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Abstract
We present a tutorial that covers the latest research advances in interactive 3D shape modeling and deformation,
a highly relevant topic for CAGD, engineering applications, and computer animation for movies or games. We
focus on the essence of the underlying theory and principles, as well as the practical aspects of algorithm design
and development involved in interactive shape editing. Our presentation is meant to be comparative, juxtaposing
various recently proposed approaches and revealing their pros and cons in different modeling scenarios. As such,
our class is intended for both researchers and practitioners, helping to sift through the large body of work on
interactive modeling by a systematic, hands-on overview.

1. Introduction

Modeling, editing, and deformation of 3D shapes is an es-
sential part of the digital content creation process. It is a very
challenging research field, since complex mathematical for-
mulations (i) have to be hidden behind an intuitive user inter-
face and (ii) have to be implemented in a sufficiently efficient
and robust manner to allow for interactive applications.

We put together the latest research progress in the flour-
ishing field of interactive shape modeling, and present it in a
way accessible to scientists and practitioners. Our goal is to
deliver a clear and systematic survey of the underlying the-
ory, algorithms, and principles that enable new shape mod-
eling paradigms and simplify previously complex and time-
consuming shape modeling and editing tasks. We present
and compare recent advances in 3D surface modeling and
deformation, discuss related user interface issues, and em-
phasize practical considerations for researchers and devel-
opers.

We start by briefly reviewing shape modeling prelimi-
naries, namely the shape representations used in geomet-
ric modeling (Section 2) and the basic differential geometry
concepts that are used throughout the tutorial (Section 3).
We then discuss linear surface-based deformation methods
in Section 4, roughly classified into (multiresolution) bend-
ing energy minimization (Section 4.3 and Section 4.4) and
differential coordinates (Section 4.5). Linear space deforma-
tions are then presented in Section 5.

By “linear” we mean that the discussed techniques em-
ploy global linear optimization and/or only local nonlinear
computations. We point out the inherent limitations of lin-
ear(ized) deformation approaches (Section 4.6), which are
avoided by fully nonlinear techniques. The surface-based
nonlinear deformation is addressed in Section 6, while non-
linear space deformation methods are discussed in Sec-
tion 7.

2. Shape Representations

We start by briefly reviewing the shape representations typi-
cally used in geometric modeling. We focus on explicit sur-
face representations, which can roughly be classified as the
range of a bivariate parameterization function. We first de-
scribe spline surfaces in Section 2.1, since those are the main
representation used in most CAD system. Subdivision sur-
faces generalize splines surfaces and are much more flexible
in representing complex shapes (Section 2.2).

2.1. Spline Surfaces

Tensor-product spline surfaces are the standard surface rep-
resentation of today’s CAD systems. They are used for con-
structing high-quality surfaces from scratch as well as for
later surface deformation tasks. Spline surfaces can conve-
niently be described by the B-spline basis functions Nn

i (·),
for more detail see [Far97].
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Figure 1: Subdivision surfaces are generated by an iterative refinement of a coarse control mesh.

A tensor product spline surface f of degree n is a piece-
wise polynomial surface that is built by connecting several
polynomial patches in a smooth Cn−1 manner:

f(u,v) =
m

∑
i=0

m

∑
j=0

ci jN
n
i (u)Nn

j (v) .

The control points ci j ∈ IR3 define the so-called control grid
of the spline surface. The scalar-valued basis functions sat-
isfy Nn

i (u) ≥ 0 and ∑i Nn
i ≡ 1. Hence, each surface point

f(u,v) is a convex combination of the control points ci j, i.e.,
the surface lies within the convex hull of the control grid.
Due to the small support of the basis functions, each control
point has local influence only. These two properties cause
spline surfaces to closely follow the control grid, thereby
providing a geometrically intuitive metaphor for modeling
surfaces by adjusting its control points.

A tensor-product surface — as the image of a rectangular
domain under the parameterization f — always represents a
rectangular surface patch embedded in IR3. If shapes of more
complicated topological structure are to be represented by
spline surfaces, the model has to be decomposed into a large
number of (possibly trimmed) tensor-product patches.

As a consequence of these topological constraints, typical
CAD models consist of a huge collection of surface patches.
In order to represent a high quality, globally smooth surface,
these patches have to be connected in a smooth manner, lead-
ing to additional geometric constraints, that have to be taken
care of throughout all surface processing phases. The large
number of surface patches and the resulting topological and
geometric constraints significantly complicate surface con-
struction and in particular the later surface modeling tasks.

2.2. Subdivision Surfaces

Subdivision surfaces [ZSD∗00] can be considered as a gen-
eralization of spline surfaces, since they are also controlled
by a coarse control mesh, but in contrast to spline surfaces
they can represent surfaces of arbitrary topology. Subdivi-
sion surfaces are generated by repeated refinement of con-
trol meshes: After each topological refinement step, the po-
sitions of the (old and new) vertices are adjusted based on a
set of local averaging rules. A careful analysis of these rules
reveals that in the limit this process results in a surface of
provable smoothness (cf. Fig. 1).

As a consequence, subdivision surfaces are restricted nei-
ther by topological nor by geometric constraints as spline
surfaces are, and their inherent hierarchical structure allows
for highly efficient algorithms. However, subdivision tech-
niques are restricted to surfaces with so-called semi-regular
subdivision connectivity, i.e., surface meshes whose triangu-
lation is the result of repeated refinement of a coarse con-
trol mesh. As this constraint is not met by arbitrary surfaces,
those would have to be remeshed to subdivision connec-
tivity in a preprocessing step [EDD∗95, LSS∗98, KVLS99,
GVSS00]. But as this remeshing corresponds to a resam-
pling of the surface, it usually leads to sampling artifacts and
loss of information. In order to avoid the restrictions caused
by these connectivity constraints, we propose to work on ar-
bitrary triangle meshes, since they provide higher flexibility
and also allow for efficient surface processing.

2.3. Triangle Meshes

A triangle meshM consists of a geometric and a topological
component, where the latter can be represented by a graph
structure (simplicial complex) with a set of vertices

V = {v1, . . . ,vV }

and a set of triangular faces connecting them

F = { f1, . . . , fF} , fi ∈ V ×V ×V .

The connectivity of a triangle mesh can also be represented
in terms of the edges of the respective graph

E = {e1, . . . ,eE} , ei ∈ V ×V .

The geometric embedding of a triangle mesh in IR3 is speci-
fied by associating a 3D position xi to each vertex vi ∈ V:

P = {x1, . . . ,xV } , xi := x(vi) =

 x (vi)
y(vi)
z(vi)

 ∈ IR3 .

Each face f ∈ F then represents a triangle in 3-space speci-
fied by its three vertex positions.

If a sufficiently smooth surface is approximated by such a
piecewise linear function, the approximation error is of the
order O(h2), with h denoting the maximum edge length. Due
to this quadratic approximation power, the error is reduced
by a factor of 1/4 when halving the edge lengths. As this
refinement splits each triangle into four sub-triangles, it in-
creases the number of triangles from F to 4F (cf. Fig. 2).
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Figure 2: Each subdivision step halves the edge lengths,
increases the number of faces by a factor of 4, and reduces
the error by a factor of 1

4 .

Hence, the approximation error of a triangle mesh is in-
versely proportional to the number of its faces. The actual
magnitude of the approximation error depends on the sec-
ond order terms of the Taylor expansion, i.e., on the cur-
vature of the underlying smooth surface. From this we can
conclude that a sufficient approximation is possible with just
a moderate mesh complexity: The vertex density has to be
locally adapted to the surface curvature, such that flat areas
are sparsely sampled, while in curved regions the sampling
density is higher.

An important topological quality of a surface is whether
or not it is two-manifold, which is the case if for each point
the surface is locally homeomorphic to a disk (or a half-disk
at boundaries). A triangle mesh is two-manifold, if it does
neither contain non-manifold edges or non-manifold ver-
tices, nor self-intersections. A non-manifold edge has more
than two incident triangles and a non-manifold vertex is gen-
erated by pinching two surface sheets together at that ver-
tex, such that the vertex is incident to two fans of triangles
(cf. Fig. 3). Non-manifold meshes are problematic for most
algorithms, since around non-manifold configurations there
exists no well-defined local geodesic neighborhood.

For piecewise (polynomial) surface definitions, the most
difficult part is the construction of smooth transitions be-
tween neighboring patches. Since for triangle meshes, we
only require C0 continuity, we only have to make sure that
neighboring faces share a common edge (two common ver-
tices). This makes polygon meshes the most simple and flex-
ible continuous surface representation.

Figure 3: Two surface sheets meet at a non-manifold ver-
tex (left). A non-manifold edge has more than two incident
faces (center). The right configuration, although being non-
manifold in the strict sense, can be handled by most data
structures.

3. Differential Geometry

This section provides a brief review of important concepts
from differential geometry that form the basis of the defi-
nition of the discrete operators on triangle meshes. For an
in-depth discussion of continuous and discrete differential
geometry we refer the reader to the textbook [dC76] and the
course notes [GDP∗05], respectively.

3.1. Continuous Differential Geometry

Let us consider continuous surface S ⊂ IR3 that is given in
parametric form as

x(u,v) = (x(u,v), y(u,v), z(u,v))T ,

where the coordinate functions x, y, and z are (sufficiently
often) differentiable functions in u and v. The partial deriva-
tives w.r.t. u and v are denoted by

xu :=
∂x
∂u

and xv :=
∂x
∂v

and span the tangent plane at x(u,v) ∈ S. The normal vector
perpendicular to this tangent plane is given as

n =
xu×xv

‖xu×xv‖
.

The first fundamental form I of x is given by the matrix

I :=
(

xT
u xu xT

u xv

xT
u xv xT

v xv

)
, (1)

which defines an inner product on the tangent space of S.
The second fundamental form II is defined as

II :=
(

xT
uun xT

uvn
xT

uvn xT
vvn

)
. (2)

The symmetric bilinear first and second fundamental forms
allow to measure length, angles, area, and curvatures on the
surface.

Let t = axu + bxv be a unit vector in the tangent plane at
x, represented as t̄ = (a,b)T in the local coordinate system.
The normal curvature κn(t̄) is the curvature of the planar
curve that results from intersecting S with the plane through
x spanned by n and t. The normal curvature in direction t̄
can be expressed in terms of the fundamental forms as

κn (t̄) =
t̄T II t̄
t̄T I t̄

.

The minimal normal curvature κ1 and the maximal normal
curvature κ2 are called principal curvatures. The associated
tangent vectors t1 and t2 are called principal directions and
are always perpendicular to each other.

The Gaussian curvature K is defined as the product of the
principal curvatures, i.e.,

K = κ1κ2, (3)
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the mean curvature H as the average of the principal curva-
tures, i.e.,

H =
κ1 +κ2

2
. (4)

The following sections will make extensive use of the
Laplace operator ∆, respectively, the Laplace-Beltrami op-
erator ∆S . In general, the Laplace operator is defined as the
divergence of the gradient, i.e.

∆ = ∇2 =∇·∇ .

In Euclidean space this second order differential operator
can be written as the sum of second partial derivatives

∆ f = div∇ f = ∑
i

∂
2 f

∂x2
i

(5)

with Cartesian coordinates xi. The Laplace-Beltrami oper-
ator extends this concept to functions defined on surfaces.
For a given function f defined on a manifold surface S the
Laplace-Beltrami is defined as

∆S f = divS ∇S f ,

which requires a suitable definition of the divergence and
gradient operators on manifolds (see [dC76] for details). Ap-
plied to the coordinate function x of the surface the Laplace-
Beltrami operator evaluates to the mean curvature normal

∆S x = −2Hn .

3.2. Discrete Differential Geometry

The deformation approaches described later make extensive
use of the Laplace-Beltrami operator. The operator, however,
requires the existence of second derivatives. While this is
satisfied for smooth spline surfaces, it is not true for piece-
wise linear triangle meshes, such that the concepts intro-
duced above cannot be applied directly.

The following definitions of discrete differential operators
are based on the assumption that meshes can be interpreted
as piecewise linear approximations of smooth surfaces. The
general idea of the techniques described below is to compute
discrete differential properties as spatial averages over a lo-
cal neighborhood N (x) of a point x on the mesh. For our
purposes, x coincides with a mesh vertex vi, and one-ring
neighborhoodsN1 (v) are used as averaging domain.

Given a piecewise linear scalar function f : S → IR de-
fined on the mesh S, its discrete Laplace-Beltrami at a vertex
vi can be discretized in the form

∆S f (vi) = wi ∑
v j∈N1(vi)

wi j
(

f
(
v j
)
− f (vi)

)
, (6)

where v j ∈ N1 (vi) are the incident one-ring neighbors of
vi (cf. Fig. 4). The discretization depends on the per-vertex
normalization weights wi and the edge weights wi j = w ji.

αij

vi

vj

vj−1

vj+1
βij

Figure 4: The angles αi j and βi j and the (dark grey)
Voronoi area Ai used to discretize the Laplace-Beltrami ∆S
at a vertex vi in equations (6) and (7).

There exist several variations of the weights used in the
typically employed Laplacian discretization (6). The uni-
form Laplacian, proposed by [Tau95], uses the weights

wi j = 1 , wi =
1

∑ j wi j
.

Since this discretization takes neither edge lengths nor an-
gles into account, it cannot provide a good approximation
for irregular meshes. Better results can be achieved by

wi j =
1
2
(
cotαi j + cotβi j

)
, wi = 1,

which now considers angles, but not varying vertex densities
[YZX∗04]. The best results are obtained by including the
per-vertex normalization weights

wi j =
1
2
(
cotαi j + cotβi j

)
, wi =

1
Ai

, (7)

where αi j and βi j are the two angles opposite to the edge(
vi,v j

)
, and Ai is the Voronoi area of vertex vi. The latter

is defined in [MDSB03] as the area of the surface region
built by connecting incident edges’ midpoints with triangle
circumcenters (for acute triangles) or midpoints of opposite
edges (for obtuse triangles), as shown in Fig. 4.

This is the de-facto standard discretization, as proposed
by [PP93, DMSB99, MDSB03] and employed for instance
in [BK04a]. A qualitative comparison of the three discretiza-
tions is given in Fig. 5; in this example curvature energies
are minimized by solving ∆

2
Sx = 0, since smooth surfaces

are visually easier to evaluate than smooth deformations.
A more detailed analysis of different discretizations can be
found in [GDP∗05, WMKG07].

While the cotangent discretization clearly gives the best
results, it can also lead to numerical problems in the pres-
ence of near-degenerate triangles, since then the cotangent
values degenerate and the resulting matrices become singu-
lar. In this case the degenerate triangles would have to be
eliminated [BK01] in a preprocess, or even the whole sur-
face has to be remeshed [AUGA05].
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(a) (b) (c) (d)

Figure 5: Comparison of different Laplace-Beltrami discretizations when solving ∆
2
Sx = 0. (a) irregular triangulation of the

input mesh, (b) uniform Laplacian, (c) cotangent Laplacian without the area term, (d) cotangent discretization including the
per-vertex normalization. The small images visualize the respective mean curvatures.

Higher-order Laplacians can then be defined recursively

∆
k
S f (vi) = wi ∑

v j∈N1(vi)
wi j

(
∆

k−1
S f

(
v j
)
−∆

k−1
S f (vi)

)
.

After this brief review of surface representations and dif-
ferential geometry concepts we can now focus on shape de-
formation, starting with linear deformation approaches.

4. Linear Surface-Based Deformation

In the case of surface-based deformations we are looking for
a displacement function d :S → IR3 that lives on the surface.
This function maps each point of the given surface S to its
deformed version S′:

S′ := {x+d(x) | x ∈ S} .

In particular in engineering applications, exact control of the
deformation process is crucial, i.e., one has to be able to
specify displacements for a set of constrained points C:

d(xi) = di , ∀xi ∈ C .

Since we are targetting interactive shape deformations, an-
other important aspect is the amount of user interaction re-
quired to specify the desired deformation function d.

We will first discuss two standard deformation ap-
proaches, namely spline surfaces (Section 4.1) and transfor-
mation propagation (Section 4.2), before turning to the more
flexible and more powerful variational techniques (Sec-
tions 4.3 – 4.5).

4.1. Tensor-Product Spline Surfaces

As discussed in Section 2.1, the traditional surface repre-
sentation in CAGD are spline surfaces. They are controlled
by an intuitive control point metaphor and yield high qual-
ity smooth surfaces. A single tensor-product spline patch is
defined as

f(u,v) =
m

∑
i=0

m

∑
j=0

ci jN
n
i (u)Nn

j (v) .

Each control point ci j is associated with a basis function

Ni j (u,v) := Nn
i (u)Nn

j (v) .

A translation of a control point ci j therefore adds a smooth
bump of rectangular support to the surface (cf. Fig. 6, left).
Every more sophisticated modeling operation has to be com-
posed from such smooth elementary modifications. A gen-
eral spline displacement function has the form

d(u,v) =
m

∑
i=0

m

∑
j=0

δci j Ni j (u,v) ,

where δci j denotes the change of the control point ci j. The
support of the deformation is the union of the supports of in-
dividual basis functions. As the positions of the basis func-
tions are fixed to the initial grid of control points, this pro-
hibits a fine-grained control of the desired support region.
Moreover, the composition of fixed basis functions located
on a fixed grid might lead to alias artifacts in the resulting
surface, as shown in Fig. 6.

It was also shown in Section 2.1 that tensor-product spline
surfaces are restricted to rectangular domains, and that com-
plex surfaces therefore have to be composed by a large num-
ber of spline patches. Specifying complex deformations in
terms of control point movements thus involves a lot of
user interaction, since smoothness constraints across patch
boundaries have to be considered during the deformation
process.

Also note that prescribing constraints d(ui,vi) = di re-
quires to solve a linear system for the control point displace-
ments δci j. These systems can be over- as well as under-
determined, and hence are typically solved by least squares
and least norm techniques. However, in the first case, the
system cannot be solved exactly, and in the latter case the
minimization of control point displacements does not nec-
essarily lead to fair deformations, which would require to
minimize some fairness energy (Section 4.3).
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Figure 6: A modeling example using a bi-cubic tensor-product spline surface. Each control point is associated with a smooth
basis function of fixed rectangular support (left). This fixed support and the fixed regular placement of the control points, resp.
basis functions, prevents a precise support specification (center) and can lead to alias artifacts in the resulting surface, that are
revealed by more sensitive surface shading (right).

Figure 7: After specifying the blue support region and the
green handle region (left), a smooth scalar field is con-
structed that is 1 at the handle and 0 outside of the support
(center). This scalar field is used to propagate and damp the
handle’s transformation (right).

4.2. Transformation Propagation

The main drawback of spline-based deformations is that the
underlying mathematical surface representation is identical
to the basis functions that are used for the surface defor-
mation. To overcome this limitation, the deformation basis
functions consequently should be independent of the actual
surface representation.

A popular approach falling into this category works as fol-
lows (cf. Fig. 7): In a first step the user specifies the support
of the deformation (the region which is allowed to change)
and a handle region H within it. The handle region is di-
rectly deformed using any modeling interface, and its trans-
formation is smoothly interpolated within the support region
in order to blend between the transformed handleH and the
fixed part F of the surface.

This smooth blend is controlled by a scalar field s : S →
[0,1], which is 1 at the handle (full deformation), 0 out-
side the support (no deformation), and smoothly blends be-
tween 1 and 0 within the support region. One way to con-
struct such a scalar field is to compute geodesic (or Eu-
clidean) distances distF (x) and distH(x) from x to the fixed
part F and the handle region H, respectively, and to de-
fine [BK03a, PKKG03]

s(x) =
distF (x)

distF (x)+distH (x)
.

Figure 8: A sphere is deformed by lifting a handle poly-
gon (left). Propagating this translation based on geodesic
distance causes a dent in the interior of the handle polygon
(center). The more intuitive solution of a smooth interpola-
tion (right) cannot be achieved with this approach; it was
produced by variational energy minimization (Section 4.3).

While this definition of the scalar field is continuous, it
might not be smooth for concave handle shapes. An alterna-
tive is to construct the function s(x) to be smooth and har-
monic, i.e. ∆s = 0 [ZRKS05]. Using the Laplace-Beltrami
discretization of Section 3.2, this leads to a linear system to
be solved for the values of s at the unconstrained vertices:

∆Ss(xi) = 0 , xi 6∈ H∪F , (8)

s(xi) = 1 , xi ∈H ,

s(xi) = 0 , xi ∈ F .

Both types of scalar fields can further be enhanced by a
transfer function t (s(x)), which provides more control of the
blending process. The damping of the handle transformation
is then performed separately on the rotation, scale/shear, and
translation components, for instance like in [PKKG03]. In
cases where these individual components of the transforma-
tion are not given, they can be computed by polar decompo-
sition [SD92].

As shown in Fig. 8, the major problem with this approach
is that the distance-based propagation of transformations
will typically not result in the geometrically most intuitive
solution. This would require the interpolation of the handle
transformation by the displacement function d, while other-
wise minimizing some fairness energies.
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Figure 9: The surface S (left) is edited by minimizing its deformation energy subject to user-defined constraints that fix the gray
part F of the surface and prescribe the transformation of the yellow handle regionH. The deformation energy (10) consists of
stretching and bending terms, and the examples show pure stretching with ks = 1, kb = 0 (center left), pure bending with ks = 0,
kb = 1 (center right), and a weighted combination with ks = 1, kb = 10 (right).

4.3. Variational Energy Minimization

More intuitive surface deformations d with prescribed geo-
metric constraints d(xi) = di can be modeled by minimizing
physically-inspired elastic energies. The surface is assumed
to behave like a physical skin that stretches and bends as
forces act on it. Mathematically, this behavior can be cap-
tured by an energy functional that penalizes both stretching
and bending.

As mentioned in Section 3, the first and second funda-
mental forms I(u,v) and II(u,v) can be used to measure ge-
ometrically intrinsic properties of S, such as lengths, areas,
and curvatures. When the surface S is deformed to S′, and
its fundamental forms change to I′ and II′, the difference of
the fundamental forms can be used as an elastic thin shell
energy that measures stretching and bending [TPBF87]:

Eshell
(
S′
)

=
∫

Ω

ks
∥∥I′− I

∥∥2
+ kb

∥∥II′− II
∥∥2

dudv . (9)

The stiffness parameters ks and kb are used to control the
resistance to stretching and bending, respectively. In a mod-
eling application one would have to minimize the elastic en-
ergy (9) subject to user-defined deformation constraints. As
shown in Fig. 9, this typically means fixing certain surface
parts F ⊂ S and prescribing displacements for the so-called
handle region(s)H⊂ S.

However, this nonlinear minimization is computationally
too expensive for interactive applications. It is therefore sim-
plified and linearized by replacing the difference of funda-
mental forms by partial derivatives of the displacement func-
tion d [CG91, WW92]:

Ẽshell (d) =
∫

Ω

ks

(
‖du‖2 +‖dv‖2

)
+ (10)

kb

(
‖duu‖2 +2‖duv‖2 +‖dvv‖2

)
dudv ,

where we again used the notation dx = ∂d
∂x and dxy = ∂

2d
∂x∂y .

For the efficient minimization of (10) we apply variational
calculus, which yields the corresponding Euler-Lagrange
equations that characterize the minimizer of (10), again sub-
ject to user constraints:

−ks ∆Sd + kb ∆
2
Sd = 0 . (11)

Notice that for the second derivatives in (10) to closely
approximate surface curvatures (i.e., bending), the parame-
terization x : Ω→S should be as close to isometric as pos-
sible. Therefore Ω is typically chosen to equal S, such that
d : S → IR3 is defined on the manifold S itself. As a con-
sequence, the Laplace operator in (11) corresponds to the
Laplace-Beltrami operator (see Section 3).

The order k of partial derivatives in the energy (10) or in
the corresponding Euler-Lagrange equations (−1)k

∆
k
Sd = 0

defines the maximum continuity Ck−1 for interpolating dis-
placement constraints [BK04a]. Hence, minimizing (10) by
solving (11) provides C1 continuous surface deformations,
as can also be observed in Fig. 9. On a discrete triangle mesh,
the C1 constraints are defined by the first two rings of fixed
vertices F and handle verticesH.

Using the cotangent discretization of the Laplace-
Beltrami defined in Section 3.2, the Euler-Lagrange PDE
(11) turns into a sparse bi-Laplacian linear system:

−ks ∆Sd + kb ∆S
2d = 0 , xi 6∈ H∪F , (12)

d(xi) = di , xi ∈H ,

d(xi) = 0 , xi ∈ F .

Interactively manipulating the handle region H changes
the boundary constraints of the optimization, i.e., the right-
hand side of the linear system Eq. (12). As a consequence,
this system has to be solved in each frame. In Section A we
will discuss efficient linear system solvers that are particu-
larly suited for this multiple right-hand side problem. Also
notice that restricting to affine transformation of the handle
region H (which is usually sufficient) allows to precompute
basis functions of the deformation, such that instead of solv-
ing (12) in each frame, only the basis functions have to be
evaluated [BK04a].

The approaches of [KCVS98] and [BK04a] can be consid-
ered as instances of the framework described in this section,
since both methods solve bi-Laplacian system to derive fair
shape deformations. Other methods are conceptually similar,
but achieve smooth deformations, for instance by hierarchi-
cal smoothing [GSS99] or subdivision surfaces [ZSS97].
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Figure 10: The right strip H of the bumpy plane (left) is lifted. The intuitive local rotations of geometric details cannot be
achieved by a linearized deformation alone (center left). A multiresolution approach based on normal displacements (center
right) correctly rotates local details, but also distortions them, which can be seen in the left-most row of bumps. The more
accurate result of a nonlinear technique is shown on the right.

4.4. Multiresolution Deformation

The variational optimization techniques introduced in the
last section provide C1 continuous, smooth, and fair surface
deformations. Interactive performance is achieved by sim-
plifying or linearizing the nonlinear shell energy (9), such
that the techniques become linear in the sense that they only
require solving a linear system for the deformed surface S′.

However, as a consequence of this linearization, such
methods typically do not correctly handle fine-scale surface
details, as depicted in Fig. 10. The local rotation of geo-
metric details is an inherently nonlinear behavior, and hence
cannot be modeled by purely linear techniques. One way to
preserve geometric details under global deformations, while
still using a linear deformation approach, is to use multires-
olution techniques, as described in this section.

Multiresolution (or multi-scale) techniques perform a fre-
quency decomposition of the object in order to provide
global deformations with intuitive local detail preservation.
Mesh smoothing generalizes signal processing techniques,
such as low-pass filtering, to (signals on) surfaces [BPK∗08].
In this setting the fine surface details correspond to the high
frequencies of the surface signal and the global shape is
represented by its low frequency components. However, in
contrast to surface smoothing, one now wants to explicitly
modify the low frequencies and preserve the high frequency
details, resulting in the desired multiresolution deformation.
Fig. 11 shows a simple 2D example of this concept.

The complete multiresolution editing process is depicted
in Fig. 12. In a first step a low-frequency representation of
the given surface S is computed by removing the high fre-
quencies, yielding a smooth base surface B. The geometric
details D = S 	B, i.e., the fine surface features that have
been removed, represent the high frequencies of S and are
stored as detail information. This allows reconstructing the
original surface S by adding the geometric details back onto
the base surface: S = B⊕D. The special operators 	 and
⊕ are called the decomposition and the reconstruction op-
erator of the multiresolution framework, respectively. This

Figure 11: A multiresolution deformation of a sine wave.
A frequency decomposition yields the dashed line as its low
frequency component (left). Bending this line and adding the
higher frequencies back onto it results in the desired global
shape deformation (right).

multiresolution surface representation is now enhanced by
an editing operator, that is used to deform the smooth base
surface B into a modified version B′. Adding the geomet-
ric details onto the deformed base surface then results in a
multiresolution deformation S′ = B′⊕D.

Notice that in general more than one decomposition
step is used to generate a hierarchy of meshes S =
S0,S1, . . . ,Sk =B with decreasing geometric complexity. In
this case the frequencies that are lost from one level Si to
the next smoother one Si+1 are stored as geometric details
Di+1 = Si	Si+1, such that after deforming the base surface
to B′, the modified original surface can be reconstructed by
S′ =B′

⊕k−1
i=0 Dk−i. Since the generalization to several hier-

archy levels is straightforward, we restrict our explanations
to the simpler case of a two-band decomposition, as shown
in Fig. 12.

A complete multiresolution deformation framework has
to provide the three basic operators shown in Fig. 12: the
decomposition operator (detail analysis), the editing opera-
tor (shape deformation), and the reconstruction operator (de-
tail synthesis). The decomposition is typically performed by
mesh smoothing or fairing [BPK∗08], and surface deforma-
tion has been discussed above. The missing component is a
suitable representation for the geometric detail D = S 	B,
which we describe in the following.

c© The Eurographics Association 2009.

18



O. Sorkine & M. Botsch / Interactive Shape Modeling and Deformation

Geometric
Details

Multiresolution Editing

De
co

m
po

sit
io

n Reconstruction

S S
′

B

Editing

B
′

D

Figure 12: A general multiresolution editing framework
consists of three main operators: the decomposition oper-
ator, that separates the low and high frequencies, the edit-
ing operator, that deforms the low frequency components,
and the reconstruction operator, that adds the details back
onto the modified base surface. Since the lower part of this
scheme is hidden in the multiresolution kernel, only the mul-
tiresolution edit in the top row is visible to the designer.

Figure 13: Representing the displacements w.r.t. the global
coordinate system does not lead to the desired result (left).
The geometrically intuitive solution is achieved by storing
the detail w.r.t. local frames that rotate according to the local
tangent plane’s rotation of B (right).

4.4.1. Displacement Vectors

The straightforward representation for multiresolution de-
tails is a displacement of the base surface B, i.e., the de-
tail information is a vector valued displacement function
h : B → IR3 that associates a displacement vector h(b) with
each point b on the base surface. In a typical setting S and
B will have the same connectivity, leading to per-vertex dis-
placement vectors hi [ZSS97, KCVS98, GSS99]:

xi = bi +hi , hi ∈ IR3,

where bi ∈ B is the vertex corresponding to xi ∈ S. The
vectors hi have to be encoded in local frames w.r.t. B
[FB88, FB95], determined by the normal vector ni and two
vectors spanning the tangent plane (cf. Fig. 13). When the
base surface B is deformed to B′, the displacement vectors
rotate according to the rotations of the base surface’s local
frames, which then leads to a plausible detail reconstruction
for S′.

4.4.2. Normal Displacements

As we will see below, long displacement vectors might lead
to instabilities, in particular for bending deformations. As
a consequence, for numerical robustness the displacement
vectors should be as short as possible, which is the case if
they connect vertices xi ∈ S to their closest surface points
on B instead of to their corresponding vertices of B. This
idea leads to normal displacements that are perpendicular to
B, i.e., parallel to its normal field n:

xi = bi +hi ·ni , hi ∈ IR. (13)

Since the displacements are in general not parallel to the sur-
face normal, generating normal displacements has to involve
some kind of resampling. Shooting rays in normal direction
from each base vertex bi ∈ B and deriving new vertex po-
sitions xi ∈ S at their intersections with the detailed surface
leads to a resampling of the latter [GVSS00, LMH00]. Be-
cause S might be a detailed surface with high frequency fea-
tures, such a resampling is likely to introduce alias artifacts.
Hence, Kobbelt et al. [KVS99] go the other direction: for
each vertex position xi ∈ S they find a base point bi ∈ B
(now not necessarily a vertex of B), such that the displace-
ments are normal to B, i.e., xi = bi + hi ·n(bi). This avoids
a resampling of S and therefore allows for the preservation
of all of its sharp features (see also [PKG06] for a compar-
ison and discussion). Since the base points bi are arbitrary
surface points of B, the connectivity of S and B is no longer
restricted to be identical. This can be exploited in order to
remesh the base surface B for the sake of higher numerical
robustness [BK04b].

4.4.3. Displacement Volumes

While normal displacement are extremely efficient, their
main problem is that neighboring displacement vectors are
not coupled in any way. When bending the surface in a
convex or concave manner, the angle between neighboring
displacement vectors increases or decreases, leading to an
undesired distortion of geometric details (cf. Figs. 10 and
14). In the extreme case of neighboring displacement vec-
tors crossing each other (which happens if the curvature of
B′ becomes larger than the displacement length hi), the sur-
face even self-intersects locally.

Both problems, the unnatural change of volume and lo-
cal self-intersections, are addressed by displacement vol-
umes instead of displacement vectors [BK03b]. Each trian-
gle
(
xi,x j,xk

)
of S, together with the corresponding points(

bi,b j,bk
)

on B, defines a triangular a prism. The volumes
of those prisms are used as detail coefficients D, and are
kept constant during deformations. For a modified base sur-
face B′ the reconstruction operator therefore has to find S′
such that the enclosed prisms have the same volumes as
for the original shape. The local volume preservation leads
to more intuitive results and avoids local self-intersections
(cf. Figs. 10, 14). However, the improved detail preservation
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Figure 14: For a bending of the bumpy plane, normal displacements distort geometric details and almost lead to self-
intersections (left), whereas displacement volumes (center) and deformation transfer (right) achieve more natural results.

comes at the higher computational cost of a nonlinear detail
reconstruction process.

4.4.4. Deformation Transfer

Botsch et al. [BSPG06] use the deformation transfer ap-
proach of [SP04] to transfer the base surface deformation
B 7→ B′ onto the detailed surface S, resulting in a multireso-
lution deformation S′. This method yields results similar in
quality to displacement volumes (cf. Fig. 14), but only re-
quires solving a sparse linear Poisson system. Both in terms
of results and of computational efficiency this method can
be considered as lying in between displacement vectors and
displacement volumes.

4.5. Differential Coordinates

While multiresolution or multi-scale hierarchies are an ef-
fective tool for enhancing freeform deformations by fine-
scale detail preservation, the generation of the hierarchy can
become quite involved for geometrically or topologically
complex models. To avoid the explicit multi-scale decom-
position, another class of methods modifies differential sur-
face properties instead of spatial coordinates, and then re-
constructs a deformed surface having the desired differential
coordinates.

We will first describe two typical differential representa-
tions, gradients and Laplacians, and how to derive the de-
formed surface from the manipulated differential coordi-
nates. We then explain how to compute the local transfor-
mations of differential coordinates based on the user’s de-
formation constraints. More details on these topics, such
as methods based on local frames [LSLC05, LCOGL07,
SYBF06], sketching interfaces [NSAC05], or volumetric
Laplacians [ZHS∗05], can be found in the recent sur-
vey [BS07].

4.5.1. Gradient-Based Deformation

The methods of [YZX∗04, ZRKS05] deform the surface by
prescribing a target gradient field and finding a surface that
matches this gradient field in the least squares sense. In

the continuous setting, consider a function f : Ω→ IR that
should match a user-prescribed gradient field g by minimiz-
ing ∫

Ω

‖∇ f −g‖2 dudv .

Applying variational calculus yields the Euler-Lagrange
equation

∆ f = divg , (14)

which has to be solved for the optimal f .

On a discrete triangle mesh, a piecewise linear function
f : S → IR is defined by its values fi := f (xi) at the mesh
vertices, which are linearly interpolated within triangles. The
gradient ∇ f : S → IR3 is a constant vector g j ∈ IR3 within
each triangle f j.

If instead of a scalar function f the piecewise linear co-
ordinate function x(vi) = xi ∈ IR3 is considered, then the
gradient within a face f j is a constant 3×3 matrix

∇x| f j
=: G j ∈ IR3×3 .

For a mesh with V vertices and F triangles, the discrete gra-
dient operator can be expressed by a 3F×V matrix G: G1

...
GF

 = G ·

 xT
1
...

xT
V

 .

The face gradients are then modified explicitly (as discussed
later), yielding new gradients G′j per triangle f j . Recon-
structing a mesh having these desired gradients is an overde-
termined problem, and therefore is solved in a weighted least
squares sense using the normal equations [GL89b]:

GT DG︸ ︷︷ ︸
∆S

·


x′1

T

...
x′V

T

 = GT D︸ ︷︷ ︸
div

·

 G′1
...

G′F

 , (15)

where D is a diagonal matrix containing the face areas as
weighting factors. Since the matrix GT D corresponds to the
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(a) (b) (c) (d)

Figure 15: Using gradient-based editing to bend the cylinder (a) by 90◦. Reconstructing the mesh from new handle positions,
but original gradients distorts the object (b). Applying damped local rotations derived from (16) to the individual triangles
breaks up the mesh (c), but solving the Poisson system (15) re-connects it and yields the desired result (d).

discrete divergence operator, and since div∇ = ∆, this sys-
tem actually is a Poisson equation. It corresponds to the dis-
cretization of the Euler-Lagrange PDE (14). Hence, these
methods prescribe a guidance gradient field (G′1, . . . ,G

′
F ),

compute its divergence, and solve three sparse linear Poisson
systems for the x, y, and z coordinates of the modified mesh
vertices x′i . An example deformation is shown in Fig. 15.

4.5.2. Laplacian-Based Deformation

Other methods manipulate Laplacians of the vertices instead
of gradient fields [LSC∗04, SCL∗04, ZHS∗05, NSAC05].
They compute initial Laplacian coordinates δi = ∆S (xi) and
manipulate them to δ

′
i as discussed below. The goal is to find

a new coordinate function x′ that matches the target Laplace
coordinates. In the continuous setting one has to minimize∫

Ω

∥∥∆Sx′−δ
′∥∥2

dudv ,

which leads to the Euler-Lagrange equations

∆
2
Sx′ = ∆Sδ

′ .

On a discrete mesh, this yields a bi-Laplacian system to be
solved for the deformed surface S′:

∆
2
S ·


x′1

T

...
x′V

T

 = ∆S ·


δ
′
1

T

...
δ
′
V

T

 .

Although the original approaches use the uniform Laplacian
discretization [LSC∗04,SCL∗04], the cotangent weights can
be shown to yield better results for irregular triangle meshes
(see Fig. 5 and [BS07]).

When we do not consider the local transformation δi 7→
δ
′
i , but instead reconstruct the surface from the original

Laplacians δi, then the Euler-Lagrange equation ∆
2
Sx′ =

∆Sδ reveals the connection to the variational bending min-
imization (Section 4.3), whose Euler-Lagrange PDE is
∆

2
Sx′ = 0. Using the identities x′ = x + d and δ = ∆Sx one

immediately sees that the two approaches are equivalent.
The methods differ in the way they model the local rota-
tions of geometric details or differential coordinates, either
by multiresolution methods (Section 4.4) or by local trans-
formations, as discussed in the following.

4.5.3. Local Transformations

The missing component is a technique for modifying the gra-
dients G j or Laplacians δi based on the affine handle trans-
formation provided by the user. The methods discussed be-
low derive local transformations Ti in order to transform gra-
dients (G′j = Gi ·T j) or Laplacians (δ′i = Ti ·δi).

The gradient-based approaches [YZX∗04, ZRKS05] use
the gradient of this affine deformation, i.e., its rotation and
scale/shear components, for transforming the surface gra-
dients. They first construct a smooth scalar blending field
s :S→ [0,1] based on either geodesic distances (Section 4.2)
or harmonic fields. The gradient T = RS of the affine han-
dle transformation x 7→ Tx + t is decomposed into rotation
R and scale/shear S using polar decomposition [SD92]. Both
components are then interpolated over the support region:

Ti = slerp(R,I,1− si) · ((1− si)S+ siI) , (16)

where slerp(·) denotes quaternion interpolation, si = s(xi)
is the vertex’ blending value, and I denotes the identity ma-
trix. This method works well for rotations, since those are
handled explicitly, but it is insensitive to handle transla-
tions: Adding a translation t to a given deformation does not
change its gradient, and thus has no influence on the result-
ing surface gradients. But as there is a (nonlinear) connec-
tion between translations and local rotations of gradients,
these methods yield counter-intuitive results for modifica-
tions containing large translations (Section 4.6).
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Original [BK04a] [ZRKS05] [LSLC05] [BPGK06]

Figure 16: The crouching dragon was lifted by fixing its hind feet and moving its head to the target position in a single, large-
scale deformation. Similar to Fig. 17, the linear deformation methods yield counter-intuitive results. The nonlinear PriMo
technique yields a more natural deformation.

To address this issue, Sorkine et al. [SCL∗04] implicitly
optimize for the local rotations Ti of vertex neighborhoods
by minimizing the following energy functional

E
(
x′1, . . . ,x

′
V
)

=
V

∑
i=1

∥∥Tiδi−∆
(
x′i
)∥∥2

+ ∑
i∈C

∥∥x′i−ui
∥∥2

,

where ui are the target positions for the constrained vertices
xi, i ∈ C. For the sake of computational efficiency they had
to linearize the local frame transformations Ti, which on the
one hand allows to formulate the optimization as a single
linear system, but one the other hand leads to artifacts in
case of large rotations.

Lipman et al. [LSLC05, LCOGL07] minimize surface
bending by preserving the relative orientations of per-vertex
local frames. This is done by first solving a linear least
squares system for the modified per-vertex local frame ro-
tations Ti, and reconstructing the modified vertex positions
x′i in a second step. However, since the first system does not
consider the positional constraints, one has to ensure that
the positional constraints and the orientation constraints are
compatible. While their method works very well even for
large rotations, it exhibits the same translation-insensitivity
as the gradient-based methods.

4.6. Limitations of Linear Methods

In this section we compare the linear surface deformation
techniques discussed so far, and point out their limitations.
The goal is therefore not to show the best-possible re-
sults each method can produce, but rather to show under
which circumstances each individual method fails. Hence,
in Fig. 17 we picked extreme deformations that identify the
respective limitations of the different techniques. For com-
parison we show the results of the non-linear surface defor-
mation PriMo [BPGK06] (to be discussed in Section 6) ,

which does not suffer from linearization artifacts. For more
detailed comparisons see [BS07].

The variational bending energy minimization [BK04a], in
combination with the multiresolution technique [BSPG06]
works fine for pure translations, and yields fair and de-
tail preserving deformations. However, due to the lineariza-
tion of the shell energy this approach fails for large rota-
tions. The gradient-based editing [YZX∗04, ZRKS05] up-
dates the surface gradients using the gradient of the defor-
mation (its rotation and scale/shear components), and there-
fore works very well for rotations. However, as mentioned in
the last section, the explicit propagation of local rotations is
translation-insensitive, such that the plane example is neither
smooth nor detail preserving. The Laplacian surface edit-
ing [SCL∗04] implicitly optimizes for local rotations, and
hence works similarly well for translations and rotations.
However, the required linearization of rotations yields arti-
facts for large rotations.

As the physical equations governing the surface defor-
mation process are inherently nonlinear, all linearized tech-
niques fail under certain circumstances. While the varia-
tional energy minimization typically works for translations,
but have problems with large rotations, it is the other way
around for differential approaches. Another comparison on
a large-scale transformation is shown in Fig. 16. To over-
come the limitations for large-scale deformations, those ei-
ther have to be split up into sequences of smaller deforma-
tions — thereby complicating the user interaction — or non-
linear approaches have to be considered, as discussed in Sec-
tion 6.
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Approach Pure Translation 120◦ bend 135◦ twist

Original model

Nonlinear prism-based
modeling [BPGK06]

Variational
minimization [BK04a]

+ deformation
transfer [BSPG06]

Gradient-based
editing [ZRKS05]

Laplacian-based
editing with implicit

optimization [SCL∗04]

Figure 17: The extreme examples shown in this comparison matrix were particularly chosen to reveal the limitations of the
respective deformation approaches.
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Figure 18: Freeform space deformations warp the space
around an object, and by this deform the embedded object
itself.

5. Linear Space Deformation

All the surface-based approaches described in Section 4
compute a smooth deformation field on the surface S.
For linear methods this typically amounts to solving a
(bi-)Laplacian system as the Euler-Lagrange PDE of some
quadratic energy, whereas nonlinear approaches minimize
higher order energies using Newton- or Gauss-Newton-
like techniques. An apparent drawback of such methods is
that their computational effort and numerical robustness are
strongly related to the complexity and quality of the surface
tessellation.

In the presence of degenerate triangles the discrete Lapla-
cian operator is not well-defined and thus the involved lin-
ear systems become singular. Similarly, topological artifacts
like gaps or non-manifold configurations lead to problems
as well. In such cases quite some effort has to be spent
to still be able to compute smooth deformations for the
numerically problematic meshes, like eliminating degener-
ate triangles [BK01] or even remeshing the complete sur-
face [BK04b]. Even when the mesh quality is sufficiently
high, extremely complex meshes will result in linear or non-
linear systems which cannot be solved simply due to their
size.

These problems are avoided by volumetric space defor-
mation techniques, that deform the ambient 3D space and
by this implicitly deform the embedded objects (cf. Fig. 18).
In contrast to surface-based methods, space deformation ap-
proaches employ a trivariate deformation function d : IR3→
IR3 to transform all points of the original surface S to the
modified surface S′ = {p+d(p) |p ∈ S}. Since the space
deformation function d does not depend on a particular sur-
face representation, it can be used to deform all kinds of ex-
plicit surface representations, e.g., by transforming all ver-
tices of a triangle mesh or all points of a point-sampled
model.

A space deformation is defined via a (usually simple) con-
trol object; user-defined deformation of this object is inter-
polated to the 3D space and evaluated at the input surface
points. Space deformations are typically simple to imple-
ment, and they are highly efficient and robust, because the
cost of the deformation is mainly dependent on the complex-
ity of the control object and not on the deformed shape. In

Figure 19: In the freeform deformation approach a regu-
lar 3D control lattice is used to specify a volumetric dis-
placement function (left). Similar to tensor-product spline
surfaces, the tri-variate tensor-product splines can also lead
to alias artifacts in the deformed surface (right).

the following we discuss a representative set of linear space
deformation techniques, i.e., methods where no global non-
linear optimization is involved. These techniques are charac-
terized by either local computations or at most global linear
optimization involving the control object.

5.1. Freeform Deformation

The classical freeform deformation (FFD) method [SP86]
represents the space deformation by a tensor-product Bézier
or spline function

d(u,v,w) = ∑
i

∑
j
∑
k

δci jk Nl
i (u)Nn

j (v)Nm
k (w) .

Because of the same reasons as for spline surfaces (Sec-
tion 4.1), these approaches require complex user-interactions
and can cause aliasing problems, as shown in Fig. 19. In
order to satisfy given displacement constraints, the inverse
FFD method [HHK92] solves a linear system for the re-
quired movements of control points ci jk, which again does
not necessarily imply a fair deformation of low curvature
energy.

5.2. Transformation Propagation

Handle transformations can be propagated analogously to
the surface-based techniques described in Section 4.2 by
constructing the scalar field s(·) based on Euclidean dis-
tances, instead of geodesic distances [PKKG03]. While this
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typically leads to inferior results compared to geodesic-
based propagation, this method even works if a surface-
based propagation fails due to topological problems like
gaps or holes.

Besides from that, the limitations of the surface-based
propagation also apply to this method. A smooth interpo-
lation of arbitrary constraints might not be possible, and the
resulting surface fairness is typically inferior to techniques
based on energy minimization.

5.3. Radial Basis Functions

In the case of surface-based deformations, the highest qual-
ity results are achieved by interpolating user constraints by
a displacement function d : S → IR3 that additionally mini-
mizes fairness energies (Section 4.3). Motivated by this, we
therefore are looking for smoothly interpolating tri-variate
space deformation functions d : IR3 → IR3 that minimize
analogous fairness energies.

Radial basis functions (RBFs) are known to be well suited
for scattered data interpolation problems [Wen05]. A trivari-
ate RBF deformation is defined in terms of centers c j ∈ IR3

and weights w j ∈ IR3 as

d(x) = ∑
j

w j ·ϕ
(∥∥c j−x

∥∥)+p(x) , (17)

where ϕ
(∥∥c j−·

∥∥) is the basis function corresponding to the
jth center c j and p(x) is a polynomial of low degree used
to guarantee polynomial precision. In order to construct an
RBF interpolating the constraints d(pi) = di, the centers are
typically placed on the constraints (ci = pi) and a linear sys-
tem is solved for the RBF’s weights wi and the coefficients
of the polynomial p(x) (see for instance [BK05]).

The choice of ϕ has a strong influence on the computa-
tional complexity and the resulting surface’s fairness: While
compactly supported radial basis functions lead to sparse lin-
ear systems and hence can be used to interpolate several hun-
dred thousands of data points [MYC∗01, OBS04], they do
not provide the same degree of fairness as basis functions of
global support [CBC∗01]. It was shown by Duchon [Duc77]
that for the basis function ϕ(r) = r3 and quadratic polyno-
mials p(·) ∈ Π2, the function (17) is triharmonic (∆3d = 0)
and minimizes the energy∫

IR3
‖dxxx (x)‖2 +‖dxxy (x)‖2 + . . .+‖dzzz (x)‖2 dx .

Notice that these trivariate functions are conceptually equiv-
alent to the minimum variation surfaces of [MS92] and the
triharmonic surfaces used in [BK04a], and hence provide
the same degree of fairness. The difference is that for trihar-
monic RBFs the energy minimization is “built-in”, whereas
for surface-based approaches we explicitly optimized for it
(Section 4.3). The major drawback is that the fairness prop-
erty comes at the price of having to solve a dense linear sys-

Figure 20: Using multiple independent handle components
allows to stretch the hood while rigidly preserving the shape
of the wheel houses. This 3M triangle model consists of 10k
individual connected components, which are neither two-
manifold nor consistently oriented.

tem, due to the global support of the triharmonic basis func-
tion ϕ(r) = r3.

Botsch and Kobbelt [BK05] propose an incremental least
squares method that efficiently solves the linear system up to
a prescribed error bound. Using this solver to pre-compute
deformation basis functions allows interactively deform-
ing even complex models. Moreover, evaluating these basis
functions on the graphics card further accelerates this ap-
proach and provides real-time space deformations at a rate
of 30M vertices/sec. As shown in Fig. 20, even complex sur-
faces consisting of disconnected patches can be handled by
this technique, whereas all surface-based techniques would
fail in this situation.

However, for the discussed space deformation approaches
the deformed surface S′ linearly depends on the displace-
ment constraints di. As a consequence, nonlinear effects
such as local detail rotation cannot be achieved, similar to
the linear surface-based methods. Although space deforma-
tions can be enhanced by multiresolution techniques as well
(see, e.g., [MBK07]), they suffer from the same limitations
as discussed in Section 4.6, which lead to the development
of nonlinear space deformation approaches.

5.4. Cage-based techniques

As mentioned, early space deformations used lattices as con-
trol objects [SP86,Coq90]; these, however, are cumbersome
to manipulate manually since the control points do not nec-
essarily correspond to meaningful parts of the shape that the
user wishes to modify. The structure of the underlying shape
that is being deformed by the space warp can be easily de-
stroyed, unless the space warp is very carefully designed.

Over the last decade it has been recognized that pre-
cise control over the properties of the deforming surface
is required for more satisfactory results. Since space de-
formations are oblivious to the actual shape that is being
edited, better control can be gained by employing control
objects whose shape and structure is closely related to that
of the edited shape. The Wires framework by Singh and Fi-
ume [SF98] employs spatial curves to construct the defor-
mation; the curves are aligned with prominent characteristic
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Figure 21: Deforming a shape using cage-based space
warp. The cage is a coarse representation of the shape; all
points in space are represented relative to the cage using
mean-value coordinates [JSW05] in this example.

features of the edited shape and affect the surface parts in
their vicinity. The framework uses a clever way to blend the
space deformations induced by multiple curves.

Apart from direct surface manipulation as in the RBF
space deformations above, later work proposed the use of
so-called cages as control objects for shape deformations.
Typically, the cage is a coarse polyhedron that can be viewed
as a roughly approximating version of the input shape. The
cage polyhedron is offsetted such that the edited shape re-
sides within its interior.

Let us denote the set of cage vertices by {vi}n
i=1 and the

set of triangles by {t j}k
j=1. The basic approach of cage-based

methods is to define coordinate functions, dependent on the
vertices (and possibly the faces) of the cage polyhedron,
such that each point p in the interior of the cage is expressed
as a linear combination of the cage’s elements. The mean-
value coordinates [Flo03, JSW05] and the harmonic coordi-
nates [JMD∗07] express points in space as affine combina-
tions of the vertices of the cage:

p =
n

∑
i=1

φi(p)vi .

When the cage object is manipulated and its vertices are dis-
placed to new positions v′i , the induced space deformation
p→ p′ is simply

p′ =
n

∑
i=1

φi(p)v′i .

The coordinate functions φi(·) are smooth, and in the case
of mean-value coordinates and harmonic coordinates they
are affine-invariant (hence, if the cage undergoes an affine
transformation, the coordinates reproduce that transforma-
tion). The mean-value coordinates have a relatively simple
closed formulation [JSW05]; however, they can be negative,

which may lead to unintuitive deformations. This problem is
partially addressed in [LKCOL07], making the mean-value
coordinates non-negative at the expense of their smooth-
ness. The harmonic coordinates [JMD∗07] are smooth, non-
negative functions that do not have extrema in the interior of
the cage. They are obtained by solving the Laplace equation
∆φi = 0 with boundary conditions φi(v j) = δi, j. The har-
monic coordinates provide better deformation results, at the
expense of loosing the closed-form formulation and having
to solve a linear PDE on the cage volume.

Since affine transformations include shearing, affine-
invariant coordinates easily admit distorting shearing ar-
tifacts. The Green coordinates [LLCO08] allow shape-
preserving deformations by removing the affine invariance
property. These coordinates are defined in terms of the ver-
tices and face normals of the cage:

p =
n

∑
i=1

φi(p)vi +
k

∑
j=1

ψ j(p)n(t j) ,

where n(t j) is the unit normal of face t j. Using Green’s
functions and Green’s integral identities, it is possible to
show closed formulas for the Green coordinate functions
in 2D and 3D, such that the resulting deformations are
(quasi-)conformal.

6. Nonlinear Surface Deformation

Thanks to the rapid increase in both computational power
and available memory of today’s workstations, nonlinear de-
formation methods become more and more tractable, which
in the last years already lead to a first set of nonlinear, yet in-
teractive, surface deformation approaches. While a nonlinear
implementation of the previously discussed approaches may
seem straightforward (simply do not use any linearization),
special attention must be paid to computational efficiency
and numerical robustness.

As discussed in Section 4.5, the nonlinearity of surface
deformation stems from the fact that local translation and
rotation transformations need to be coupled in a nonlinear
manner to yield intuitive results. While linear approaches
either linearize the relationship between translations and
rotations [SCL∗04] or decouple it altogether [YZX∗04,
LSLC05], admitting nonlinear formulation allows to attack
the problem more directly.

One of the first attempts at nonlinear surface-based de-
formation was the pyramid coordinate approach by Shef-
fer and Kraevoy [SK04, KS06]. Pyramid coordinates can
be considered as a nonlinear version of the Laplacian co-
ordinates: these are differential coordinates invariant un-
der rigid motions. The coordinates encode the relationship
between a vertex and its 1-ring by representing the ver-
tex as a sum of the normal component and the tangential
component, the latter being encoded using mean value co-
ordinates [Flo03]. The pyramid coordinates can be effec-
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tively used for translation-sensitive mesh editing and mesh
morphing; however, the nonlinear optimization involved is
quite complex and requires a multi-resolution mesh hierar-
chy [KS06].

The use of nonlinear differential coordinates persisted in
several works, such as [HSL∗06,SZT∗07]. The optimization
problem

min
p′
‖∆Sp′−δ‖2

becomes nonlinear when one replaces the Laplace operator
of the reference surfaces, ∆S , by the Laplacian of the tar-
get surface, ∆S′ , as was done in those works. In particular,
Huang et al. [HSL∗06] employ a nonlinear version of the
volumetric graph Laplacian, which also features nonlinear
volume preservation constraints. In order to increase perfor-
mance and efficiency of their optimization they use a sub-
space approach: The original mesh is embedded in a coarse
control mesh, i.e., a cage, and the optimization is performed
on the control mesh. The vertices of the original mesh are
encoded w.r.t. the cage using mean-value coordinates for
polyhedra (as defined in [JSW05], see also Section 5); the
constraints posed by the user on the original high-resolution
mesh can then be expressed in terms of the cage mesh in a
least-squares manner. Shi et al. [SZT∗07] employ a skeleton
as a subspace, instead of a cage. This allows for easy and in-
tuitive character posing, because specific constraints can be
formulated for inverse kinematics, rigidity and length preser-
vation of limbs, joint angle limits and balance under gravity.
The resulting nonlinear optimization is quite complex, how-
ever: careful weight selection for the various energy terms
is required, as well as an intricate cascading optimization of
the total energy.

An alternative approach to subspace methods is the
handle-aware isoline technique of [AFTCO07]. In a prepro-
cessing step they construct a set of isolines of the geodesic
distance from either the fixed regions or the handle regions,
similar in spirit to [ZRKS05]. For each of these isolines they
find a local transformation Ti for a Laplacian-based defor-
mation, based on a nonlinear optimization. The number of
required isolines is relatively small, which guarantees an ef-
ficient numerical optimization and thereby allows for inter-
active editing.

The latest nonlinear approaches use variational minimiza-
tion of the bending and stretching energies. The PRIMO sys-
tem [BPGK06] defines a mesh deformation energy, coupled
with a specially tailored minimization technique, such that
large deformations can be performed robustly. In the rest
state, each mesh face is associated with a prism, obtained by
extruding each mesh vertex along the normal direction by a
fixed distance. The prisms are thought of as rigid entities; in
the rest state adjacent prisms share faces, but as the surface
is deformed, they break apart, creating an imaginary vol-
ume enclosed between the corresponding faces of adjacent
prisms. The PRIMO energy is the integral of the infinitesi-

Figure 22: Nonlinear surface-based deformation allows for
large bending while preserving the surface detail (example
from [SA07]).

mal elastic forces between each pair of adjacent prism faces,
which is proportional to the size of that enclosed volume.
Minimizing the energy amounts to finding an optimal set
of rigid transformations (rotations and translations) for all
the prisms such that the elastic forces are minimized. This is
done in a hierarchical manner, where the hierarchy levels are
constructed by successive clustering of neighboring prisms
into one rigid group. On the coarsest hierarchy level, the op-
timal rigid transformations are found by a global non-linear
optimization (using Newton iterations with line search); on
finer levels the coarse transformations are improved by iter-
ative local shape matching: in each iteration, all prisms are
kept fixed except for a randomly chosen one, for which the
optimal rigid transformation can then be computed in closed
form by solving a 4×4 eigenproblem [Hor87]. The surface
deformation technique is robust thanks to the fact that the
prisms are kept rigid and are not allowed to degenerate; this
constrains the optimization and prevents running into locally
minimal configurations that allow surface folds and other de-
generacies.

Similar in spirit, the as-rigid-as-possible surface deforma-
tion of [SA07] models local rotations in terms of each ver-
tex’s 1-ring. The optimal local rotation Ri is defined as the
one that minimizes

∑
v j∈N1(vi)

‖
(
p′i−p′j

)
−Ri

(
pi−p j

)
‖2.

Ri can be computed by the method of [Hor87] and is a non-
linear function of p′. The total deformation energy

∑
vi

∑
v j∈N1(vi)

wi j‖
(
p′i−p′j

)
−Ri

(
pi−p j

)
‖2.

is minimized by alternating optimization: fixing p′ allows
to solve for Ri (independently for each vertex), and fix-
ing Ri allows to update the positions p′ by solving a linear
Laplacian-type system. The weights wi j are the cotangent
weights defined in Eq. (7). The overall optimization is effi-
cient and relies on simple linear components; the alternating
iterations are guaranteed to decrease the energy in each step.
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An extension of nonlinear gradient-based deformation to
mesh sequences was presented by [XZY∗07]. They em-
ployed a similar alternating optimization approach, while in-
corporating time-coherence constraints into the system.

7. Nonlinear Space Deformation

Here we briefly review advanced space deformation tech-
niques which typically involve nonlinear optimization.

Schaefer and colleagues [SMW06] proposed a moving-
least-squares approach to space deformations, in which the
transformation at each point x in space is defined by a
weighted least-squares optimization:

T(x) = argmin
T

∑
i

wi(x)‖T (pi)−ui‖2,

where pi are some points in space which the user wishes to
transform to positions ui. The weights wi(x) depend on the
point where the moving-least-squares function is evaluated,
e.g.,

wi(x) =
1

‖pi−x‖2α
.

The transformations T should be restricted to a particular
class, such as similarity or rotation; in 2D it can be then
shown that the optimization problem is linear, whereas in
3D rotations cannot be linearly parameterized, and an eigen-
problem solution is required [ZG07].

Sumner et al. [SSP07] compute detail-preserving space
deformations by formulating an energy functional that ex-
plicitly penalizes deviation from local rigidity, by optimizing
the local deformation gradients to be rotations. In addition to
static geometries, their method can also be applied to hand-
crafted animations and precomputed simulations.

Botsch et al. [BPWG07] extend the PriMo frame-
work [BPGK06] to deformations of solid objects. The input
model is voxelized in an adaptive manner, and the result-
ing hexahedral cells are kept rigid under deformations to en-
sure numerical robustness. The deformation is governed by
a nonlinear elastic energy coupling neighboring rigid cells.

Another class of approaches uses divergence-free vector
fields to deform shapes [ACWK06,vFTS06]. The advantage
of those techniques is that they by construction yield volume
preserving and intersection-free deformations. As a draw-
back, it is harder to construct vector fields that exactly satisfy
user-defined deformation constraints.

8. Conclusion

Shape deformation continues to be an interesting and chal-
lenging area of research. As computer power increases, it
becomes possible to conceive more and more involved op-
timization targets, tailored to the particular needs of the ap-
plication at hand. We anticipate further development of sur-
face deformation techniques, especially nonlinear methods,

as well as further work on improving the robustness and effi-
ciency of those methods, leading to eventual integration into
the modeling software used in the industry.

Acknowledgments

We are grateful to Mark Pauly, Leif Kobbelt, Pierre Alliez,
and Bruno Lévy. Parts of our course notes are based on the
notes of a more general course on Geometric Modeling with
Polygonal Meshes [BPK∗08] co-authored with them.

Appendix A: Numerics

In this section we describe different types of solvers for
sparse linear systems. Within this class of systems, we will
further concentrate on symmetric positive definite (so-called
spd) matrices, since exploiting their special structure allows
for the most efficient and most robust implementations. Ex-
amples of such matrices are Laplacian system (to be ana-
lyzed in Section A) and general least squares systems.

Following [BBK05], we propose the use of direct solvers
for sparse spd systems, since their superior efficiency — al-
though well known in the field of high performance com-
puting — is often neglected in geometry processing applica-
tions. After reviewing the commonly known and used direct
and iterative solvers, we introduce sparse direct solvers and
point out their advantages.

For the following discussion we restrict ourselves to
sparse spd problems Ax = b, with A = AT ∈ IRn×n, x,b ∈
IRn, and denote by x∗ the exact solution A−1b.

Laplacian Systems

Since Laplacian systems played a major role in the deforma-
tion approaches discussed in this paper (Sections 4.3, 4.5),
we will shortly describe general Laplacian matrices first.

In each row the matrix ∆S contains the weights for the
discretization of the Laplace-Beltrami of a function f : S →
IR at one vertex vi (see Chapter 3):

∆S f (vi) =
2

A(vi)
∑

v j∈N1(vi)

(
cotαi j + cotβi j

)(
f
(
v j
)
− f (vi)

)
.

This can be written in matrix notation as
...

∆S f (vi)
...

 = D ·M ·


...

f (vi)
...

 ,

where D is a diagonal matrix of normalization factors Dii =
2/A(vi), and M is a symmetric matrix containing the cotan-
gent weights. Since the Laplacian of a vertex vi is defined
locally in terms of its one-ring neighbors, the matrix M is
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highly sparse and has non-zeros in the ith row only on the di-
agonal and in those columns corresponding to vi’s one-ring
neighborsN1 (vi).

For a closed mesh, Laplacian systems ∆
k
SP = B of any

order k can be turned into symmetric ones by moving the
first diagonal matrix D to the right-hand side:

M(DM)k−1 P = D−1B . (18)

Boundary constraints are typically employed by restricting
the values at certain vertices, which corresponds to elimi-
nating their respective rows and columns and hence keeps
the matrix symmetric. The case of meshes with boundaries
is equivalent to a patch bounded by constrained vertices
and therefore also results in a symmetric matrix. Pinkal and
Polthier [PP93] additionally showed that this system is pos-
itive definite, such that the efficient solvers presented in the
next section can be applied.

Dense Direct Solvers

Direct linear system solvers are based on a factorization of
the matrix A into matrices of simpler structure, e.g., triangu-
lar, diagonal, or orthogonal matrices. This structure allows
for an efficient solution of the factorized system. As a conse-
quence, once the factorization is computed, it can be used to
solve the linear system for several different right hand sides.

The most commonly used examples for general matrices
A are, in the order of increasing numerical robustness and
computational effort, the LU factorization, QR factorization,
or the singular value decomposition. However, in the special
case of a spd matrix the Cholesky factorization A = LLT ,
with L denoting a lower triangular matrix, should be em-
ployed, since it exploits the symmetry of the matrix and can
additionally be shown to be numerically very robust due to
the positive definiteness of the matrix A [GL89b].

On the downside, the asymptotic time complexity of all
dense direct methods is O(n3) for the factorization and
O(n2) for solving the system based on the pre-computed fac-
torization. Since for the problems we are targeting at, n can
be of the order of 105, the total cubic complexity of dense
direct methods is prohibitive. Even if the matrix A is highly
sparse, the naïve direct methods enumerated here are not de-
signed to exploit this structure, hence the factors are dense
matrices in general (cf. Fig. 24, top row).

Iterative Solvers

In contrast to dense direct solvers, iterative methods are able
to exploit the sparsity of the matrix A. Since they addition-
ally allow for a simple implementation [PFTV92], iterative
solvers are the de-facto standard method for solving sparse
linear systems in the context of geometric problems. A de-
tailed overview of iterative methods with valuable imple-
mentation hints can be found in [BBC∗94].

Iterative methods compute a converging sequence
x(0),x(1), . . . ,x(i) of approximations to the solution x∗ of the
linear system, i.e., limi→∞ x(i) = x∗. In practice, however,
one has to find a suitable criterion to stop the iteration if
the current solution x(i) is accurate enough, i.e., if the norm
of the error e(i) := x∗− x(i) is less than some ε. Since the
solution x∗ is not known beforehand, the error has to be es-
timated by considering the residual r(i) := Ax(i)−b. These
two are related by the residual equations Ae(i) = r(i), lead-
ing to an upper bound

∥∥∥e(i)
∥∥∥≤ ∥∥∥A−1

∥∥∥ ·∥∥∥r(i)
∥∥∥, i.e., the norm

of the inverse matrix has to be estimated or approximated in
some way (see [BBC∗94]).

In the case of spd matrices the method of conjugate gra-
dients (CG) [GL89b, She94] is suited best, since it provides
guaranteed convergence with monotonically decreasing er-
ror. For a spd matrix A the solution of Ax = b is equivalent
to the minimization of the quadratic form

φ(x) :=
1
2

xT Ax−bT x .

The CG method successively minimizes this functional
along a set of linearly independent A-conjugate search di-
rections, such that the exact solution x∗ ∈ IRn is found after
at most n steps (neglecting rounding errors). The complexity
of each CG iteration is mainly determined by the matrix-
vector product Ax, which is of order O(n) if the matrix is
sparse. Given the maximum number of n iterations, the total
complexity is O(n2) in the worst case, but it is usually better
in practice.

As the convergence rate mainly depends on the spectral
properties of the matrix A, a proper pre-conditioning scheme
should be used to increase the efficiency and robustness of
the iterative scheme. This means that a slightly different sys-
tem Ãx̃ = b̃ is solved instead, with Ã = PAPT , x̃ = P−T x,
b̃ = Pb, using a regular pre-conditioning matrix P, that is
chosen such that Ã is well conditioned [GL89b, BBC∗94].
However, the matrix P is restricted to have a simple struc-
ture, since an additional linear system Pz = r has to be
solved each iteration.

The iterative conjugate gradients method manages to de-
crease the computational complexity from O(n3) to O(n2)
for sparse matrices. However, this is still too slow to com-
pute exact (or sufficiently accurate) solutions of large and
possibly ill-conditioned systems.

Multigrid Iterative Solvers

One characteristic problem of most iterative solvers is that
they are smoothers: they attenuate the high frequencies
of the error e(i) very fast, but their convergence stalls if
the error is a smooth function. This fact is exploited by
multigrid methods, that build a fine-to-coarse hierarchy
{M=M0,M1, . . . ,Mk} of the computation domain M
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and solve the linear system hierarchically from coarse to
fine [Hac86, BHM00].

After a few (pre-)smoothing iterations on the finest level
M0 the high frequencies of the error are removed and the
solver becomes inefficient. However, the remaining low fre-
quency error e0 = x∗−x0 onM0 corresponds to higher fre-
quencies when restricted to the coarser levelM1 and there-
fore can be removed efficiently on M1. Hence the error is
solved for using the residual equations Ae1 = r1 on M1,
where r1 = R0→1r0 is the residual on M0 transferred to
M1 by a restriction operator R0→1. The result is prolon-
gated back toM0 by e0 ← P1→0e1 and used to correct the
current approximation: x0← x0 + e0. Small high-frequency
errors due to the prolongation are finally removed by a few
post-smoothing steps on M0. The recursive application of
this two-level approach to the whole hierarchy can be writ-
ten as

Φi = Sµ Pi+1→i Φi+1 Ri→i+1 Sλ ,

with λ and µ pre- and post-smoothing iterations, respec-
tively. One recursive run is known as a V-cycle iteration.

Another concept is the method of nested iterations, that
exploits the fact that iterative solvers are very efficient if
the starting value is sufficiently close to the actual solution.
One starts by computing the exact solution on the coarsest
level Mk, which can be done efficiently since the system
Akxk = bk corresponding to the restriction toMk is small.
The prolongated solution Pk→k−1x∗k is then used as starting
value for iterations on Mk−1, and this process is repeated
until the finest levelM0 is reached and the solution x∗0 = x∗

is computed.

The remaining question is how to iteratively solve on each
level. The standard method is to use one or two V-cycle iter-
ations, leading to the so-called full multigrid method. How-
ever, one can also use an iterative smoothing solver (e.g.,
Jacobi or CG) on each level and completely avoid V-cycles.
In the latter case the number of iterations mi on level i must
not be constant, but instead has to be chosen as mi = mγ

i to
decrease exponentially from coarse to fine [BD96]. Besides
the easier implementation, the advantage of this cascading
multigrid method is that once a level is computed, it is not
involved in further computations and can be discarded. A
comparison of the three methods in terms of visited multi-
grid levels is given in Fig. 23.

Due to the logarithmic number of hierarchy levels k =
O(logn) the full multigrid method and the cascading multi-
grid method can both be shown to have linear asymptotic
complexity, as opposed to quadratic for non-hierarchical it-
erative methods. However, they cannot exploit synergy for
multiple right hand sides, which is why factorization-based
approaches are clearly preferable in such situations, as we
will show in the next section.

Since in our case the discrete computational domainM is
an irregular triangle mesh instead of a regular 2D or 3D grid,

M0

M1

M2

M3

Figure 23: A schematic comparison in terms of visited
multigrid levels for V-cycle (left), full multigrid with one V-
cycle per level (center), and cascading multigrid (right).

the coarsening operator for building the hierarchy is based
on mesh decimation techniques [KCS98]. The shape of the
resulting triangles is important for numerical robustness, and
the edge lengths on the different levels should mimic the
case of regular grids. Therefore the decimation usually re-
moves edges in the order of increasing lengths, such that the
hierarchy levels have uniform edge lengths and triangles of
bounded aspect ratio. The simplification from one hierarchy
levelMi to the next coarser oneMi+1 should additionally
be restricted to remove a maximally independent set of ver-
tices, i.e., no two removed vertices v j,vl ∈Mi \Mi+1 are
connected by an edge e jl ∈Mi. In [AKS05] some more ef-
ficient alternatives to this kind of hierarchy are described.

The linear complexity of multi-grid methods allows for
the highly efficient solution even of very complex sys-
tems. However, the main problem of these solvers is their
quite involved implementation, since special care has to be
taken for the hierarchy building, for special multigrid pre-
conditioners, and for the inter-level conversion by restric-
tion and prolongation operators. Additionally, appropriate
numbers of iterations per hierarchy level have to be chosen.
These numbers have to be chosen either by heuristic or expe-
rience, since they not only depend on the problem (structure
of A), but also on its specific instance (values of A). A de-
tailed overview of these techniques is given in [AKS05]. A
highly efficient multigrid solver with specially tuned restric-
tion and prolongation operators was proposed for interactive
shape deformation in [SYBF06].

Sparse Direct Solvers

The use of direct solvers for large sparse linear systems is
often neglected, since naïve direct methods have complexity
O(n3), as described above. The problem is that even when
the matrix A is sparse, the factorization will not preserve this
sparsity, such that the resulting Cholesky factor is a dense
lower triangular matrix.

However, an analysis of the factorization process reveals
that a band-limitation of the matrix A will be preserved. If
the matrix A = LLT has a certain bandwidth β then so has its
factor L. An even stricter bound is that the so-called envelope
(the leading zeros of each row) is preserved [GL81]. This ad-
ditional structure can be exploited in both the factorization
and the solution process, such that their complexities reduce
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from O(n3) and O(n2) to linear complexity in the number of
non-zeros nz(A) of A [GL81]. Since usually nz(A) = O(n),
this is the same linear complexity as for multigrid solvers.
However, in particular for multiple right-hand side problems,
sparse direct methods turned out to be more efficient com-
pared to multigrid solvers.

If matrices are sparse, but not band-limited or profile-
optimized, the first step is to minimize the matrix envelope,
which can be achieved by symmetric row and column per-
mutations A ← PT AP using a permutation matrix P, i.e.,
a re-ordering of the mesh vertices. Although this problem
is NP complete, several good heuristics exist, of which we
will outline the most commonly used in the following. All
of these methods work on the undirected adjacency graph
Adj(A) corresponding to the non-zeros of A, i.e., two nodes
i, j ∈ {1, . . . ,n} are connected by an edge if and only if
Ai j 6= 0.

The standard method for envelope minimization is the
Cuthill-McKee algorithm [CM69], that picks a start node
and renumbers all its neighbors by traversing the adjacency
graph in a greedy breadth-first manner. Reverting this per-
mutation further improves the re-ordering, leading to the re-
verse Cuthill-McKee method (RCMK) [LS76]. The result
PT AP of this matrix re-ordering is depicted in the second
row of Fig. 24.

Since no special pivoting is required for the Cholesky
factorization, the non-zero structure of its matrix factor L
can symbolically be derived from the non-zero structure
of the matrix A alone, or, equivalently, from its adjacency
graph. The minimum degree algorithm (MD) and its vari-
ants [GL89a, Liu85] directly work on the graph interpreta-
tion of the Cholesky factorization and try to minimize fill-in
elements Li j 6= 0 = Ai j . While the resulting re-orderings do
not yield a band-structure (which implicitly limits fill-in),
they usually lead to better results compared to RCMK (cf.
Fig. 24, third row).

The last class of re-ordering approaches is based on graph
partitioning. A matrix A whose adjacency graph has m sep-
arate connected components can be restructured to a block-
diagonal matrix of m blocks, such that the factorization can
be performed on each block individually. If the adjacency
graph is connected, a small subset S of nodes, whose elim-
ination would separate the graph into two components of
roughly equal size, is found by one of several heuristics
[KK98]. This graph-partitioning results in a matrix consist-
ing of two large diagonal blocks (two connected compo-
nents) and |S| rows representing their connection (separator
S). Recursively repeating this process leads to the method of
nested dissection (ND), resulting in matrices of the typical
block structure shown in the bottom row of Fig. 24. Besides
the obvious fill-in reduction, these systems also allow for
easy parallelization of both the factorization and the solu-
tion.

Figure 24: The top row shows the non-zero pattern of a
typical 500× 500 matrix A and its Cholesky factor L, cor-
responding to a Laplacian system on a triangle mesh. Al-
though A is highly sparse (3502 non-zeros), the factor L is
dense (36k non-zeros). The reverse Cuthill-McKee algorithm
minimizes the envelope of the matrix, resulting in 14k non-
zeros of L (2nd row). The minimum degree ordering avoids
fill-in during the factorization, which decreases the number
of non-zeros to 6203 (3rd row). The last row shows the result
of a nested dissection method (7142 non-zeros), that allows
for parallelization due to its block structure.

c© The Eurographics Association 2009.

31



O. Sorkine & M. Botsch / Interactive Shape Modeling and Deformation

Analogously to the dense direct solvers, the factoriza-
tion can be exploited to solve for different right hand sides
in a very efficient manner, since only the back-substitution
has to be performed again. Moreover, for sparse direct
methods no additional parameters have to be chosen in a
problem-dependent manner (like iteration numbers for it-
erative solvers). The only degree of freedom is the matrix
re-ordering, which only depends on the symbolic structure
of the problem and therefore can be chosen quite easily. A
highly efficient implementation is publicly available in the
TAUCS library [TCR03] or recently in COLMOD [DH05].

Comparison

In the following we compare the different kinds of linear
system solvers for Laplacian as well as for bi-Laplacian
systems. All timings reported in this and the next section
were taken on a 3.0GHz Pentium4 running Linux. The iter-
ative solver (CG) from the gmm++ library [RP05] is based
on the conjugate gradients method and uses an incomplete
LDLT factorization as preconditioner. The cascading multi-
grid solver of [BK04a] (MG) performs preconditioned con-
jugate gradient iterations on each hierarchy level and addi-
tionally exploits SSE instructions in order to solve for up
to four right-hand sides simultaneously. The direct solver
(LLT ) of the TAUCS library [TCR03] employs nested dis-
section re-ordering and a sparse complete Cholesky factor-
ization. Although our linear systems are symmetric, we also
compare to the popular SuperLU solver [DEG∗99], which is
based on a sparse LU factorization.

Iterative solvers have the advantage over direct ones that
the computation can be stopped as soon as a sufficiently
small error is reached, which — in typical computer graphics
applications — does not have to be the highest possible pre-
cision. In contrast, direct methods always compute the exact
solution up to numerical round-off errors, which in our ap-
plication examples actually was more precise than required.
The stopping criteria of the iterative methods have therefore
been chosen to yield sufficient results, such that their quality
is comparable to that achieved by direct solvers. The result-
ing residual errors were allowed to be about one order of
magnitude larger than those of the direct solvers.

Table 1 shows timings for the different solvers on Lapla-
cian systems ∆SP = B of 10k to 50k and 100k to 500k un-
knowns. For each solver three columns of timings are given:

Setup: Computing the cotangent weights for the Laplace
discretization and building the matrix structure (done per-
level for the multigrid solver).

Precomputation: Preconditioning (iterative), building the
hierarchy by mesh decimation (multigrid), matrix re-
ordering and sparse factorization (direct).

Solution: Solving the linear system for three different
right-hand sides corresponding to the x, y, and z compo-
nents of the free vertices P.

Due to its effective preconditioner, which computes a
sparse incomplete factorization, the iterative solver scales
almost linearly with the system complexity. However, for
large and thus ill-conditioned systems it breaks down. No-
tice that without preconditioning the solver would not con-
verge for the larger systems. The experiments clearly verify
the linear complexity of multigrid and sparse direct solvers.
Once their sparse factorizations are pre-computed, the com-
putational costs for actually solving the system are about the
same for the LU and Cholesky solver. However, they dif-
fer significantly in the factorization performance, because
the numerically more robust Cholesky factorization allows
for more optimizations, whereas pivoting is required for the
LU factorization to guarantee robustness. This is the reason
for the break-down of the LU solver, such that the multigrid
solver is more efficient in terms of total computation time
for the larger systems.

Interactive applications often require to solve the same
linear system for several right-hand sides (e.g. once per
frame), which typically reflects the change of boundary con-
straints due to user interaction. For such problems the solu-
tion times, i.e., the third columns of the timings, are more
relevant, as they correspond to the per-frame computational
costs. Here the precomputation of a sparse factorization pays
off and the direct solvers are clearly superior to the multigrid
method.

Table 2 shows the same experiments for bi-Laplacian sys-
tems ∆

2
SP = B of the same complexity. In this case, the

matrix setup is more complex, the matrix condition num-
ber is squared, and the sparsity decreases from 7 to 19 non-
zeros per row. Due to the higher condition number the itera-
tive solver takes much longer and even fails to converge on
large systems. In contrast, the multigrid solver converges ro-
bustly without numerical problems; notice that constructing
the multigrid hierarchy is almost the same as for the Lapla-
cian system (up to one more ring of boundary constraints).
The computational costs required for the sparse factoriza-
tion are proportional to the increased number of non-zeros
per row. The LU factorization additionally has to incorporate
pivoting for numerical stability and failed for larger systems.
In contrast, the Cholesky factorization worked robustly in all
experiments.

The memory consumption of the multigrid method is
mainly determined by the meshes representing the differ-
ent hierarchy levels. In contrast, the memory required for
the Cholesky factorization depends significantly on the spar-
sity of the matrix, too. On the 500k example the multigrid
method and the direct solver need about 1GB and 600MB
for the Laplacian system, and about 1.1GB and 1.2GB for
the bi-Laplacian system. Hence, the direct solver would not
be capable of factorizing Laplacian systems of higher order
on current PCs, while the multigrid method would succeed.

These comparisons show that direct solvers are a valuable
and efficient alternative to multigrid methods even if the lin-
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Size Iterative CG Multigrid LU LLT

10k 0.11/1.56/0.08 0.15/0.65/0.09 0.07/0.22/0.01 0.07/0.14/0.03
20k 0.21/3.36/0.21 0.32/1.38/0.19 0.14/0.62/0.03 0.14/0.31/0.06
30k 0.32/5.26/0.38 0.49/2.20/0.27 0.22/1.19/0.05 0.22/0.53/0.09
40k 0.44/6.86/0.56 0.65/3.07/0.33 0.30/1.80/0.06 0.31/0.75/0.12
50k 0.56/9.18/0.98 0.92/4.00/0.57 0.38/2.79/0.10 0.39/1.00/0.15

100k 1.15/16.0/3.19 1.73/8.10/0.96 0.79/5.66/0.21 0.80/2.26/0.31
200k 2.27/33.2/11.6 3.50/16.4/1.91 1.56/18.5/0.52 1.59/5.38/0.65
300k 3.36/50.7/23.6 5.60/24.6/3.54 2.29/30.0/0.83 2.35/9.10/1.00
400k 4.35/69.1/37.3 7.13/32.5/4.48 2.97/50.8/1.21 3.02/12.9/1.37
500k 5.42/87.3/47.4 8.70/40.2/5.57 3.69/68.4/1.54 3.74/17.4/1.74

Table 1: Comparison of different solvers for Laplacian systems ∆SP = B of 10k to 50k and 100k to 500k free vertices P. The
three timings for each solver represent matrix setup, pre-computation, and three solutions for the x, y, and z components of P.
The graphs in the upper row show the total computation times (sum of all three columns). The center row depicts the solution
times only (3rd column), as those typically determine the per-frame cost in interactive applications.
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10k 0.33/5.78/0.44 0.40/0.65/0.48 0.24/1.68/0.03 0.24/0.35/0.04
20k 0.64/12.4/1.50 0.96/1.37/0.84 0.49/4.50/0.08 0.49/0.82/0.09
30k 1.04/19.0/5.46 1.40/2.26/1.23 0.77/9.15/0.13 0.78/1.45/0.15
40k 1.43/26.3/10.6 1.69/3.08/1.47 1.07/16.2/0.20 1.08/2.05/0.21
50k 1.84/33.3/8.95 2.82/4.05/2.34 1.42/22.9/0.26 1.42/2.82/0.28

100k — 4.60/8.13/4.08 2.86/92.8/0.73 2.88/7.29/0.62
200k — 9.19/16.6/8.50 — 5.54/18.2/1.32
300k — 17.0/24.8/16.0 — 8.13/31.2/2.07
400k — 19.7/32.6/19.0 — 10.4/44.5/2.82
500k — 24.1/40.3/23.4 — 12.9/60.4/3.60

Table 2: Comparison of different solvers for bi-Laplacian systems ∆
2
SP = B of 10k to 50k and 100k to 500k free vertices P. The

three timings for each solver represent matrix setup, pre-computation, and three solutions for the components of P. The graphs
in the upper row again show the total computation times, while the center row depicts the solution times only (3rd column). For
the larger systems, the iterative solver and the sparse LU factorization fail to compute a solution.
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ear systems are highly complex. In all experiments the sparse
Cholesky solver was faster than the multigrid method, and if
the system has to be solved for multiple right-hand sides, the
precomputation of a sparse factorization is even more bene-
ficial.
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