Tutorial Slides

Analysis and Retrieval Techniques for Motion and Music Data

Meinard Müller

Saarland University and MPI Informatik meinard@mpi-inf.mpg.de

UnIVERSItÄT DES
SAARLANDES

Music Data

Various interpretations - Beethoven‘s Fifth

Bernstein	\square
Karajan	\square
Scherbakov (piano)	\square
MIDI (piano)	\square

Motion Capture Data

- Digital

3D representations of motions

- Computer animation
- Sport sciences
- Computer vision

Part 0

Overview

Music Data

3

Motion Capture Data

General Tasks

- Automated data organization
- Handling object deformations
- Handling multimodality
- Synchronization (alignment)
- Efficiency

Overview

Part I: Music Synchronization

Part II: Audio Structure Analysis

Part III: Audio Matching

Part IV: Motion Retrieval

Bonn University

- Prof. Dr. Michael Clausen
- PD Dr. Frank Kurth
- Dipl.-Inform. Christian Fremerey
- Dipl.-Inform. David Damm
- Dipl.-Inform. Sebastian Ewert
- Dr. Tido Röder

Habilitation

Part I

Music Synchronization

Bonn University

- Prof. Dr. Michael Clausen
- PD Dr. Frank Kurth
- Dipl.-Inform. Christian Fremerey
- Dipl.-Inform. David Damm
- Dipl.-Inform. Sebastian Ewert
- Dr. Tido Röder

Dec. 2007

PhD students

- Dipl.-Inform. Andreas Baak
- Dipl.-Math. Verena Konz
- Dipl.-Ing. Peter Grosche
- Dipl.-Inform. Thomas Helten
(DFG)
(MMCI)
(MMCI)
(DFG)

Habilitation

Score Representation

Score Representation: Scanned Image

Score Representation: MusicXML
<note>
<pitch>
<step>E</step>
<alter>-1</alter>
<octave>4</octave>
</pitch>
<duration>2</duration>
<type>half</type>
</note>

Audio Representation: Waveform

Audio Representation: Waveform

Audio Representation: Waveform

Bernstein (orchestra)

Glen Gould (piano)

MIDI Representation

MIDI Representation: Piano Roll

MIDI Representation: Piano Roll

General Goals

- Automated organization of complex and inhomogeneous music collections
- Generation of annotations and cross-links
- Tools and methods for multimodal search, navigation and interaction

Music Information Retrieval (MIR)

Music Synchronization

- Turetsky/Ellis (ISMIR 2003)
- Soulez/Rodet/Schwarz (ISMIR 2003)
- Arifi/Clausen/Kurth/Müller (ISMIR 2003)
- Hu/Dannenberg/Tzanetakis (WASPAA 2003)
- Müller/Kurth/Röder (ISMIR 2004)
- Raphael (ISMIR 2004)
- Dixon/Widmer (ISMIR 2005)
- Müller/Mattes/Kurth (ISMIR 2006)
- Dannenberg /Raphael (Special Issue ACM 2006)
- Kurth/Müller/Fremerey/Chang/Clausen (ISMIR 2007)
- Fujihara/Goto (ICASSP 2008)
- Wang/lskandar/New/Shenoy (IEEE T-ASLP 2008)

Music Synchronization: Audio-Audio

Given: Two different audio recordings of the same underlying piece of music.

Goal: Find for each position in one audio recording the musically corresponding position in the other audio recording.

Music Synchronization: Audio-Audio

Beethoven's Fifth

Karajan $>$

Scherbakov

Music Synchronization: Audio-Audio

Bach Toccata

Koopman

Ruebsam \qquad

Music Synchronization: Audio-Audio

Bach Toccata

Koopman

Ruebsam

Synchronization: Koopman \rightarrow Ruebsam

Music Synchronization: Audio-Audio

- Transformation of audio recordings into sequences of feature vectors
$\rightsquigarrow V:=\left(v^{1}, v^{2}, \ldots, v^{N}\right)$
$\rightsquigarrow W:=\left(w^{1}, w^{2}, \ldots, w^{M}\right)$
- Fix cost measure c on the feature space
- Compute $N \times M$ cost matrix $C(n, m):=c\left(v^{n}, w^{m}\right)$
- Compute cost-minimizing warping path from C

Chroma Features

Example: Bach Toccata
Koopman \gg Ruebsam \gg

Feature resolution: 10 Hz

Chroma Features

Example: Bach Toccata

Feature resolution: 0.33 Hz

Chroma Features
Example: Bach Toccata

34

Chroma Features

WAV	$\begin{aligned} & \text { Chroma } \\ & (10 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \text { CENS } \\ & (1 \mathrm{~Hz}) \end{aligned}$
-	-	-
-	-	-
-	-	-

Chroma Features

Chroma Features

	WAV	Chroma $(10 \mathrm{~Hz})$	CENS $(1 \mathrm{~Hz})$
Beethoven's Fifth (Bernstein)			
Beethoven's Fifth (Piano/Sherbakov)			
???			

Chroma Features

	WAV	Chroma $(10 \mathrm{~Hz})$	CENS $(1 \mathrm{~Hz})$
Beethoven's Fifth (Bernstein)			
Beethoven's Fifth (Piano/Sherbakov)			
Brahms Hungarian Dance No. 5			

Music Synchronization: Audio-Audio
$\begin{aligned} \text { - Koopman } & \rightsquigarrow V:=\left(v^{1}, v^{2}, \ldots, v^{N}\right) & N & =12 \\ \text { Ruebsam } & \rightsquigarrow W:=\left(w^{1}, w^{2}, \ldots, w^{M}\right) & M & =18\end{aligned}$

- $v^{n}, w^{m}=12$-dimensional normalized chroma vectors
- Local cost measure $c: \mathbb{R}^{12} \times \mathbb{R}^{12} \rightarrow \mathbb{R}$

$$
c\left(v^{n}, w^{m}\right):=1-\left\langle v^{n}, w^{m}\right\rangle
$$

- $N \times M$ cost matrix $C(n, m):=c\left(v^{n}, w^{m}\right)$

Music Synchronization: Audio-Audio

Music Synchronization: Audio-Audio
Cost-minimizing warping path

Cost-Minimizing Warping Path

- Computation via dynamic programming
\rightsquigarrow Dynamic Time Warping (DTW)
- Memory requirements and running time: $O(N M)$
- Problem: Infeasible for large N and M
- Example: Feature resolution 10 Hz , pieces 15 min

$$
\begin{aligned}
& \Rightarrow N, M \sim 10,000 \\
& \Rightarrow N \cdot M \sim 100,000,000
\end{aligned}
$$

Strategy: Global Constraints

Sakoe-Chiba band

Itakura parallelogram

Strategy: Multiscale Approach

Compute optimal warping path on coarse level

Strategy: Multiscale Approach

Specify constraint region

Strategy: Multiscale Approach

Compute constrained optimal warping path

Strategy: Multiscale Approach

- Suitable features?
- Suitable resolution levels?
- Size of constraint regions?

Good trade-off between efficiency and robustness?

Strategy: Multiscale Approach

Strategy: Multiscale Approach

Improve robustness by enhancing cost matrix

Strategy: Multiscale Approach
Improve robustness by enhancing cost matrix

Strategy: Multiscale Approach

Chroma features at three levels: $0.33 \mathrm{~Hz} / 1 \mathrm{~Hz} / 10 \mathrm{~Hz}$

Recording 1	length [sec]	Recording 2	length [sec]	$t_{\text {DTWW }}$ [sec]	$t_{\text {MsDTW }}$ $[\mathrm{sec]}]$	$[\%]$
Beet9Bern	1144.9	Beet9Kar	1054.8	31.18	1.08	3.46

Music Synchronization: Audio-Audio

Conclusions

- Chroma features
\rightsquigarrow suited for harmony-based music
- Relatively coarse but good global alignments
- Multiscale approach: simple, robust, fast

Strategy: Multiscale Approach

Chroma features at three levels: $0.33 \mathrm{~Hz} / 1 \mathrm{~Hz} / 10 \mathrm{~Hz}$

Recording 1	length [sec]	Recording 2	length [sec]	$t_{\text {DTW }}$ $[\mathrm{sec}]$	$t_{\text {MsITW }}$ [sec] $]$	$[\%]$
Beet9Bern	1144.9	Beet9Kar	1054.8	31.18	1.08	3.46

Number of matrix entries needed for DTW and MsDTW:

	DTW	MsDTW	$\%$
Level 1	$120,808,050$	$2,117,929$	1.75
Level 2	$1,209,030$	17,657	1.46
Level 3	134,464	134,464	100

Music Synchronization: Audio-Audio

Applications

- Efficient music browsing
- Blending from one interpretation to another one
- Mixing and morphing different interpretations
- Tempo studies

System: Match (Dixon)

MATCH 0.6	? x	Argerich1965_Chopin_op15_1
Status: Aligning \square		Arrau1978_Chopín_op15.1
Mode: Continue		Ashkenazy1985_Chopin_op15_1
		Barenboim1981_Chopin_0p15_1
		Harasiewicz1961_Chopin_op15_1
-		Horuwizz1957_Chopin_op15_1
\rightarrow - 11×4	* $\boldsymbol{+}$ +	Leonskaja1992_Chopin_os15_1
		Maisenberg 1995_Chopin_op15.1
		Perahia1994_Chopin_op15_1
		Pires 1996_Chopin_0p15_1
		Pollini1968_Chopin_op15.1
		Richter 1968_Chopin_op15_1
		Rubinstein1965_Chopin_op15_1

System: SyncPlayer/AudioSwitcher

Music Synchronization: MIDI-Audio

Applications

- Automated audio annotation
- Accurate audio access after MIDI-based retrieval
- Automated tracking of MIDI note parameters during audio playback

Music Synchronization: MIDI-Audio
MIDI = metadata

Automated annotation
Audio recording

Sonification of annotations \gg

Music Synchronization: Scan-Audio

Music Synchronization: Scan-Audio

66

Music Synchronization: Scan-Audio

Music Synchronization: Scan-Audio

Music Synchronization: Lyrics-Audio

Difficult task!

Music Synchronization: Lyrics-Audio
Lyrics-Audio \rightarrow Lyrics-MIDI + MIDI-Audio

System: SyncPlayer/LyricsSeeker

Conclusions: Music Synchronization

Various requirements

- Efficiency
- Robustness
- Accuracy
- Variablity of music

Conclusions: Music Synchronization

Combination of various strategies

- Feature level
- Local cost measure level
- Global alignment level
- Evidence pooling using competing strategies

Conclusions: Music Synchronization

Combination of various strategies

- Feature level
- Local cost measure level
- Global alignment level
- Evidence pooling using competing strategies

Example: MIDI-Audio synchronization

Chroma-Chroma:
Chroma-Chroma + onset-bonus:
∇

Conclusions: Music Synchronization

Offline vs. Online

- Online version: Dixon/Widmer (ISMIR 2005)

Hidden Markov Models: Raphael (ISMIR 2004)

- Score-following
- Automatic accompaniment

Conclusions: Music Synchronization

Presence of variations

- Instrumentation
- Musical structure
- Polyphony
- Musical key
- ...

Part II

Audio Structure Analysis

Music Structure Analysis

- Music segmentation
- pitch content (e.g., melody, harmony)
- music texture (e.g., timbre, instrumentation, sound)
- rhythm
- Detection of repeating sections, phrases, motives
- song structure (e.g., intro, versus, chorus)
- musical form (e.g., sonata, symphony, concerto)
- Detection of other hidden relationships

Audio Structure Analysis

Given: CD recording

Goal: Automatic extraction of the repetitive structure (or of the musical form)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Audio Structure Analysis

- Dannenberg/Hu (ISMIR 2002)
- Peeters/Burthe/Rodet (ISMIR 2002)
- Cooper/Foote (ISMIR 2002)
- Goto (ICASSP 2003)
- ChaiVercoe (ACM Multimedia 2003)
- Lu/Wang/Zhang (ACM Multimedia 2004
- Bartsch/Wakefield (IEEE Trans. Multimedia 2005)
- Goto (IEEE Trans. Audio 2006)
- Müller/Kurth (EURASIP 2007)
- Rhodes/Casey (ISMIR 2007)
- Peeters (ISMIR 2007)

Audio Structure Analysis

- Audio features
- Cost measure and cost matrix
\rightsquigarrow self-similarity matrix
- Path extraction (pairwise similarity of segments)
- Global structure (clustering, grouping)

Audio Structure Analysis

- Audio $\rightsquigarrow V:=\left(v^{1}, v^{2}, \ldots, v^{N}\right)$
- $v^{n}=12$-dimensional normalized chroma vector
- Local cost measure $c: \mathbb{R}^{12} \times \mathbb{R}^{12} \rightarrow \mathbb{R}$

$$
c\left(v^{n}, w^{m}\right):=1-\left\langle v^{n}, w^{m}\right\rangle
$$

- $N \times N$ cost matrix $\quad C(n, m):=c\left(v^{n}, w^{m}\right)$
\rightsquigarrow quadratic self-similarity matrix

Audio Structure Analysis

Self-similarity matrix

Audio Structure Analysis

Self-similarity matrix

Audio Structure Analysis
Self-similarity matrix

Audio Structure Analysis

Audio Structure Analysis

Self-similarity matrix

Audio Structure Analysis

Self-similarity matrix

Matrix Enhancement

Challenge: Presence of musical variations

- Fragmented paths and gaps
- Paths of poor quality
- Regions of constant (low) cost
- Curved paths

Idea: Enhancement of path structure

Matrix Enhancement

Idea: Usage of contextual information (Foote 1999)

$$
C_{L}(n, m):=\frac{1}{L} \sum_{\ell=0}^{L-1} c\left(v_{n+\ell}, v_{m+\ell}\right)
$$

- Comparison of entire sequences
- $L=$ length of sequences
- $C_{L}=$ enhanced cost matrix
\rightsquigarrow smoothing effect

Audio Structure Analysis

Self-similarity matrix

Similarity cluster

Matrix Enhancement

Shostakovich Waltz 2, Jazz Suite No. 2 (Chailly)

Matrix Enhancement (Shostakovich)

Cost matrix C

Matrix Enhancement (Shostakovich)

Enhanced cost matrix C_{L}

Matrix Enhancement (Brahms)

Cost matrix C

98

Matrix Enhancement (Brahms)

Enhanced cost matrix C_{L}
Problem: Relative tempo differences are smoothed out

Matrix Enhancement

Matrix Enhancement

$\mathrm{pe}_{k}=k$ th direction of smoothing

- $C_{L}^{\text {slope }_{k}}=$ enhanced cost matrix w.r.t. slope $_{k}$
- Usage of eight slope values
\rightsquigarrow tempo changes of -30 to +40 percent

Matrix Enhancement

Cost matrix C_{L} with $L=20$
Filtering along main diagonal

Matrix Enhancement

Cost matrix $C_{L}^{\text {min }}$ with $L=20$
Filtering along 8 different directions and minimizing

Path Extraction

Path Extraction

Enhanced cost matrix C_{L}

Path Extraction

109

Path Extraction

Path Extraction

Path Extraction

Path Extraction

Extracted paths after postprocessing

Global Structure

Global Structure

- Taks: Computation of similarity clusters
- Problem: Missing and inconsistent path relations
- Strategy: Approximate "transitive hull"

Global Structure

Path relations

Global Structure

Global Structure

Global Structure

Final result

Ground truth

124

Transposition Invariance

Example: Zager \& Evans "In The Year 2525"

Transposition Invariance

Goto (ICASSP 2003)

- Cyclically shift chroma vectors in one sequence
- Compare shifted sequence with original sequence
- Perform for each of the twelve shifts a separate structure analysis
- Combine the results

Transposition Invariance

Goto (ICASSP 2003)

- Cyclically shift chroma vectors in one sequence
- Compare shifted sequence with original sequence
- Perform for each of the twelve shifts a separate structure analysis
- Combine the results

Müller/Clausen (ISMIR 2007)

- Integrate all cyclic information in one transposition-invariant self-similarity matrix
- Perform one joint structure analysis

Transposition Invariance

Example: Zager \& Evans "In The Year 2525"

Transposition Invariance

Transposition Invariance

Transposition Invariance

Transposition Invariance

Transposition Invariance

Minimize over all twelve matrices

Transposition Invariance

Thresholded self-similarity matrix

Transposition Invariance

Path extraction

Transposition Invariance

Transposition Invariance

Stabilizing effect

Self-similarity matrix (thresholded)

Transposition Invariance

Stabilizing effect

Self-similarity matrix (thresholded)

Transposition Invariance
Stabilizing effect

Transposition-invariant self-similarity matrix (thresholded)

Transposition Invariance

Transposition Invariance

Transposition-invariant matrix

Minimizing shift index

Transposition Invariance

Transposition Invariance

Transposition-invariant matrix

Minimizing shift index $=2$

Transposition Invariance

Serra/Gomez (ICASSP 2008): Used for Cover Song ID Discrete structure \rightsquigarrow suitable for indexing?

Transposition Invariance
Example: Beethoven "Tempest"

Self-similarity matrix
147

Transposition Invariance
Example: Beethoven "Tempest"

Transposition-invariant self-similarity matrix

Conclusions: Audio Structure Analysis

Challenge: Musical variations

- Timbre, dynamics, tempo
- Musical key … cyclic chroma shifts
- Major/minor
- Differences at note level / improvisations

Conclusions: Audio Structure Analysis

Strategy: Matrix enhancement

- Filtering techniques / contextual information

Cooper/Foote (ISMIR 2002)

- Müller/Kurth (ICASSP 2006)
- Transposition-invariant similarity matrices
- Goto (ICASSP 2003)
- Müller/Clausen (ISMIR 2007)
- Higher-order similarity matrices
- Peeters (ISMIR 2007)

Conclusions: Audio Structure Analysis

Challenge: Hierarchical structure of music

Rhodes/Casey (ISMIR 2007)

System: SmartMusicKiosk (Goto)

Part III

Audio Matching

Audio Matching

Given: Large music database containing several
recordings of the same piece of music

- interpretations by various musicians
- arrangements in different instrumentations

Goal: Given a short query audio clip, identify all corresponding audio clips of similar musical content

- irrespective of the specific interpretation and instrumentation
- automatically and efficiently

Query-by-Example paradigm

Audio Matching

- Müller/Kurth/Clausen (ISMIR 2005)
- Kurth/Müller (IEEE T-ASLP 2008)

Related problems
Audio identification

- Allamanche et al. (AES 2001)
- Cano et al. (IEEE MMSP 2002)
- Kurth/Clausen/Ribbrock (AES 2002)
- Wang (ISMIR 2003)
- Shrestha/Kalker (ISMIR 2004)

Audio synchronization
Audio structure analysis

Audio Matching

General strategy

- Normalized and smoothed chroma features
- correlates to harmonic progression
robust to variations in dynamics, timbre, articulation, local tempo
- Robust matching procedure
efficient
- robust to global tempo variations
- scalable using index structure

Feature Design

Two stages:

Stage 1: Local chroma energy distribution features Stage 2: Normalized short-time statistics
\rightsquigarrow CENS = Chroma Energy Normalized Statistics

Feature Design
Beethoven's Fifth: Bernstein

Resolution: 10 features/second Feature window size: 200 milliseconds

Feature Design
Beethoven's Fifth: Bernstein

Resolution: 1 features/second
Feature window size: 4000 milliseconds

Feature Design
Beethoven's Fifth: Bernstein vs. Sawallisch

Resolution: 10 features/second Feature window size: 200 milliseconds

Feature Design

Beethoven's Fifth: Bernstein vs. Sawallisch

Resolution: 1 features/second
Feature window size: 4000 milliseconds

Matching Procedure

Compute CENS feature sequences

- Database $D \rightsquigarrow F[D]=\left(v^{1}, v^{2}, \ldots, v^{N}\right)$
- Query $\quad Q \rightsquigarrow F[Q]=\left(w^{1}, w^{2}, \ldots, w^{M}\right)$
- $N \approx 500000, M \approx 20$

$\Delta(i):=$ local distance $\left(\left(v^{i}, v^{i-1} \ldots, v^{i+M-1}\right),\left(w^{1}, w^{2}, \ldots, w^{M}\right)\right)$
\rightsquigarrow Global distance function $\Delta:[1: N] \rightarrow[0,1]$
164

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Best audio matches: 1

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

170

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

171

Matching Procedure

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Global Tempo Variations

Query: Beethoven‘s Fifth / Bernstein, first 20 seconds
Problem: Karajan is much faster \rightsquigarrow useless Δ
Solution?

Global Tempo Variations

Query: Beethoven's Fifth / Bernstein, first 20 seconds
Problem: Karajan is much faster \rightsquigarrow useless Δ
Solution: Make Bernstein query faster and comute new Δ

Global Tempo Variations

Query: Beethoven's Fifth / Bernstein, first 20 seconds
Problem: Karajan is much faster \rightsquigarrow useless Δ
Solution: Compute Δ for various tempi

Global Tempo Variations

Query: Beethoven's Fifth / Bernstein, first 20 seconds
Problem: Karajan is much faster \rightsquigarrow useless Δ
Solution: Minimize over all resulting Δ 's $\rightsquigarrow \Delta^{\text {min }}$

176

Experiments

- Audio database > 110 hours, 16.5 GB
- Preprocessing \rightsquigarrow CENS features, 40.3 MB
- Query clip ≈ 20 seconds
- Query response time < 10 seconds

Experiments

Query: Beethoven's Fifth / Bernstein, first 20 seconds

Rank	$\Delta^{\text {min }}$	Piece	Position
1	0.0114	Beethoven's Fifth/Bernstein	0-21
2	0.0150	Beethoven's Fifth/Bernstein	101-122
3	0.0438	Beethoven's Fifth/Karajan	86-103
\vdots		:	
10	0.1796	Beethoven's Fifth/Karajan	252-271
11	0.1827	Beethoven (Liszt) Fifth/Scherbakov	0-19
12	0.1945	Beethoven's Fifth/Sawallisch	275-296
13	0.1970	Beethoven's Fifth (Liszt)/Scherbakov	86-103
14	0.2169	Schumann op 97,1/Levine	28-43

Experiments

Query: Beethoven's Fifth / Bernstein, first 20 seconds $\xrightarrow{\text { Bernstein }} \xrightarrow{\text { Karajan }} \xrightarrow{\text { Kegel }} \xrightarrow{\text { Scherbakov }} \underset{ }{\text { Sawallisch }}$

Experiments

Query: Shostakovich, Waltz/Chailly, first 27 seconds

Experiments

Query: Shostakovich, Waltz/Chailly, first 21 seconds

Rank	$\Delta^{\text {min }}$	Piece	Position	
1	0.0172	Shostakovich/Chailly	0-21	-
2	0.0505	Shostakovich/Chailly	41-60	-
3	0.0983	Shostakovich/Chailly	180-198	\checkmark
4	0.1044	Shostakovich/Yablonsky	1-19	-
5	0.1090	Shostakovich/Yablonsky	36-52	-
6	0.1401	Shostakovich/Yablonsky	156-174	\square
7	0.1476	Shostakovich/Chailly	144-162	-
8	0.1626	Bach BWV 582/Chorzempa	358-373	-
9	0.1668	Beethoven op 37,1/Toscanini	12-28	-
10	0.1729	Beethoven op 37,1/Pollini	202-218	-

Conclusions

Strategy: Absorb variations at feature level

- Chroma \rightsquigarrow invariance to timbre
- Normalization \rightsquigarrow invariance to dynamics
- Smoothing \rightsquigarrow invariance to local time deviations

Conclusions

Global Matching Procedure

- Strategy: Exact matching and multiple scaled queries
- simulate tempo variations by feature resampling
- different queries correspond to different tempi
- indexing possible
- Strategy: Dynamic Time Warping
- subsequence variant
- more flexible (in particular for longer queries)
- indexing hard

Multimodal Computing and Interaction

184

System: SyncPlayer/AudioMatching

Part IV

Motion Retrieval

Motion Capture Data

- Digital 3D representations of motions
- Computer animation
- Sports
- Gait analysis

Motion Capture Data

Application: Motion Morphing

From Kovar/Gleicher (SIGGRAPH 2004)
188

Motion Capture Data
Optical System

189

Motion Capture Data

Mechanical and magnetic systems

Motion Capture Data

Skeletal kinematic chain

191

Motion Capture Data

Conversion: Marker \rightarrow Skeleton

Motion Similarity

Spatio-Temporal Deformations

Motion Similarity
Partial Similarity

200

Local Similarity Measure

Point cloud (Kovar \& Gleicher)

$$
c^{3 \mathrm{D}}(D(n), D(m)):=\min _{\theta, x, z}\left(\sum_{i=1}^{K} w_{i}\left\|p_{i}-T_{\theta, x, z}\left(p_{i}^{\prime}\right)\right\|^{2}\right)
$$

201

Local Similarity Measure

Point cloud (Kovar \& Gleicher)

$$
c^{3 \mathrm{D}}(D(n), D(m)):=\min _{\theta, x, z}\left(\sum_{i=1}^{K} w_{i}\left\|p_{i}-T_{\theta, x, z}\left(p_{i}^{\prime}\right)\right\|^{2}\right)
$$

202

Local Similarity Measure
Quaternions

$$
\begin{aligned}
& c^{\text {Quat }}: \mathcal{J} \times \mathcal{J} \rightarrow[0,1] \\
& c^{\text {Quat }}\left(j, j^{\prime}\right):=\sum_{b \in B} w_{b} \cdot \frac{2}{\pi} \cdot \arccos \left|\left\langle q_{b} \mid q_{b}^{\prime}\right\rangle\right|
\end{aligned}
$$

Dynamic Time Warping (DTW)

205

Dynamic Time Warping (DTW)

206

Dynamic Time Warping (DTW)

208

Self-Similarity Matrix

- Given: motion database (one single document)

- Compute: selfsimilarity matrix

Self-Similarity Matrix

- Query: segment of motion database
- Consider similarity matrix over query

Self-Similarity Matrix

- Identify diagonal paths of low cost

Self-Similarity Matrix

- Identify diagonal paths of low cost
- Project paths onto vertical axis

Other Recent Approaches

- Wu et al. (IPPR 2003):
- identify candidates for start and end frames
- use DTW to compute actual distance from query
- Keogh et al. (VLDB 2004):
- identify motion clips differing by global scaling
- Forbes/Fiume (SCA 2005):
- PCA-based local features
- substring DTW for matching

Some Drawbacks

- DTW-based techniques computationally expensive
\leadsto do not scale to large databases
- Rely on numerical features
\rightsquigarrow hard to identify logically related motions
- No user-specified "center of attention,
\leadsto incorporation of a-priori knowledge not possible

Our Approach

- Introduction of relational features
\rightsquigarrow accounting for spatial deformations
- Introduction of adaptive temporal segmentation
\rightsquigarrow accounting for temporal deformations
- Usage of linear time/space indexing techniques
\leadsto scalable to large databases

Müller/Röder/Clausen (SIGGRAPH 2005)

Relational Features

Relational Features

Right foot

Left foot

Conjunction

Relational Features

Relational Features

Left hand touching head?

Both hands touching?

Relational Features

Right knee bent?

Right foot fast?

Right hand moving upwards?

Relational Features

Temporal Segmentation:

Induced feature sequence:
$\left(\binom{1}{1},\binom{0}{1},\binom{1}{1},\binom{1}{0},\binom{1}{1},\binom{0}{1},\binom{1}{1},\binom{1}{0},\binom{1}{1},\binom{0}{1}\right)$

Relational Features

Spatio-temporal invariance

Relational Features
Feature Adaptivity

224

Motion Retrieval

Motion Retrieval

Motion Retrieval

Motion Retrieval

Indexing with inverted lists

Motion Retrieval
Indexing with inverted lists

Motion Retrieval

Indexing with inverted lists

232

Motion Retrieval

Preprocessing (Index)

- 3 hours of Mocap data
- 31 (manually designed) boolean featues

Database	Index
$1,200,000$ frames	230,000 segments
370 MB	7.54 MB

- Index construction: 376 seconds
- Index time and index size linear in \#(segments)
- Index is query independent

Motion Retrieval

Query and retrieval stage

- Query motion clip
- Optional selection of preferences
- feature selection
- degree of fault tolerance ranking strategy
- Automatic conversion of query into feature sequence
- Retrieving hits based on inverted lists
- Typical query response times: 10-300 ms

Motion Retrieval
Results: Punch

Motion Retrieval
Results: Kick

236

Motion Retrieval

Results: Squat (unranked)

237

Motion Retrieval
Results: Squat (top 9 ranked)

Motion Templates

Müller/Röder (SCA 2006)

Motion Templates

Motion Templates

Motion Templates

Motion Templates

242

Motion Templates

п!

Motion Templates

254

Motion Templates

255

Motion Templates

MT-based Motion Retrieval

MT-based Motion Retrieval: Jumping Jack

MT-based Motion Retrieval: Jumping Jack

259

MT-based Motion Retrieval: Elbow-To-Knee

260

MT-based Motion Retrieval: Cartwheel

262

MT-based Motion Retrieval: Throw

MT-based Motion Retrieval: Basketball

265

MT-based Motion Retrieval: Basketball

266

MT-based Motion Retrieval: Lie Down Floor

MT-based Motion Retrieval: Lie Down Floor

Problems and Future Work

- Efficiency: MT-based matching is linear in database size
- Hit quality: MT-based matching has problems with short motions with few characteristic aspects
- Current work: Combine MT-based matching with aspects of exact matching:
- "Hard constraints" such as keyframes - Index-based preselection

Conclusions

- Automated data organization
- Handling object deformations
- Handling multimodality
- Synchronization (alignment)
- Efficiency

Conclusions

Literature

- Part I: Music Synchronization
- Part II: Audio Structure Analysis
- Part III: Audio Matching
- Part IV: Motion Retrieval

Part I: Music Synchronization

- N. Adams, D. Marquez, and G. H. Wakefield, Iterative deepening for melody alignment and retrieval, in Proc. ISMIR, London, GB, 2005.
- V. Arifi, M. Clausen, F. Kurth, and M. Müller, Synchronization of music data in V. Arifi, M. Clausen, F. Kurth, and M. Mûiler, Synchronization of music
score-, MIDI- and PCM-format, Computing in Musicology, 13 (2004).
- R. Dannenberg, An on-line algorithm for real-time accompaniment, in Proc. International Computer Music Conference (ICMC), 1984, pp. 193-198.
- R. Dannenberg and N. Hu, Polyphonic audio matching for score following and intelligent audio editors, in Proc. ICMC, San Francisco, USA, 2003, pp. 27-34
- R. Dannenberg and C. Raphael, Music score alignment and computer accompaniment, Special Issue, Commun. ACM, 49 (2006), pp. 39-43.
- S. Dixon and G. Widmer, Match: A music alignment tool chest, in Proc. ISMIR, London, GB, 2005
- R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Cambridge Univ. Press, 1999.
- C. Fremerey, F. Kurth, M. Müller, and M. Clausen, A demonstration of the SyncPlayer system, in Proc. ISMIR, Vienna, Austria, 2007.

Part I: Music Synchronization

- H. Fujihara, M. Goto, J. Ogata, K. Komatani, T. Ogata, and H. Okuno, Automatic synchronization between lyrics and music CD recordings based on Viterbi alignment of segregated vocal signals, ISM, 2006, pp. 257-264.
- L. Grubb and R. Dannenberg, Automated accompaniment of musical ensembles, AAAI, 1994, pp. 94-99.
- N. Hu, R. Dannenberg, and G. Tzanetakis, Polyphonic audio matching and alignment for music retrieval, in Proc. IEEE WASPAA, New Paltz, NY, October 2003.
- F. Kurth, M. Müller, C. Fremerey, Y. Chang, M. Clausen, Automated synchronization of scanned sheet music with audio recordings, in Proc. ISMIR, Vienna, Austria, 2007, pp. 261-266.
- F. Kurth, M. Müller, A. Ribbrock, T. Röder, D. Damm, and C. Fremerey, A prototypical service for real-time access to local context-based music information, in Proc. ISMIR, Barcelona, Spain, 2004.
- M. Müller, D. Appelt, Path-constrained partial music synchronization, in Proc. ICASSP, Las Vegas, USA, 2008.

Part I: Music Synchronization

- M. Müller, F. Kurth, D. Damm, C. Fremerey, and M. Clausen, Lyrics-based audio retrieval and multimodal navigation in music collections, in Proc. ECDL, 2007, pp. 112-123.
- M. Müller, F. Kurth, and T. Röder, Towards an efficient algorithm for automatic score-to-audio synchronization, in Proc. ISMIR, Barcelona, Spain, 2004.
- M. Müller, H. Mattes, and F. Kurth, An efficient multiscale approach to audio synchronization, in Proc. ISMIR, Victoria, Canada, 2006, pp. 192-197.
- N. Orio, Alignment of performances with scores aimed at content-based music access and retrieval, in Proc. ECDL, 2002, pp. 479-492.
- N. Orio, S. Lemouton, D. Schwarz, and N. Schnell, Score following: State of the art and new developments, NIME, 2003, pp. 36-41.
- C. Raphael, A probabilistic expert system for automatic musical accompaniment, Journal of Computational and Graphical Statistics, 10 (2001) pp. 487-512.
- C. Raphael, A hybrid graphical model for aligning polyphonic audio with musical scores, in Proc. ISMIR, Barcelona, Spain, 2004.

Part I: Music Synchronization

- F. Soulez, X. Rodet, and D. Schwarz, Improving polyphonic and polyinstrumental music to score alignment, in Proc. ISMIR, Baltimore, USA, 2003.
- R. J. Turetsky and D. P. Ellis, Force-Aligning MIDI Syntheses for Polyphonic Music Transcription Generation, in Proc. ISMIR, Baltimore, USA, 2003.
- B. Vercoe, The synthetic performer in the context of live performance, in Proc. International Computer Music Conference (ICMC), 1984, pp. 199-200.
- Y. Wang, M.-Y. Kan, T. L. Nwe, A. Shenoy, and J. Yin, Lyrically: Automatic synchronization of acoustic musical signals and textual lyrics, in Proc. ACM Multimedia, New York, USA, 2004, pp. 212-219.

Part II: Audio Structure Analysis

- J. Aucouturier and M. Sandler, Finding repeating patterns in acoustic musical signals, AES 2 2nd International Conference on Virtual, Synthetic and
Entertainment Audio, 2002.
- M. A. Bartsch and G. H. Wakefield, To catch a chorus: Using chromabased representations for audio thumbnailing, in Proc. IEEE WASPAA, New Paltz, IY USA, 2001, pp. 15-18
- M. A. Bartsch and G. H. Wakefield, Audio thumbnailing of popular music using chroma-based representations, IEEE Trans. on Multimedia, 7 (2005), pp. 96-104.
- W. Chai, Structural analysis of music signals via pattern matching, in Proc.

IEEE ICASS , Hong Kong, China, 2003

- W. Chai and B. Vercoe, Music thumbnailing via structural analysis, in Proc.

ACM Multimedia, 2003.

- M. Cooper and J. Foote, Automatic music summarization via similarity
analysis, in Proc. ISMIR, Paris, France, 2002.
- R. Dannenberg and N. Hu, Pattern discovery techniques for music audio, in Proc. ISMIR, Paris,
- J. Foote, Visualizing music and audio using self-similarity, in ACM Multimedia, 1999, pp. 77-80.

Part II: Audio Structure Analysis

- J. Foote, Automatic audio segmentation using a measure of audio novelty, IEEE ICME 2000, pp. 452-455.
- M. Goto, A chorus-section detecting method for musical audio signals, in Proc. IEEE ICASSP, Hong Kong, China, 2003, pp. 437-440.
- M. Goto, SmartMusicKIOSK: Music Listening Station with Chorus-Search Function, in Proc. ACM UIST, 2003, pp. 31-40.
- M. Goto, A chorus section detection method for musical audio signals and its application to a music listening station, IEEE Transactions on Audio, Speech \& Language Processing 14 (2006), no. 5, 1783-1794
- B.Logan and S. Chu, Music summarization using key phrases, in Proc.
ICASSP Istanbul, Turkey 2000 .

ICASSP, Istanbul, Turkey, 2000.

- L. Lu, M. Wang, and H.-J. Zhang, Repeating pattern discovery and structure analysis from acoustic music data, in Workshop on Multimedia Information Retrieval, ACM Multimedia, 2004.
- N. C. Maddage, C. Xu, M. S. Kankanhalli, and X. Shao, Content-based music s. C. Maddage, C. Xu, M. S. Kankers ans with applications to music semantics understanding, in Proc.
ACM Multimedia, New York, NY, USA, 2004, pp. 112-119.

Part II: Audio Structure Analysis

- M. Müller and S. Ewert, Joint structure analysis with applications to music annotation and synchronization, to appear in Proc. ISMIR, Philadelphia, USA, 2008.
- M. Müller and F. Kurth, Enhancing similarity matrices for music audio analysis, in Proc. IEEE ICASSP, Toulouse, France, 2006.
- M. Müller and F. Kurth, Towards structural analysis of audio recordings in the presence of musical variations, EURASIP Journal on Advances in Signal Processing, Article ID 89686 (2007).
- G. Peeters, Sequence representation of music structure using higher-order similarity matrix and maximum-likelihood approach, Proc. ISMIR, Vienna, Austria, 2007.
- G. Peeters, A. L. Burthe, and X. Rodet, Toward automatic music audio summary generation from signal analysis, in Proc. ISMIR, Paris, France, 2002.
- C. Rhodes, M. Casey, Algorithms for determining and labelling approximate hierarchical self-similarity, Proc. ISMIR, Vienna, Austria, 2007.
- C. Xu, N. Maddage, and X. Shao, Automatic music classification and summarization, IEEE Trans. on Speech and Audio Processing, 13 (2005)
pp. 441-450.

Part III: Audio Matching

- E. Allamanche, J. Herre, B. Fröba, and M. Cremer, AudioID: Towards ContentBased Identification of Audio Material, in Proc. 110th AES Convention, Amsterdam, NL, 2001
- P. Cano, E. Battle, T. Kalker, and J. Haitsma, A Review of Audio Fingerprinting, in Proc. 5. IEEE MMSP, St. Thomas, Virgin Islands, USA, 2002.
- M. Casey and M. Slaney, Song intersection by approximate nearest neighbor search, Proc. ISMIR, Victoria, Canada, 2006, pp. 144-149
- E. Gómez and P. Herrera, The song remains the same: identifying versions of the same piece using tonal descriptors, in Proc. ISMIR, Victoria, Canada, 2006, pp. 180-185
- J. Haitsma and T. Kalker, A highly robust audio fingerprinting system, in Proc. SMIR, Paris, France, 2002
- C. Fremerey, M. Müller, F. Kurth, M. Clausen, Automatic mapping of scanned sheet music to audio recordings, to appear in Proc. ISMIR, Philadelphia, USA 2008

Part III: Audio Matching

- F. Kurth, M. Clausen, and A. Ribbrock, Identification of highly distorted audio material for querying large scale data bases, in Proc. 112th AES Convention, Munich, Germany, 2002
- F. Kurth, M. Müller, Efficient Index-based Audio Matching. IEEE Trans. on Audio, Speech, and Language Processing 16(2) (2008) 382-395.
- M. Müller, F. Kurth, and M. Clausen, Audio matching via chroma-based statistical features, in Proc. ISMIR, London, GB, 2005.
- J. Pickens, J. P. Bello, G. Monti, T. Crawford, M. Dovey, M. Sandler, and D Byrd, Polyphonic score retrieval using polyphonic audio, in Proc. ISMIR, Paris, 2002.
- J. Serrà and E. Gómez, Audio cover song identification based on tonal sequence alignment, in Proc. IEEE ICASSP, 2008, pp. 61-64.
- P. Shrestha and T. Kalker, Audio fingerprinting in peer-to-peer networks, in Proc. ISMIR, Barcelona, Spain, 2004
- A. Wang, An industrial strength audio search algorithm, in Proc. ISMIR Baltimore, USA, 2003

Part IV: Motion Retrieval

- CMU, Carnegie-Mellon Mocap Database. http://mocap.cs.cmu.edu, 2003.
- K. Forbes and E. Fiume, An efficient search algorithm for motion data using weighted PCA, in Proc. 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM Press, 2005, pp. 67-76.
- E. J. Keogh, T. Palpanas, V. B. Zordan, D. Gunopulos, and M. Cardle, Indexing large human-motion databases, in Proc. 30th VLDB Conf., Toronto, 2004, pp. 780-791.
- L. Kovar and M. Gleicher, Automated extraction and parameterization of motions in large data sets, ACM Trans. Graph., 23 (2004), pp. 559-568.
- G. Liu, J. Zhang, W. Wang, and L. McMillan, A system for analyzing and indexing human-motion databases, in Proc. 2005 ACM SIGMOD Intl. Conf. on Management of Data, ACM Press, 2005, pp. 924-926.
- M. Müller and T. Röder, Motion templates for automatic classification and retrieval of motion capture data, in SCA '06: Proc. 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM Press 2006, pp. 137-146.
- M. Müller and T. Röder, A relational approach to content-based analysis of motion capture data, in Human Motion-Understanding, Modeling, Capture and Animation, B. Rosenhahn, R. Klette, and D. Metaxas, eds., Springer, Berlin, 2007.

Part IV: Motion Retrieval

- M. Müller, T. Röder, and M. Clausen, Efficient content-based retrieval of motion capture data, ACM Trans. Graph., 24 (2005), pp. 677-685.
- A. Witkin and Z. Popović, Motion warping, in Proc. ACM SIGGRAPH 95, Computer Graphics Proc., ACM Press/ACM SIGGRAPH, 1995, pp. 105-108
- M.-Y.Wu, S. Chao, S. Yang, and H. Lin, Content-based retrieval for human motion data, in 16th IPPR Conf. on Computer Vision, Graphics and Image Processing, 2003, pp. 605-612
- M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, and A. Weber, Documentation of the macoap database HDM05. Computer Graphics Technical Report, CG-2007-2, Department of Computer Science II, University of Bonn, 2007.
- K. Pullen and C. Bregler, Motion capture assisted animation: Texturing and synthesis, ACM Trans. Graph., (2002), pp. 501-508.
- Y. Sakamoto, S. Kuriyama, and T. Kaneko, Motion map: image based retrieval and segmentation of motion data, in Proc. 2004 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, ACM Press, 2004, pp. 259-266.

Book

Müller, Meinard

Information Retrieval for Music and Motion
2007, XVI. 318 pages
136 illus. 39 in Color, Hardcover
ISBN: 978-3-540-74047-6
www.springer.com/978-3-540-74047-6/ 69,50 EUR

