear transformation matrix Ar (see
Equation (39)), we get a rotational part R and a symmet-
ric part S = RT Ar. The matrix S represents a deformation
in the unrotated reference frame. Hence, for each region we
can store the plastic deformation state in a matrix Sp which
is initialized with the identity matrix I. As proposed by Gok-
tekin et al. [GBO04], we use two parameters cyield and ccreep
to control the plastic behavior of the material. If the condi-
tion ‖S− I‖2 > cyield is fulfilled for the deformation matrix
S of the current time step, the plastic deformation state is
updated as follows:

Sp← [I+∆tccreep(S− I)] Sp.
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Figure 27: This underwater scene demonstrates the ability
of the oriented particle approach to handle sparse meshes
such as the one-dimensional branches of the plants or the
fins of the lion fish.

Figure 28: The rotation information of oriented particles
cannot only be used to stabilize shape matching, it also al-
lows the use of ellipsoids as collision primitives. The figure
shows how the same mesh is approximated much more accu-
rately with ellipsoids (right) than with the same number of
spheres (left).

After this update, Sp is divided by 3
√

det(Sp) in order to
conserve the volume. The plastic state Sp is integrated in the
shape matching process by deforming the reference shape in
Equation (39). This is done by replacing the definition of r̄i
(see Section 5.11.1) with

r̄i = Sp (x̄i− c̄) .

Note that the plasticity can be bound by the condition
‖Sp− I‖2 > cmax where cmax is the threshold for the max-
imum plastic deformation. If this condition is fulfilled, we
use Sp← I+ cmax(Sp− I)/‖Sp− I‖2.

Figure 29: A stiff cloth model with 32467 triangles is sim-
ulated using multi-resolution shape matching with five hier-
archy levels.

5.11.6. Cloth Simulation

Stumpp et al. [SSBT08] present a region-based shape match-
ing approach for the simulation of cloth. In their work they
define a region for each triangle in the model. But instead
of using the triangles directly as regions for shape match-
ing, overlapping regions are defined. The region of a trian-
gle is defined by the outer corners of its adjacent triangles.
These overlapping regions enable the bending resistance of
the cloth model. Since the model of Stumpp et al. uses re-
gions with only three vertices, the stiffness of high resolu-
tion models is too low for realistic results. Therefore, they
introduce so-called fiber clusters to increase the stretching
stiffness. These one-dimensional regions are determined in
a pre-processing step by subdividing the mesh into multiple
edge strips. During the simulation each strip is traversed in
both directions to obtain additional goal positions. The re-
sulting displacements are translated so that they sum up to 0
to preserve the momentum of the model. The final goal po-
sitions are blended with the goal positions of the triangular
regions.

The usage of fiber clusters increases the stiffness of the
cloth model. However, this effect is limited and for high-
resolution models the stiffness is still too low to achieve
a realistic cloth behavior. Bender et al. [BWD13] solve
this problem by the introduction of multi-resolution shape
matching (see Figure 29) which is based on the idea of multi-
grid solvers [Hac85]. A shape matching region is defined for
each edge and each triangle in a cloth model. To increase the
influence of these simple regions and therefore the stretching
and shearing stiffness of the model, shape matching is per-
formed on different resolution levels. Multi-resolution shape
matching enables the robust simulation of stiff cloth models
in linear time.

In the following we first describe 2D shape matching for
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Figure 30: 2D shape matching. The initial configuration of
a triangle in 2D (left) is matched to the deformed configu-
ration (middle) by projecting the deformed triangle into 2D
and computing the optimal translation and rotation to get
goal positions (right).

triangular regions and then introduce multi-resolution shape
matching.

For a cloth simulation with triangular regions, shape
matching is performed per triangle in the two-dimensional
space of the triangle plane. First the optimal translation
vectors of the regions are computed by evaluating Equa-
tion (40). Then, for each triangle with the vertices x1, x2
and x3 and the normal n a projection matrix is determined:

P =

(
aT

x
aT

y

)
∈ R2×3

with

ax =
x2−x1
‖x2−x1‖

, ay =
n×ax

‖n×ax‖
.

The matrix P is used to project the vectors r and r̄ in Equa-
tion (39) to get a 2D version of the matrix Ar:

r̄′i = P̄(x̄i− c̄) , r′i = P(xi− c) ,

where r̄′i ∈ R2 can be precomputed. The optimal rotation
for shape matching is obtained by performing a 2D polar
decomposition [SD92] for the resulting matrix A′r ∈ R2×2.
This rotation matrix is used to compute 2D goal positions g′i
for the particles and the corresponding 2D position changes
∆x′i :

g′i = R′r̄′i , ∆x′i = α
1
|<i|

(g′i−x′i).

Finally, the vectors ∆x′i are transformed to world space by
∆xi = PT

∆x′i and the particle positions are updated. This
process is shown in Figure 30.

In a simulation with multi-resolution shape match-
ing [BWD13] two intergrid transfer operators are required
to couple the different meshes in the multi-resolution hierar-
chy. The restriction operator Il

l+1 transfers values from level
l+1 to the next coarser level l and the prolongation operator
Il+1

l transfers values in the opposite direction. These oper-
ators can be defined by barycentric coordinates [GW06]. In
each simulation step first the positions of the finest mesh
are updated by time integration. For non-nested models the

positions of the coarser meshes are interpolated using the
restriction operator. Then multi-resolution shape matching
is performed in a V-cycle as described by Algorithm 2.

Algorithm 2 Multi-resolution shape matching
1: for l = lmax to 1 do
2: Store current positions: x̂l ← xl

3: Perform shape matching
4: xl−1 := xl−1 + Il−1

l (xl− x̂l)
5: end for
6: for l = 0 to lmax do
7: Store current positions: x̂l ← xl

8: Perform shape matching
9: if l 6= lmax then

10: xl+1 := xl+1 + Il+1
l (xl− x̂l)

11: end if
12: end for

In the restriction phase the hierarchy is traversed from
the finest to the coarsest mesh performing a shape matching
step on each level and projecting the resulting position dif-
ferences xl − x̂l to the next coarser level with the restriction
operator. In the prolongation phase the hierarchy is traversed
in the opposite direction. On each level a shape matching
step is performed and the position differences are interpo-
lated and added to the next finer level. Since only position
differences are propagated between the levels, fine details
are conserved on finer levels. However, fine details could get
lost if the original shape matching method is used on the
coarse levels of the hierarchy. Wrinkles on a fine resolution
cause a compression of elements on a coarser level. Shape
matching reduces this compression and thus eliminates fine
details. Therefore, Bender et al. [BWD13] propose a modi-
fied computation of the goal positions on the coarse levels of
the hierarchy so that shape matching only prevents stretch-
ing on these levels but not a compression.
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6. Implementation

6.1. Parallelization

The parallelization of the position-based approach is an im-
portant topic since multi-core systems and massively parallel
GPUs are ubiquitous today.

6.1.1. Graph-Coloring Methods

In a single CPU implementation, the solver processes the
constraints one by one in a Gauss-Seidel-type fashion.
Thereby, after each constraint projection, the positions of af-
fected particles are immediately updated. In a parallel imple-
mentation, the constraints are processed in parallel by mul-
tiple threads. If two constraints affecting the same particle
are handled by two different threads simultaneously, they are
not allowed to immediately update the particle’s position be-
cause writing to the same position simultaneously leads to
race conditions making the process unpredictable. A solu-
tion to circumvent this problem is to use atomic operations.
Such operations are guaranteed not to be interrupted. How-
ever, atomics can slow down parallel execution significantly.

To avoid these issues, a parallel implementation of PBD
needs to split the constraints into groups or phases. In each
phase, none of the constraints are allowed to share a com-
mon particle. With this restriction, the constraints in the first
phase can be processed in parallel without conflicts. Then,
after a global synchronization, the next phase can be pro-
cessed. This cycle is repeated until all constraints are pro-
cessed.

As an example, if N particles are connected in a serial
chain, the constraints 1−2,3−4,5−6,7−8, .. can be pro-
cessed in phase 1 and the constraints 2−3,4−5,6−7, .. in
phase 2. This specific example corresponds to the Red-Black
Gauss Seidel scheme, where there are two sets (colors) of
constraints. For more general types of constraints such as the
stretch, shear and bending constraints of cloth, more phases
are needed. In this general case, splitting constraints into
phases corresponds to the graph coloring problem, where
each constraint corresponds to a node of the graph and two
constraints are connected by an edge if they affect one or
more common particles. The minimum number of colors de-
termines how many phases are needed in the parallel execu-
tion of PBD. Keeping the number of phases small is not the
only optimization criterion. The sets also need to have simi-
lar sizes for good load balancing.

6.1.2. Jacobi Methods

For some models with high valence, graph-coloring methods
may generate poor work load distributions, where initial sets
of constraints may be large, but tailing sets are very small.
This imbalance leads to resource under-utilization and po-
tentially high synchronization costs when many colors are
required. An alternative method for parallelizing PBD is to
use a Jacobi-style constraint solver. In a Jacobi solve, each

constraint may be processed in parallel, and the position
delta for each particle obtained by summing the delta from
each constraint at the end of an iteration.

Jacobi methods often converge significantly slower than
Gauss-Seidel iteration, and may not converge at all, for ex-
ample if the system matrix is not positive definite. To address
this problem, under-relaxation based on the concept of con-
straint averaging [BFA02], or mass-splitting [TBV12] can be
applied. At the end of the iteration, once all constraints are
processed, the particle’s total constraint delta is divided by
ni, the number of constraints affecting the particle, to obtain
the averaged position update ∆x̃:

∆x̃i =
1
ni

∆xi. (44)

This form of local relaxation is not guaranteed to conserve
momentum when neighboring particles have differing num-
ber of constraints, however, visual errors are typically not
noticeable. Averaging constraint forces as described above
ensures convergence, but in some cases this averaging is too
aggressive and the number of iterations required to reach a
solution increases. To address this a global user-parameter
ω can be introduced to control the rate of successive over-
relaxation (SOR),

∆x̃i =
ω

ni
∆xi. (45)

We recommend using 1 ≤ ω ≤ 2, although higher values
may be used depending on the scene being simulated. Ad-
ditional under-relaxation (ω < 1) is not typically required as
the constraint averaging is sufficient to avoid divergence.

6.1.3. Hybrid Methods

To take advantage of both Gauss-Seidel and Jacobi solvers,
Fratarcangeli et al. [FP15] proposed a hybrid approach. They
use graph coloring and modify the graph such that it pro-
duces a desired number of k colors by splitting high va-
lence particles, i.e. solving them Jacobi style. An even sim-
pler hybrid approach is to solve the first k− 1 colors using
k−1 Gauss-Seidel passes and then solve the remaining con-
straints with one Jacobi pass.

6.1.4. Shape Matching

In Section 5.11.3 we presented different fast summation
techniques for shape matching. The one of Diziol et
al. [DBB11] is best suited for a parallel implementation
on the GPU. In the following the GPU implementation of
this technique with CUDA is described in detail. For such an
implementation memory access and memory layouts play
an important role as well as the number of kernel calls.

Since each kernel call introduces a computational over-
head, the particles of all objects in a simulation are packed
into one single array. This array is ordered according to the
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Figure 31: Rigid body bunnies, attached to cloth by de-
formable ropes parachute to the ground. A drag model on
the clothing particles slows the descent of the bunnies.

path layout which is used for the fast summation (see Sec-
tion 5.11.3). Since the array contains the paths one after an-
other, a segmented prefix sum [SHZO07] can be used to de-
termine the prefix sums of all paths at once. To avoid nu-
merical problems due to the 32 bit floating-point arithmetics
on the GPU, the path length is limited to 512. The resulting
prefix sums are stored in texture memory to benefit from the
texture cache when the translational vectors and the affine
matrices are determined (see Equation (42)).

The multi-resolution approach described in Section 5.11.6
can be implemented on the GPU as follows. Shape matching
on each level of the hierarchy is performed by computing
the goal positions per element in parallel in a first step. The
results are stored for each element. In a second step shape
matching is completed by summing up the contributions of
all elements containing a vertex to get a final goal position
for the vertex. The restriction and the prolongation of the
results can be performed efficiently using the sparse matrix
data structure of Weber et al. [WBS∗13]. This implementa-
tion allows to simulate the deformation of a cloth model with
more than 200k triangles on the finest level in 22 ms/step on
a GeForce GTX 470.

6.2. Unified Solver

Macklin et al. [MMCK14] present a method that brings to-
gether many of the PBD applications in a unified framework.
The core idea is to represent everything in the system by par-
ticles, and leverage fast GPU particle-particle collision tech-
niques [Gre08] to generate complex interactions efficiently.

In this framework, rigid bodies are represented by vox-
elizing closed triangle meshes, and adding particles in inte-
rior cells. A shape-matching constraint is then added to the
system to enforce the rigid particle configuration. Interac-
tion between objects is accomplished by simply connecting
particles by constraints, e.g.: tethering a rigid object to the
corners of a piece of cloth generates a basic parachute (see
Figure 31).

Particles are extended with an integer phase attribute,
which is used to control the generation of constraints. One
possible interpretation of the phase attribute is that particles

of the same phase do not generate collision constraints. For
example, when modeling rigid bodies, particles belonging to
the same body are given the same phase to avoid generating
internal collisions.

Fluids are modeled using the density constraint of Sec-
tion 5.10, because the fluid is also modeled by particles, full
two-way coupling with clothing, rigid bodies, and granular
materials is possible. Constraints may also be combined to
achieve new effects, e.g.: a rigid body constraint combined
with the fluid density constraint can be animated to model
phase changes such as melting.

7. Applications

In this section we introduce different application areas of
position-based methods. These methods are mainly used in
interactive applications where performance, controllability
and stability are more important than accuracy, like e.g.
in [SGdA∗10,DB13]. But there exist also other works which
use a position-based approach for stabilization.

7.1. Strain Limiting

Strain limiting is an important topic in the field of cloth
simulation. The reason is that the low solver iteration
counts used in real-time applications yield stretchy cloth.
Since most cloth types are perceived by the human eye as
completely inextensible, it is important to make simulated
cloth inextensible in order to avoid disturbing visual arti-
facts [GHF∗07, BB08].

A strain limiting method makes sure that the overall
stretch of the cloth stays below a certain threshold. In force
based simulations, strain limiting is a separate pass which
is executed before or after the regular cloth solver. In most
cases, this pass moves the positions of vertices directly, even
in force based simulations. Therefore, most strain limiting
methods fall under the category of position-based methods.

A straightforward way of limiting strain is to iterate
through all edges of a cloth mesh and project the adjacent
particles of overstretched edges as shown in Figure 3 so that
the stretch of the edge does not exceed the stretch limit.
Provot [Pro95] was among the first to use this method in the
context of cloth simulation. He performs a single iteration
through all cloth edges after a force based solver. Desbrun et
al. [DSB99] and Bridson et al. [BMF03] later used the same
post solver strain limiter but with multiple iterations through
all edges. Due to its simplicity, this method is still one of the
most popular strain limiting methods used in cloth simula-
tions.

The method is very similar to position-based cloth simu-
lation. The main difference is that the strain limiting pass de-
scribed above does not influence the velocities. These are up-
dated by the force-based solver. In contrast, position-based
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cloth simulation derives the new velocities from the projec-
tions, making an additional solver pass obsolete. Therefore,
every position-based strain limiting method used in force
based simulations can directly be used in a PBD solver.

The result of projecting along edges depends on the
structure of the mesh. To reduce this artifact, Wang et al.
[WOR10] propose to limit the principal strains of the 2D
deformation field within each triangle. The 2D deformation
field can be determined by considering the 2D coordinates
of the vertices of a triangle within the planes of the rest and
current triangle configurations. Wang et al. compute the prin-
cipal strains of the 2D deformation gradient, clamp them
and construct a new 2D transformation using the clamped
strains. With this new transformation they correct the current
positions of the triangle vertices. As before, to limit strain
globally, they iterate through all triangles multiple times in a
Gauss-Seidel fashion.

Due to the relatively slow convergence rate of a Gauss-
Seidel solver, high iteration counts are necessary to limit the
strain globally which slows down the simulation. The two
main methods to improve the convergence rate are the use of
a global Newton-Raphson solver as proposed by Goldenthal
et al. [GHF∗07] or to perform Gauss-Seidel iterations on a
hierarchy of meshes as proposed in [Mül08], [WOR10] and
[SKBK13]. However, these methods complicate the imple-
mentation and even though their convergence rate is higher,
a single iteration can be significantly more expensive than a
simple Gauss-Seidel iteration.

7.2. Wrinkle Meshes

In cloth simulations, reducing the mesh resolution not only
reduces the cost of a single solver iteration but also the num-
ber of iterations required to get visually pleasing results.
In [MC10] the authors proposed a way to reduce the res-
olution of the dynamic mesh without losing too much vi-
sual detail. The most significant detail in cloth simulations
are small wrinkles. The method is based on the observation
that global dynamic behavior of the cloth and wrinkle forma-
tion can be separated. Therefore, expensive dynamic simu-
lation including collision handling is performed on a low-
resolution mesh. The wrinkle formation is handled on a high
resolution mesh that is attached to the dynamic mesh (see
Figures 32 and 33). Since wrinkles do not oscillate, it is suf-
ficient to use a static solver with a low iteration count on the
high-resolution mesh.

Figure 34 shows the constraints defined on the high-
resolution mesh to make it form wrinkles and follow the dy-
namic mesh. The attachment constraints makes sure that the
vertices of the wrinkle mesh stay close to their attachment
points on the dynamic mesh. If the dynamic mesh has out-
side/inside information, a one-sided constraint can be used
which makes sure that the wrinkle vertices stay on the out-
side of the dynamic mesh, thus avoiding penetrations with

Figure 32: Basic idea of wrinkle meshes. The high resolu-
tion wrinkle mesh (white vertices) follows the low-resolution
dynamic mesh (black vertices) by restricting the white ver-
tices to remain within a certain distance (gray discs) to the
dynamic mesh.

Figure 33: Visualization of the wrinkle mesh (solid) and the
underlying dynamic mesh (wireframe).

other objects. The stretching and bending constraints are re-
sponsible for wrinkle formation.

p

a

1p

2p
0l

n

a

p

1p 2p

3p

4p

Figure 34: Static constraints on a wrinkle mesh: Attach-
ment constraint (top left), one sided attachment constraint
(top right), stretch constraint (bottom left) and bending con-
straint (bottom right).
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7.3. Further Applications

Another application area for position-based methods is
interactive surgical simulation. In this area Wang et
al. [WXX∗06] introduce a mass-spring model based on
a surface mesh to simulate deformable bodies in real-time.
Since such a model can neither preserve its volume nor
resume its rest shape in the absence of external forces, the
authors propose to couple the surface model with a rigid core
by using spring forces. This rigid core is simulated using
shape matching [MHTG05] which results in a fast and sta-
ble simulation. Kubiak et al. [KPGF07] present a simulation
method for surgical threads which is based on the position-
based dynamics approach of Müller et al. [MHHR07]. Their
method simulates the stiffness, bending and torsion of a
thread and also provides feedback for a haptic device. For
the simulation Kubiak et al. define distance constraints for
stiffness and bending, torsion constraints, contact constraints
and friction constraints. The presented method allows for an
interactive and robust simulation of knots.

The simulation of complex hairstyles using a shape
matching approach is presented by Rungjiratananon et
al. [RKN10]. Their approach is based on Lattice Shape
Matching which was originally introduced by Rivers and
James [RJ07]. For the simulation each hair strand is rep-
resented by a chain of particles which is subdivided in
overlapping chain regions. After shape matching an addi-
tional position-based strain limiting is applied to each strand
which moves the particles in the direction of their root.
Different hair styles are realized by using appropriate initial
configurations and by modifying the region sizes of a chain.

Umetani et al. [USS14] use a position-based rod model
which is derived from the Cosserat theory in order to sim-
ulate complex bending and twisting of elastic rods. The au-
thors define material frames on the centerline of each edge
to represent the orientations along the rod. These material
frames are represented by ghost points which are coupled
with the edges by position-based constraints.

O’Brien et al. [ODC11] use position-based dynamics for
the physically plausible adaptation of motion-captured an-
imations. In their work they use a vertex-based character
skeleton and different constraints to preserve the skeleton
structure, to define joint limits and to implement a center of
mass control. In addition to the kinematic constraints, they
define a couple of dynamics constraints which consider ver-
tices in multiple frames. Dynamics constraints are used to
enforce smooth acceleration and dynamical correctness.

Fierz et al. [FSAH12] introduce a position-based ap-
proach to stabilize a finite element simulation. When us-
ing an explicit time integration for a finite element simu-
lation, the time step size is typically limited by the stiffness
of the model and its spatial discretization. In each simula-
tion step Fierz et al. use the Courant-Friedrichs-Lewy (CFL)
condition to determine the maximum allowed time step size
for each tetrahedral element in their volumetric simulation

model. However, instead of using the time step size given by
the CFL condition to perform a stable simulation step with
an explicit integration scheme, they use a fixed size and mark
all elements where the condition is not met. The marked el-
ements are then simulated using a shape matching approach
while for all other elements a linear finite element method is
used for the simulation.

8. Conclusion

In this tutorial, we focused on position-based approaches.
Such geometrically motivated techniques are not force-
driven and are particularly appropriate in interactive appli-
cations due to their versatility, robustness, controllability
and efficiency. We explained general ideas of position-based
methods and introduced several specific constraints. Vari-
ous aspects and efficient solution strategies were discussed
with a particular focus on the benefits of position-based ap-
proaches compared to force-driven techniques.

Position-based dynamics is fast, easy to implement and
controllable. Furthermore, it avoids the overshooting prob-
lems of force-based simulation models when using an ex-
plicit time integration scheme. The method can handle arbi-
trary bilateral and unilateral constraints as long as the gradi-
ent of the constraint function can be determined. Therefore,
this method is very flexible and has already been used to
simulate cloth, deformable solids and fluids.

However, position-based dynamics also has some disad-
vantages. The stiffness of the model does not only depend
on the user-defined stiffness parameter but also on the time
step size and the number of solver iterations. Although the
dependency can be reduced as described in Section 4.2.2, it
cannot be completely removed. Therefore, it is difficult to
adjust parameters independently. Decoupling these param-
eters as well as adaptive time stepping are open problems
and important topics for future work. Another drawback is
that position-based dynamics is not convergent, i.e. the sim-
ulation does not converge to a certain solution with mesh
refinement. Hence, the usage of adaptive meshes is another
open problem.
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