
EUROGRAPHICS ’00 STAR – State of The Art Report

Recent Advances in Visualization of Volumetric Data

Ken Brodlie and Jason Wood

School of Computer Studies, University of Leeds, Leeds, UK

Abstract
In the past few years, there have been key advances in the three main approaches to the visualization of volumetric
data: isosurfacing, slicing and volume rendering, which together make up the field of volume visualization.
In this report we set the scene by describing the fundamental techniques for each of these approaches, using this
to motivate the range of advances which have evolved over the past few years.
In isosurfacing, we see how the original marching cubes algorithm has matured, with improvements in robustness,
topological consistency, accuracy and performance. In the performance area, we look in detail at pre-processing
steps which help identify data which contributes to the particular isosurface required. In slicing too, there are per-
formance gains from identifying active cells quickly.
In volume rendering, we describe the two main approaches of ray casting and projection. Both approaches have
evolved technically over the past decade, and the holy grail of real-time volume rendering has arguably been
reached.
The aim of this Eurographics 2000 STAR is to pull these developments together in a coherent review of recent ad-
vances in volume visualization.

1. Introduction

1.1. The problem and its applications

One of the enduring challenges in scientific visualiza-
tion is the display of three-dimensional data on a two-
dimensional display surface. By three-dimensional data, we
mean data values obtained at sample locations within a three-
dimensional space - such as temperature readings within an
enclosed volume. We shall use the term volume visualization
to describe this field of study.

The importance of the problem derives from the many ap-
plications in which this type of data occurs, and for which
there is a need to gain insight through visualization. As the
size of datasets continues to increase, so the importance of
visualization as a tool grows, and so too the need to find more
effective and efficient techniques. Volume datasets come
from two main sources: firstly, from measurement or obser-
vation, such as in medical imaging through MRI, CT and
other modalities, and from the use of high power micro-
scopes; and secondly, from numerical simulations such as in
Computational Fluid Dynamics where the aim is to under-
stand (and predict) the behaviour of natural processes.

The field of volume visualization is now extremely large,

and so any review is necessarily a selective process. Our hope
is to be able to describe the fundamental techniques, and
some of the developments from these that have occurred in
recent years. For a more thorough study, the reader is encour-
aged to consult the original references listed in the bibliog-
raphy at the end. There are useful overview papers also: the
survey by Elvins 19, although now quite old, remains a very
clear introductory exposition; and the chapters by Bajaj et al
3 and Yagel 85 together cover much of the field. The book by
Lichtenbelt et al 43 provides a very readable introduction to
the volume rendering part of volume visualization.

1.2. Reference Model

It is useful to pose the problem (and its solution) in terms
of a reference model. We assume that we are given a set of
data values at specified locations within a three-dimensional
space. These data values are samples of some underlying
phenomenon - which we might call reality - and it is the chal-
lenge of visualization to provide insight into this unknown
reality. Mathematically, we are given values fi at a set of
points

�
xi � yi � zi � � i � 1 � 2 � � � N � which are sampled values from

some underlying continuous function f
�
x � y � z � . There can

be different arrangements of the data: structured or unstruc-

c
�

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

tured. An important distinction in structured grids is between
rectilinear and curvilinear. Rectilinear grids are common in
medical applications as the output from scanners; curvilinear
and unstructured grids are common in numerical simulations.
These grids are illustrated in Figure 1.

A B

C

Figure 1: Grids - A) Rectilinear, B) Curvilinear, C) Unstruc-
tured

Note that in medical applications the data returned is not
strictly point-based, but the average value over the grid cell -
or voxel. This reflects the way in which scanners work. Thus
papers which are aimed towards medical applications are of-
ten written in this context - sometimes called voxel-based.
Although there is a single value per voxel, it is recognised
that a volume feature may only occupy part of the voxel - this
is known as the partial volume effect. In this report, we shall
work in terms of a point model - sometimes called cell-based
- where datavalues are given at the vertices of the grid and the
behaviour inside a cell is assumed to be estimated through
an interpolation process. (Unfortunately this is only one of
many variations in the underlying assumptions and terminol-
ogy of the subject, which can make it difficult to gain an over-
all picture.)

Data
Enrichment Mapping Render

Figure 2: Haber and McNabb reference model

The process of transforming data into picture is fundamen-
tal to all scientific visualization. The classical paper by Haber
and McNabb 27 remains the clearest exposition of this pro-
cess. They model visualization as a sequence of three funda-
mental steps (see Figure 2):

Data Enrichment In this step, we reconstruct an estimate,

F � x � y � z � , of the unknown f � x � y � z � . This step is present,
explicitly or implicitly, in any visualization, and can be
thought of as a modelling operation. In the case of three-
dimensional data considered here, data enrichment is usu-
ally an interpolation process.
For rectilinear data, piecewise trilinear interpolation is
much the most common - providing a useful compromise
between the greater speed, but lesser accuracy, of nearest
neighbour interpolation, and the greater accuracy, but less
speed, of tricubic interpolation. Thus within each grid cell,
a trilinear interpolant of the form

F � x � y � z � 	 a
 bx
 cy
 dz
 eyz
 f zx
 gxy
 hxyz (1)

is fitted to the eight data values at the cell vertices. An effi-
cient way of computing trilinear interpolants is described
by Hill 31. An example of the use of tricubic interpola-
tion in volume visualization can be found in 14, where the
higher order interpolation is used to gain a smooth model
of a binary dataset.
For unstructured data, it is usual to form a tetrahedral de-
composition of the data points. Within each tetrahedron, a
linear interpolant can be created, of the form:

F � x � y � z � 	 a
 bx
 cy
 dz (2)

fitted to the four data values at the tetrahedron vertices.
A general discussion on the research issues in volumetric
modelling is given by Nielson 56. An earlier paper by the
same author 54 is also a very useful reference for unstruc-
tured data interpolation.

Mapping The next step is to choose some geometric inter-
pretation of this function F � x � y � z � , that can provide some
useful understanding of its behaviour. This geometric rep-
resentation will typically be an object in three-dimensional
space that can be rendered on a two-dimensional display
surface. The capabilities of graphics hardware devices in-
fluence the choice of technique here, as it is important to
generate representations that can be rendered fast.
In volume visualization, there are three distinct ap-
proaches to the mapping step. These are:

Surface extraction A surface shell is extracted from the
data, containing points with a common value of F.
Here we are visualizing the set of points � x � y � z � such
that

F � x � y � z � 	 k (3)

for some threshold value k. We can see this as a sub-
set in the space of the dependent variable, and is com-
monly called isosurfacing. The surface is typically ap-
proximated as a triangular mesh which can be passed as
geometry to a rendering process. For a piecewise trilin-
ear interpolant, the isosurface proves to have interest-
ing properties: it is a piecewise conic surface with of-
ten complex topology. For efficient rendering on con-

c
�

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

ventional graphics display devices, this has to be ap-
proximated by a triangular mesh - a problem which
has proved a challenge throughout the last decade, as
we shall see in section 2. If time is used as an ad-
ditional display dimension, then we can visualize the
entire dataset by sweeping the threshold through the
range of the data.

Slice A two-dimensional slice is taken through the data
(often parallel to one of the co- ordinate planes), al-
lowing a two-dimensional technique such as coloured
image or contouring to be applied. We can see this as
a subset in the domain of the independent variables.
Thus we are visualizing:

F � x y z ��� � x y z ��� P � x y z � � 0 (4)

where P � x y z � � 0 is a plane. Again using time as an
additional display dimension, we can sweep the slice
plane through the data in order to gain a visualization
of the full dataset. We look at slicing in section 3.

Volume rendering a 3D model of the data is created, us-
ing colour and opacity to reflect data values. The effect
is to create a translucent gel material that can be passed
to a renderer for display using computer graphics tech-
niques. This is the most ambitious approach in that it
aims to display all the data, not just a subset. We study
volume rendering in section 4.

Rendering This is the final step in the pipeline, where the
geometry created by the mapping step is realised as an im-
age on the display surface, using standard computer graph-
ics techniques. Conceptually, Haber and McNabb are cor-
rect to see this as a separate stage but as we shall see the
mapping and rendering stages in practice are closely in-
tertwined. For example, in surface extraction we have de-
scribed how the mapping stage for rectilinear grids pro-
duces a triangular mesh which only approximates the iso-
surface of the true piecewise trilinear interpolant F � x y z � .
In the rendering stage we can compensate for this approx-
imation by clever shading which gives the illusion of a
more accurate geometric representation.
In the slicing approach, the rendering is straightforward -
the display of a coloured plane.
Volume rendering until recently has been regarded as sig-
nificantly more expensive at the rendering step, but as we
shall see later, this is changing - both through new ap-
proaches, and new hardware technologies.

The rest of the report is structured by the mapping step
which is the key discriminator. We look at recent develop-
ments in each of the three areas in turn: surface extraction;
slicing; and volume rendering. The majority of the work has
been in the surface extraction and volume rendering areas,
but slicing is included because it is a very commonly used
approach. In each case we begin with a brief review of the
classical approaches, to motivate and set the scene for the de-
scription of the new developments.

2. Surface Extraction

2.1. The classical approach

The classical approach to surface extraction is the Marching
Cubes algorithm, proposed by Lorensen and Cline 48, with a
similar suggestion from Wyvill et al 84. This assumes data is
on a rectilinear grid, and conceptually it processes each grid
cell, or cube, independently, one after the other - hence the
term marching cubes. The method is quite simple. Each ver-
tex of a cube can be either greater than or less than the thresh-
old value, k say, giving 256 different scenarios. An estimate
F � x y z � can be constructed as a trilinear interpolant of the
values at the cube vertices. The intersections of the isosurface
F � x y z ��� k with the edges of the cube are easily and ac-
curately calculated by inverse linear interpolation. As men-
tioned earlier, the behaviour of F � x y z � � k inside the cube
is non-trivial and is a conic surface. However a simplistic es-
timate of F within the cube can be made by joining intersec-
tion points into a set of triangles. Lorensen and Cline argued
that for reasons of symmetry and complementarity there are
only 15 canonical configurations, and proposed correspond-
ing triangulations of the isosurface (see Figure 3). For a given
configuration (from the set of 256), they provide a look up
table to give the corresponding canonical configuration and
hence its triangulation.

This algorithm has been much used over the years since
1987, and has proved very effective in combination with fast
triangle rendering hardware as provided on Silicon Graphics
workstations, and more recently on PC graphics boards sup-
porting OpenGL.

There are two major aspects of the algorithm which have
received attention in recent years:

Surface representation The classical marching cubes algo-
rithm has a naive approach to forming the interior repre-
sentation. It was discovered quite quickly (see Durst 17)
that holes can appear when two adjacent cells have certain
configurations. Much work has gone into making the algo-
rithm more robust. In addition, there has been recent atten-
tion to the issue of accuracy, and gaining a more faithful
representation of the true isosurface within each cell. We
discuss this in section 2.2.

Performance As computing power and measurement tech-
nology have increased, so has the size of datasets that users
wish to analyse. The marching cubes algorithm can be
rather slow - both in terms of locating cells which contain
segments of the isosurface, and also in terms of rendering
the large number of triangles which may result. Recent de-
velopments in performance are discussed in section 2.3.

When the data is on a tetrahedral mesh, the case is sim-
pler in terms of robustness. The isosurface of the linear in-
terpolant F � x y z � � k is a plane and so there is no approx-
imation involved in the triangulation. The method is known
as Marching Tetrahedra - for obvious reasons (see Doi and
Koide 16).

c
�

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

��������������

���������������

���������� ��������������

�������������������������

��������������� ���������
���������

���������

���������������������
 � � �

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Figure 3: The 15 Marching Cubes configurations

2.2. Surface Representation

In this section we look at recent efforts to make the march-
ing cubes isosurface algorithm give an improved representa-
tion of the surface - in terms of robustness, topological cor-
rectness and accuracy.We also look at how the rendering and
representation are intertwined - see final section on rendering
issues. For simplicity, we shall assume the isosurface value,
k, is zero.

2.2.1. Robustness

The original marching cubes algorithm reduced the 256 pos-
sible cases to one of 15 canonical configurations. This en-
abled a small look up table and efficient coding, but caused
inconsistent matching of surfaces between adjacent cells, so
that ‘holes’ could appear. A remedy is to return to a full 256
case table of triangulations, and this is used for example in

the vtk implementation of the algorithm (see Shroeder et al
67), and discussed by Bartz et al 4.

2.2.2. Topological Correctness

The isosurface of a trilinear interpolant is the surface:

F ! x " y " z # $ a % bx % cy % dz % eyz % f zx % gxy % hxyz $ 0
(5)

F is linear along edges of the cube, bilinear across the faces
of the cube and trilinear in the interior. The marching cubes
algorithm in its basic form is happy to live with correctness
along the edges. Nielson and Hamann 55 showed that faces
where one pair of opposite vertices have datavalues of dif-
ferent sign from the other pair are ambiguous, in the sense
that the contour line (marking intersection of isosurface with
face) could be drawn so as to cut off either the positive-valued
corners, or the negative-valued corners. As a way of resolv-
ing the ambiguity, they propose following the topology of the
bilinear interpolant on the face - which is easily determined
by looking at the asymptotes of the hyperbolic contours. Of
the 15 canonical configurations in the marching cubes algo-
rithm, six have a number of ambiguous faces. Nielson and
Hamann show how subcases can be constructed to cover the
alternative topologies that may result. The asymptotic de-
cider approach is robust in the sense that no holes are left, in
addition to being topologically consistent across faces. The
interior triangulation strategy is one of simplicity, and does
not concern itself with interior topology.

A B

Figure 4: Two internal configurations for the Marching
Cubes configuration 5

By contrast, Natarajan 53 studies the exact shape of the in-
terior surface, and finds that further ambiguities can occur.
For example, consider a cube where one pair of opposite ver-
tices are positive, the remaining six vertices negative (this
is configuration 5 in Figure 3. A simple triangulation will
cut off the positive vertices with single triangular pieces, but
these approximate a curved surface which bows out towards
the centre of the cell. Imagine the data values all increasing
uniformly so the zero isosurface pieces move towards each
other - the simple minded triangular approximation remains
separated as two pieces, but the true trilinear surface pieces

c
&

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

will come into contact with each other, and as that happens
they merge into a single surface with a tunnel. This is an inter-
nal ambiguity, rather than the face ambiguity treated by Niel-
son and Hamann. This is illustrated in Figure 4 where we see
the two situations (A and B) that can occur internally for a
single vertex configuration. We show the exact isosurface of
the trilinear interpolant. Natarajan shows that a key to iden-
tifying tunnels is the value at the body saddle point which is
the 3D equivalent of the saddle point whose value was ex-
ploited by Nielson and Hamann to determine face ambigui-
ties. The body saddle is located where the transition from one
to two pieces occurs. In the figure, A shows the situation with
two pieces, and the small sphere marks the body saddle point.
In B, the pieces have merged with a tunnel appearing. (The
body saddle is still shown - the other small spheres will be
explained later).

A definitive treatment of topological correctness in isosur-
facing on rectilinear grids is presented by Chernyaev 9. He
identifies some 33 canonical configurations, covering both
face and interior ambiguities. This is a little known, but sig-
nificant, paper which subsumes the previous work by Niel-
son and Hamann, and Natarajan. Chernyaev takes each of the
fifteen original canonical configurations, which are based on
vertex values. The cases which involve face ambiguity are
then subdivided into subcases; and of these, those that also
involve internal ambiguities are further subdivided.

More recently, Cignoni et al 12 have made a similar study,
working from the Natarajan paper. They show that ambigu-
ities extend the 256 cases to some 798 different cases, but
only 88 of these are distinct configurations. Work is needed to
unify the Chernyaev and Cignoni papers, and then this matter
may (possibly) be put to rest.

2.2.3. Accuracy

Some recent work has attempted to develop beyond the ro-
bustness and topological correctness, in order to increase
the accuracy of the internal representation of the isosurface
within the cell. If the cell size is very small relative to the
display size, then simple internal triangulation is quite suffi-
cient. However as we zoom into the data, or if the data itself
is of lower resolution, then more care in representing the in-
terior is justified. The expense of course is that more triangles
are created.

One approach is by Hamann et al 28. They approximate
the surface of the trilinear interpolant by triangular rational-
quadratic Bezier patches. While this better reflects the curved
interior of the true isosurface, there is no guarantee that any
interior points of the approximating surface lie on the true
isosurface.

The starting point for Lopes 46 is 2D visualization by con-
touring. Lopes and Brodlie 47 propose a more accurate con-
touring method for 2D visualization. Within a grid cell, the
unknown f ' x (y) can be approximated by a bilinear function

Figure 5: Shoulder Point

F ' x (y) . The contour of a bilinear function within a grid cell
is an hyperbolic arc, but it is usual to approximate this with a
single straight line joining the intersection points of the con-
tour with the cell edges (the equivalent of using triangles in
isosurfacing). They show that a better approximation to the
hyperbolic arc can be obtained by calculating the shoulder
point of the conic section - this is the point on the conic par-
allel to the chord joining the end-points. This gives two-piece
linear approximation to the conic arc. The shoulder point is
an optimal point to choose in forming this approximation, as
it is the furthest point on the arc from the chord. This is shown
in Figure 5: P and Q are the end-points of the hyperbolic arc,
and R is the shoulder point of the arc. R is quite easy to calcu-
late as it lies on the line joining M, the mid-point of the chord
PQ, and S, the saddle point of the bilinear interpolant.

In his thesis 46, Lopes extends this to isosurfacing. He
takes the intersection points of the isosurface with cell edges
to form an initial polygonal outline of the isosurface - this is
exactly as done in the classical approach. The edges of the
polygon lie on the cell faces, and are approximations to the
isocontour lines on the faces. We can extend this polygon
by adding shoulder points, exactly as in the 2D contouring
case. This improves the accuracy on the faces. In the interior
Lopes defines two special classes of points which help define
the internal behaviour of the surface. One class is called bi-
shoulder points which are 3D analogues of shoulder points;
the other is called inflection points which are generalisations
of the Natarajan body saddle point. Lopes is able to use these
points to generate efficient triangulations that correctly repre-
sent the interior topology, as well as increasing the accuracy.
In Figure 4 the Lopes inflection points are shown as small

c
*

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

spheres surrounding the body saddle in B. As can be seen,
they nicely delineate the shape of the tunnel.

Lopes’ work aims to create a good internal representation
by adding a minimal number of carefully chosen extra points
- so that a minimal number of extra triangles are created. Re-
cent work by Cignoni et al 12 and Bailey 2 are both based on
the idea of progressive mesh refinement: the mesh is continu-
ally subdivided until it approximates the isosurface to a spec-
ified tolerance. Cignoni et al propose the following refine-
ment strategy. Each triangle is considered in turn: firstly, the
midpoints of each side are evaluated for their distance from
the true isosurface; and secondly, the centre point of the tri-
angle is similarly evaluated. The distance is measured in the
direction of the estimated gradient vector at the points. If this
distance exceeds a tolerance, then the mesh is refined.

The work of Bailey is motivated by the application of iso-
surfaces in a manufacturing process, where accuracy is ev-
erything and efficiency (in terms of number of triangles) is of
less importance. The approach is similar to that of Cignoni:
each midpoint of the sides of a triangle, and its centroid,
are checked for their difference to the true isosurface, and
if necessary, these points are moved along a gradient direc-
tion to lie on the isosurface and used in a refined mesh. A
difference to Cignoni is that the ‘distance’ measurement is
made in the dependent variable space - ie the value of the
interpolant at a candidate point is compared with the isosur-
face value - rather than being measured in the independent
variable space. Cignoni discusses the merits of the two ap-
proaches.

There is probably scope for some future research in com-
bining the Lopes approach of choosing optimal refinement
points at the first level, and the Bailey and Cignoni pro-
gressive refinement approaches at subsequent levels (indeed
Lopes hints at this in his thesis).

2.2.4. Rendering Issues

In isosurfacing usually (but not always) the interface to the
renderer is a triangular mesh, often in the form of triangle
strips for efficiency. In the simplest form, these triangles are
passed on to the renderer without specific normal vectors at
the vertices. The renderer will then apply either flat, Gouraud
or Phong shading - the latter two techniques having a visual
smoothing effect on the surface.

However it is possible to incorporate visual accuracy in
the rendering by supplying normal vectors at the triangle ver-
tices that reflect the normal direction of the true isosurface.
This can be seen as a trompe l’oeil of the same nature as bump
mapping in computer graphics. The normal is manipulated so
as to deceive the eye into thinking the geometric representa-
tion is (in this case) more accurate than it really is - or more
positively, so as to economise on the number of triangles ren-
dered while still reflecting the true isosurface.

The normal is equal to the gradient vector of the isosur-

face. For rectilinear meshes the gradient vector is easily cal-
culated by central differences at each vertex, and then linear
interpolation gives the gradient, ie normal, vector at the trian-
gle vertices. For unstructured meshes, the gradient vector at
a mesh point is typically calculated by looking at the differ-
ences along all edges connected to that mesh point, and carry-
ing out a least squares estimate. Note that this process is quite
sensitive to the relative distances to neighbouring points, and
some weighting in the least squares estimation can be bene-
ficial.

There is a quite different approach to isosurface render-
ing in which there is no intermediate approximation of the
isosurface by a triangular mesh. Instead the isosurface is di-
rectly rendered using a ray casting approach. This was pro-
posed by Jones and Chen 34 - who termed it direct surface
rendering - and later by Parker et al 59, 60 - who term it in-
teractive ray tracing for volume visualization. The quality of
image is very high since the exact isosurface is rendered, not
an approximation, and Parker and colleagues show that this
technique can be competitive in performance because it par-
allelises readily. With a number of intelligent optimizations
they are able to render data from the Visible Human Project at
interactive rates (10 frames per second, for a 512x512 image
on 64 processor SGI Reality Monster, on a dataset of 1734
slices of 512x512 16bit data). There are strong arguments in
favour of this approach if you have the compute power avail-
able - for example, all the topological issues discussed earlier
are irrelevant. The only possible drawback is that there is no
intermediate triangular mesh representation available for fur-
ther computation, but this is probably a relatively uncommon
requirement.

2.3. Performance

Algorithm performance has become increasingly important
as our ability to capture or create data has grown at a rate
that has outstripped the rate of improvement of computing
technology. A number of strategies exist for improving the
performance of isosurfacing extraction from large structured
and unstructured data sets.

2.3.1. Presorting - Introduction

The classic algorithms for isosurface extraction, Marching
Cubes and derivatives such as Marching Tetrahedra, operate
by inspecting every cell of the data set looking for cells that
contain the isosurface. We call these the "active cells". Gen-
erally a selected isosurface will only intersect a small subset
of the overall dataset and so being able to locate these active
cells efficiently will give improved performance. Presorting
methods create extra data structures to allow efficient search-
ing of the data set to find active cells. A number of presort-
ing approaches have been published which can be classified
based on whether they sort by data value or by spatial loca-
tion.

c
+

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

2.3.2. Presorting - Value Partitioning

Value partitioning methods are generally used for unstruc-
tured data sets where connectivity between nodes is not
implicity provided by location but must be specified. This
means that the memory requirements for this type of data rep-
resentation are large when compared to structured grids and
hence the number of nodes represented is typically smaller.
The relative overhead of the associated search structure com-
pared to the memory requirements of the actual data set is
less for an unstructured grid than for a structured grid and
hence these methods are generally used in conjunction with
unstructured data. Cignoni et al 13 however do offer a useful
technique for applying value partitioning to structured data,
see interval trees below.

Extrema Graphs

Itoh and Koyamada 33 proposed an algorithm for acceler-
ated isosurface extraction which first preprocessed the data
set to a list of extremum points (local minima and maxima)
connected by a graph whose arcs contain the IDs of cells in-
tersected by the graph. Additionally, two boundary cell lists,
sorted according to the minimum and maximum data values
of the cells, are generated. The cells in the boundary lists are
intersected by an open isosurface, while the cells contained
within the arcs of the extrema graph are intersected by closed
isosurfaces. Using the cells contained within the lists as seed
points for a surface growing algorithm, all possible isosur-
faces can be generated.

The extrema graph is constructed by searching the data for
minima and maxima, but since this would be overly expen-
sive the extremum points are approximated to the nearest grid
point. This reduces the search to examining the datavalue at
each grid point and comparing it with all its neighbours and
marking it as either a local maxima, local minima or nei-
ther. Once this is done all the grid cells marked as neither
are discarded. Any local clouds of extremum points, caused
by neighbours having the same value, are reduced to a single
point. This final set of points are then connected to form the
graph.

The graph is generated by selecting one extrema as a start
point and a number of extrema points closeby as goal points.
The nearest goal point is selected and the vector between
the start and goal points generated. The arc between the
two points along the vector is traversed by moving between
neighbouring cells that lie on this vector. If the goal point is
reached without leaving the volume then the IDs of all the
visited cells are placed in the cell list associated with the arc,
and the overall maximum and minimum values of all the cells
in the arc are stored. If the vector between the two selected
points leaves the volume, then another goal point is chosen
and traversal starts again. If there are no goal points that can
be reached by traversing along the vector, then a polygonal
arc is used to join two points. Polygonal arcs are able to move
off the straight vector and hence avoid leaving the volume,
but they are more expensive to compute since the distance

value of each face of a visited cell to the goal cell must be
calculated.

Once all the extremum points are connected, the boundary
cell lists are generated as two sorted lists using the maximum
and minimum data values of the boundary cells. A boundary
cell is defined as a cell which has at least one unshared face.

To find an isosurface of a given value, starting cells are
searched for by traversing the arcs of the extrema graph.
The given value is compared to the maximum and minimum
value of the overall arc: if it lies within that range then each
cell in the list is visted in turn, otherwise the next arc is tested.
Once all the arcs have been tested, the boundary cell lists
are traversed. All active cells that are found are used as seed
point cells for a surface propagation algorithm such as that of
Speray and Kennon 70.

Performance is estimated at ,.- n2 / 3 0 at best, but can be,.- n 0 in worst case for noisy data.

Kd-Trees

Livnat, Shen and Johnson 44 propose an algorithm that
utilises the kd-tree designed by Bentley 5 as a data struc-
ture for efficient associative searching. Essentially, the kd-
tree acts as a multidimensional binary tree with the nodes at
each level holding one of the data values and a connection
to two subtrees. The two subtrees are constructed such that
the left subtree holds values that are less than the value at the
parent, the right subtree holds values that are greater. Unlike
a binary tree, however, the next level of the tree down holds
a different data value, with its children being partitioned rel-
ative to that data value. This continues cyclically down the
tree, swapping data values at each level.

This data structure is ideal for creating a search tree for the
cells of an unstructured mesh where each cell has an asso-
ciated minimum and maximum data value. The tree is con-
structed by examining each cell in the data set to calculate
its minimum and maximum data values. The first node in the
tree then contains the cell ID and the min and and max value
of the median cell as calculated based on the minimum values
of all the cells. This can easily be done by partially sorting the
cells on the minimum value using a median sort algorithm.
The head of the tree then has pointers to the two subtrees
made up from the remaining cells to the left and right of the
median cell. For each subtree the above process is repeated,
but this time the cells are partially sorted by their maximum
value. Using the median value cell causes the creation of a
balanced tree, and because one cell is left at each node the
size of the tree is directly related to the size of the dataset.

Once the tree has been constructed it can then be searched
to quickly find active cells. Given an isosurface value k, the
active cells are found by first comparing k to the minimum
value of the first node in the tree. If it is less than the mini-
mum value, then the cell at that node is ignored and we can
guarantee that all cells in the right subtree are not required
and hence we have already eliminated half the cells in the

c
1

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

dataset. We move on to compare k to the maximum value of
the left child of the top node only. If k lies between the min-
imum and maximum values of the cell at the node then we
know that it is an active cell and is used in generating the
isosurface; we must then go on to test both sub-trees. If k is
greater than the maximum then we must test both subtrees
but we do not have an active cell. When we compare k to a
node that is sorted by maximum values, if it is greater then
the maximum value at that node then we can discard all val-
ues to the left and just test cells to the right. This process is
repeated until the bottom of the tree is reached.

Livnat et al go on to suggest some further searching opti-
misations, it can be noted that (considering a node sorted by
minimum value) when k is greater then the minimum value
we must search both subtrees and seemingly have gained
nothing. This is true for the right subtree, but for the left sub-
tree, we know that we have satisfied the minimum condition
and hence may skip that test.

Performance is 2.3 4 n 5 K 6 for search, with preprocessing
estimated at 2.3 n logn 6 . Here K is the size of the output, ie
number of cells selected.

Interval Trees

This method is designed to answer the following query
"given a set I 798 I1 : ; ; Im < of intervals of the form = ai : bi > , with
ai ? bi on the real line, and a query value k, find all intervals
of I that contain k" as a way of finding a set of active cells
from which to construct an isosurface. Each cell can be re-
duced to an interval of the form = ai : bi > by examining the data
values at each vertex to find the min and max. Cignoni et al
13 use the interval tree defined by Edelsbrunner 18 as an opti-
mally efficient data structure when solving this query, and the
algorithm for constructing and searching is outlined below.

For each i 7 1 : 2 : ; ;m where m is the number of cells, con-
sider the sorted sequence of values X 7@3 x1 : ; ; : xh 6 corre-
sponding to the unique set of intervals (i.e. each range ai : bi
is equal to some x j). The interval tree for I consists of a bal-
anced binary search tree T whose nodes correspond to values
of X , plus a structure of lists of intervals attached to nonleaf
nodes of T . The interval tree is defined recursively as follows.
The root of the tree T has a discriminant δr 7 xr 7 x A h B 2 C , and
I is partitioned into three subsets as follows:

Il 7D8 Ii E I F bi G δr < (6)

Ir 7D8 Ii E I F ai H δr < (7)

Iδr
7D8 Ii E I F ai ? δr ? bi < (8)

The intervals that fall into the node are sorted into two lists,
AL and DR as follows:

AL contains all elements of Iδr
sorted into ascending order

by their left extremes (that is by their minimum value)

DR contains all elements of Iδr
sorted into descending or-

der by their right extremes (that is their maximum value)

The left and right subtrees are defined recursively.

To perform a search on the tree T , given a query k, is a
recursive process starting from the head of the tree

if k G δr then list AL is scanned until an interval Ii is found
such that ai H k; all scanned intervals are reported; the left
subtree is visited recursively;

if k H δr then list DR is scanned until an interval Ii is found
such that bi G k; all scanned intervals are reported; the right
subtree is visited recursively;

if k 7 δr then the whole list is reported.

This alternative and more optimal approach to the kd-tree
is calculated to have a worst case time complexity of 2.3 K 5
logh 6 where K is the output size and h is the number of nodes
in the tree.

As mentioned above, these search structures are generally
used with unstructured data due to the relatively high over-
head associated with using them for structured grids. Cignoni
et al, however present a useful observation that potentially
makes their overheads with uniform grids no worse than that
of octree subdivision (discussed in Space Partitioning). They
observe that rather than building an interval tree with an in-
terval for every cell in the data set, it is possible to reach al-
most the entire dataset by encoding just approximately one
in four carefully chosen cells. The cells chosen form a 3D
chessboard where the black cells are encoded into the tree
(A 2D example can be shown in Figure 6). The neighbour-
ing white cells will be found if required since all of their
edges touch a black square. For example, the square marked
A touches 2 white squares, one to the right and one in front,
cell B touches four, one behind, one to the right, one to the
left and one to the front.

B

3D
2D

c

A

Figure 6: Using Interval Trees for regular gridded data.

This can be extended to a 3D volume (see Figure 6). When
searching, performance can be gained by considering each
layer with black cells as a separate interval tree since shared
edge intersections and normals that are normally accumu-
lated and stored over the whole data set can be discarded once
a single tree has been searched. When a tree is searched and a
black cell detected as active it is a simple matter to find cells
that share the intersected edges. Once all the trees have been

c
I

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

searched a small number of cells around the edge of the that
may not be linked to a black cell, cell C for example in Fig-
ure 6, need to be tested.

2D Lattice Subdivision of the Span Space

Lattice
Element (1,1)

d0 d1 d2 d6 d7 d8

Y

Max

X

Min

X=Y

Lattice
Element (8,8)

Figure 7: Partitioning the Span Space

Further work by Shen et al 66 looks at using the span space
but instead of using a kd-tree as the search structure, they de-
compose the space into a 2D LxL lattice of cells (see Fig-
ure 7). The lattice elements are spread across the whole range
of the data set, and the division points are chosen such that an
even number of cells falls into each division. This obviously
requires the elements to be of varying size.

Searching for a particular value k where k lies in the ele-
ment J p K p L , it is possible to classify the lattice elements to
one of five cases (see Figure 8) based on their indices J i K j L
as follows :M case 1: if i N p or j O p then there are no active cells in

these elements as they have either a minimum value above
k or a maximum value below k;M case 2: if i O p and j N p then all cells in these elements
are active cells.M case 3: if i O p and j P p then all elements in this re-
gion have the potential to contain active cells and must be
searched, but we know that their minimum values are be-
low k so need only test their max values.M case 4: if i P p and j N p the inverse of case 3M case 5: i P p K j P p We must test both min and max values
of all cells in this element

The authors report that the search phase has an average
performance of Q.J log J n R L L SUT n R L S K L where K is the
number of active cells and L is the number of chosen sub-
divisions. The value of L is reported to be best between 200
and 500.

VWVXVWVXVWVVWVXVWVXVWVYWYYWYZWZ
ZWZZWZ
ZWZ

[W[X[W[X[W[[W[X[W[X[W[[W[X[W[X[W[[W[X[W[X[W[\\
]W]]W]
^W^^W^_W__W_

Case 5

Case 4

Case 3

Case 2

Case 1

v

v

X

Min

Y

Max

Lattice Element (p,p)

Figure 8: Searching the Span Space

2.3.3. Space Partitioning

This approach offers the simplest method to gain improved
performance, but unfortunately is only suitable for structured
data. Wilhelms and Van Gelder 80 use a branch-on-need oc-
tree which allows the creation of uneven sized sub-volumes
unlike the standard even-octree subdivision. Using an octree
(of any sort) allows the search algorithm to skip unrequired
sub-volumes when fitting an isosurface based on the range
of each sub-volume. If the required isovalue does not lie in
the range of a high level volume, then all subvolumes within
it can be skipped. An alternative approach based on a pyra-
mid data structure is proposed by Criscione et al 15 which has
similar efficiency and overhead to Wilhelms et al but is easier
to implement. Space partitioning techniques cannot easily be
applied to unstructured data as they rely on the regular struc-
ture of the underlying data set.

2.3.4. Multiresolution

Algorithms such as marching cubes inevitably produce a
large number of polygons to represent a surface since every
active cell in the data set contributes one or more triangles.
The advantage of the multiresolution approach is that it pre-
processes the data into a hierarchy of lower resolution vol-
umes which means that triangle reduction effectively occurs
at isosurface extraction time (rather than after when using
mesh simplification). The resolution of the surface is not uni-
form across the volume and can be controlled by an error es-
timate which forces higher resolution where the data changes
rapidly 87. Alternatively, the resolution can be controlled by
a user selected point and radius of focus 21.

There is a growing literature on this area - the paper by
Gerstner and Rumpf 24 includes a good review of the field.

2.3.5. Exploiting parallelism and distributed processing

The marching cubes algorithm operates on individual cells
within a data set without reference to or altering of any global

c
`

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

information. For this reason it is an ideal candidate for use as
a parallel algorithm to speed up isosurface extraction from
large data sets as long as the data can be suitably partitioned.
One example of this type of work is that presented in a case
study paper by Painter et al 58 from the Mantle project which
uses a parallel implementation of the kd-tree of Livnat et al
from above. Other more recent work has been presented by
Lombeyda and Rajan 45 where they have taken the vtk march-
ing cubes code and created a parallel implementationusing p-
threads, with IRIS Explorer as a front end for rendering and
user interface. This has been applied to a data set generated
by a numerical simulation of the Rayleigh-Taylor instability.
Shen et al (2D Lattice Subdivision of the Span Space above)
give results of using their algorithm on a parallel machine.
They suggest passing each lattice element from the half space
above the x a y line, column by column, to a different proces-
sor using a round-robin method to give an even distribution
of cells of all values. Their results give a load imbalance of
just 2%. Other work in this area has been by Gerstner et al 24.

Another way of isosurfacing large datasets while only hav-
ing access to a desktop workstation is to make use of remote
resources through distributed processing. Work done by En-
gel et al 21 has looked at the idea of visualizing data across the
network with particular focus on using the world wide web.
They propose a 6 stage model for isosurface extraction, start-
ing at data storage and ending with the displayed image, that
places a different number of stages on the client and server
machines. They then go on to briefly evaluate the relative
strengths and weaknesses of different placement strategies fi-
nally focussing on 3 scenarios. Two scenarios are rejected be-
cause they are view dependent and would require data trans-
mission whenever the viewpoint is altered, and they reject the
option of simply using the remote resource as a data server
since the size of the data sets are considered too large. Having
identified the three remaining scenarios, sending triangles,
sending interpolation values and the Marching Cubes cases
with client side triangle setup or sending active cells for lo-
cal triangulation, as possibilities, they then offer some mech-
anisms to help reduce network usage. These include combin-
ing triangles in individual cells into triangle strips to reduce
the number of indices sent to the client, as well as a multires-
olution approach taking into account a user specified point
and radius of interest. Other work by Engel et al 20 has looked
at progressive isosurface transmission across the web from a
server calculation of the isosurface.

2.3.6. Out of core isosurface extraction

The methods described above in presorting seek to gain per-
formance improvements by providing efficient search struc-
tures to use alongside the data set to quickly find active cells.
The construction time and memory requirements of these ad-
ditional data structures needs to be considered when imple-
menting such systems. The time factor may effectively be ig-
nored as a "run-time" cost since many of the above data struc-
tures can be pre-generated and stored to disk as a one off pro-

cessing step and loaded along with the data when isosurface
extraction is to be performed. This, however, still leaves the
issue of memory requirement.

Out of core algorithms of all types are designed for sit-
uations where the amount of data to be processed is sim-
ply too large to fit in main memory. These algorithms avoid
the time wasted by disk thrashing by employing unique data
structures on disk that offer optimal I/O performance and also
seek to exploit locality. Work done by Arge and Vitter 1 pro-
vided an optimal external memory data structure for the stab-
bing query problem which can be used for 2D range search-
ing. Chiang and Silva 10 use this and ideas from the inter-
val trees of Cignoni (above) to create an I/O optimal inter-
val tree which they then go on to demonstrate using vtk. Re-
sults from their paper show that the time taken to generate
the isosurface from the active cells is actually greater than
the time taken to search for these cells. These same authors
then go on to provide improved data structures to reduce the
amount of disk space required to build and store the search
structures. This new work (presented in 11) uses meta cells
which contain a group of neighbouring cells, and it is these
metacells that are then built into an interval tree. Depending
on the number of cells in a meta cell there is a direct tradeoff
of disk overhead (the more meta cells the larger the disk over-
head) to query time (the more meta cells the quicker the query
time). Work by Sulatycke et al 71 takes note of the fact that the
seach for active cells is quicker than the time taken to gen-
erate the isosurface. To take advantage of this they have de-
veloped a multithreaded system that uses a single I/O thread
for finding and reading the active cells and a number of com-
putational threads for isosurface generation. They work as a
producer-consumer system with the I/O thread placing ac-
tive cells into a buffer and the computational thread remov-
ing cells from the buffer when they have finished their current
processing. If no data is ready then the computational thread
blocks until data arrives. The authors report speedups over
the vtk out-of-core implementation by an order of magnitude
or more. Other work on parallel out-of-core visualization has
been done by Bajaj et al 3.

2.4. Time Varying Isosurfaces

There is increasing interest in finding efficient methods for
the construction of isosurfaces from time varying data. An
early paper by Weigle and Banks 76 constructed an isovol-
ume of the set of isosurfaces of level k over a period of time;
a second pass can be used to extract the isosurface at a par-
ticular time.

Papers by Shen 65, and by Sutton and Hansen 72, introduce
some of the presorting ideas described in the previous sec-
tion, in order to increase efficiency. In particular, Sutton and
Hansen extend the Wilhelms and van Gelder branch-on-need
octree method of spatial partitioning.

c
b

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

3. Slicing

Slicing is the least glamorous of the three fundamental ap-
proaches, perhaps because it reduces the problem to a 2D vi-
sualization problem, or sequence of such. Thus it makes use
of techniques that have been studied from the early days of
scientific visualization - in the 1960s. However it remains
a very valuable technique and many users are better able
to comprehend 2D information than 3D. Every visualization
package will include a slicing module!

The naive approach to slicing is to do an exhaustive ex-
amination of all the cells to test for intersection with the slic-
ing plane. Some obvious speedups can be achieved for struc-
tured gridded data when the slicing plane is orthogonal to one
of the principle axes. For unstructured grids this is not possi-
ble, but an approach similar to those used above in presort-
ing can be used. A number of the presorting methods reduce
the problem to a 2D range search, but unstructured grids are
made up of a range of element types from tetrahedra to hex-
ahedra all of which are 3 dimensional and hence produce a
6D range search. It is, however, possible to reduce the prob-
lem to a 2D range search if the orientation of the slice plane is
known. The rotational component of the slice plane from the
xy-plane is calculate and its inverse is applied to each cell in
turn and its minimum and maximum z-component recorded
along with the cell ID. Once all cells have been inspected a
search tree can be constructed as described above, e.g a kd-
tree, based on the minimum/ maximum z-values of the cells.
The query value, k, then is simply the distance from the ori-
gin to the slicing plane. The tree can be used to quickly find
slices at any distance from the origin as long as they keep the
original orientation. This allows planes to be rapidly swept
through the data to give a good impression of the structures
within. This method can be used for planes of arbitrary ori-
entation on any unstructured grid.

4. Volume Rendering

4.1. Introduction

Volume rendering offers a more complete solution to the vol-
ume visualization, in that it aims to picture the entire volume
rather than a subset. It has been traditionally thought of as
more computationally expensive than surface extraction, but
this view has recently been challenged by exciting new hard-
ware developments.

The technique is based on modelling the data as a translu-
cent gel, and so a fundamental first step is to assign material
properties to correspond to the data values. Classification is
the process by which we assign a colour and opacity value to
a given data value. The opacity transfer function will take as
input certainly the data value, but perhaps also other informa-
tion such as gradient estimates, and return an opacity value.
The gradient value is used when interior structure (such as
anatomical features in medical imaging) is to be highlighted:
the opacity is scaled down in areas of low gradient, and up

where the gradient is high - thus emphasising boundaries be-
tween features. Colour transfer functions do a similar job in
assigning RGB values to data values. The transfer functions
may also use information from a prior segmentation process
which has labelled data as belonging to a particular feature in
the volume. Lichtenbelt et al 43 discuss segmentation in rela-
tion to volume rendering.

Classification remains something of an art. Kindlmann et
al 37 suggest ways of automating the process.

4.2. Classical Approaches

4.2.1. Volume Rendering Integral

The basis of most volume rendering techniques is the volume
rendering integral in its low-albedo form, as derived by Ka-
jiya and von Hertzen 36 and by Max 49. A very clear exposi-
tion is given by Mueller et al 51 and we follow this here. We
imagine the volume as a set of particles with certain densities
µ, and fire rays through each pixel on the image plane into
this volume. For any ray, the amount of light of wavelength
λ received at the image plane is given by:

Iλ cUd L

0
Cλ e s f µ e s f e gih s0 µ j t k dt ds (9)

where L is the length of the ray, and Cλ e s f is the light of
wavelength λ reflected at s in the direction of the ray. The
calculation of Cλ e s f can be based on the standard Phong re-
flection model, given specification of light sources, the ma-
terial colour from the classification process and the normal
direction (which as we have seen is the gradient vector). The
weighting by µ e s f reflects the density at the point - the greater
the density, the greater the intensity of reflected light. The in-
tegral accumulates this intensity over the length of the ray,
but attenuates it according to the density of material through
which it passes. This attenuation is represented by the expo-
nential term. Max 49 calls µ the light extinction coefficient; it
defines the rate at which light is occluded per unit length due
to scattering or extinction.

In practice, the integral given by equation 9 has to be eval-
uated numerically. Using a very simple Riemann sum ap-
proximation, we have

Iλ c n

∑
i l 0

Cλ e i∆s f µ e i∆s f ∆s
i g 1

∏
j l 0

exp e m µ e j∆s f ∆s f f (10)

where n is the number of steps along the ray at which sample
values are taken.

We can simplify this by a number of approximations. The
exponential term in equation 10 can be replaced by the first
two terms of its Taylor expansion, ie

exp e m µ e i∆s f ∆s f f c 1 m µ e i∆s f ∆s (11)

c
n

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

Define the transparency t o i∆s p as:

t o i∆s p q exp o r µ o i∆s p ∆s p p (12)

so as to give:

µ o i∆s p ∆s q 1 r t o i∆s p q α o i∆s p (13)

where α q 1 r t is opacity.

This approximation converts equation 10 into the com-
positing formula that is commonly used in volume rendering,
namely

Iλ q n

∑
i s 0

Cλ o i∆s p α o i∆s p i t 1

∏
j s 0
o 1 r α o j∆s p p (14)

The values of C and α are only known at data points and
so an interpolation process is required in order to calculate
the values at the sample points i∆s. It is possible to interpo-
late data values and then classify, but the above derivation as-
sumes that the classification and shading are done at the data
points, and the resulting colours and opacities used for inter-
polation.

If we use unit spacing, equation 14 simplifies further to:

Iλ q n

∑
i s 0

Cλ o i p α o i p i t 1

∏
j s 0
o 1 r α o j p p (15)

In practice, the computation is done for R, G, B separately,
and from now on we remove the λ suffix. Basically, it is a
sum over intensities of individual samples, each intensity at-
tenuated by the product of transparencies accumulated as the
light passes from sample to observer.

The calculation can be done recursively by processing
one sample at a time, accumulating colour and opacity sepa-
rately:

Cout q Cin u o 1 r αin p αiCi (16)

for each sample i, and

αout q αin u αi o 1 r αin p (17)

This corresponds to the Porter and Duff image composi-
tion operator over 63. This is a front-to-back ordering. In fact,
the order can be reversed to work back-to-front, in which
case only the colour needs to be accumulated:

Cout q Ciαi u Cin o 1 r αi p (18)

It is worth noting that the compositing steps are associative
but not commutative. This has two important implications:
associativity means that we can composite groups of sam-
ples, then composite the groups, as long as we retain the or-
der - this is important in developing parallel applications. The
lack of commutativity means that the order of compositing
is important, and we shall see that this problem has proved a
significant computational geometry challenge in volume ren-
dering.

4.2.2. Different Approaches

Volume rendering techniques can be broadly classified into
two approaches: image order and object order. In the image
order approach (also called backwardrendering),we process
from the image plane to the volume. In the object order ap-
proach (also called forward rendering),we process from vol-
ume to image. Note however that as the subject has devel-
oped, this broad classification is now less distinct, as hybrid
methods have evolved to take advantage of both approaches.

The classical image order method is ray casting, and the
seminal paper is that of Levoy 41. The Levoy paper is a real-
isation of the volume rendering integration described in the
previous section. The order of compositing is back-to-front.
There are attractions however in doing the compositing front-
to-back, even though there is the extra work of accumulat-
ing opacity. This extra work proves very useful because once
the accumulated opacity value reaches a threshold there is no
point in continuing and so work is saved - this is known as
early ray termination.

In section 4.3 we look at recent improvements to image or-
der methods. These fall into a number of categories:

Volume Rendering Equation The classical approach com-
putes the volume rendering integral as a Riemann sum.
Greater accuracy can be achieved by working harder on
the integration; greater speed can be achieved by ignoring
the composition of samples entirely, and simply locating
the maximum intensity along the ray and using that value
for I - this is known as maximum intensity projection.

Interpolation The classical approach requires the calcula-
tion of colour and opacity values at sample locations that
will generally not coincide with data points - so interpo-
lation is needed. Recent work has explored the options of
interpolating before classifying, against interpolating after
classifying.

Curvilinear and Unstructured Meshes The classical ap-
proach of Levoy was targetted at medical data which oc-
curs typically on rectilinear grids. Recent work has looked
at approaches for curvilinear grids and unstructured grids,
both of which occur routinely in CFD applications. Indeed
unstructured data is of growing importance in medical ap-
plications through hand-held ultrasound scanners.

Fast Traversal A time consuming aspect of the Levoy
method is the traversal of rays through the volume dataset,
and recent work has looked to optimize this traversal.

c
v

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

Hardware Advances A major advance in the last year has
been the development of commercial hardware for volume
rendering, allowing real time volume rendering on a PC
platform. This has suddenly made volume rendering af-
fordable.

The object order approach is characterised by the splat-
ting technique proposed by Westover 78, 79. This essen-
tially projects voxels onto the image plane, forming so-called
splats, and composites the splats in the image plane. As
Mueller et al 51 explain, splatting essentially re-orders the
volume rendering integral so that each voxel’s contribution
is separated out.

The algorithm works as follows. Find the face of the vol-
ume nearest the observer, and consider the volume as a set
of slices parallel to that face. Order the voxels within a slice
in terms of distance to observer, nearest first. Classify and
shade each voxel. Now project each voxel in turn into im-
age space, using a circular Gaussian filter to determine the
coverage of the splat in the image plane. The projection of
the kernel into the image plane can be pre-calculated and this
gives the method its speed - the projection is called a foot-
print. The colour and opacity values are blended into the im-
age buffer at every pixel that falls within the footprint - the
values scaled by the value of the Gaussian at the particu-
lar pixel. The blending is done using the usual compositing
rules.

In section 4.4 we look at recent improvements to object or-
der methods. These fall into a number of categories:

Better Splatting In a series of papers, researchers at Ohio
have steadily improved the original Westover splatting
method.

Shear Warp Rendering A hybrid approach, known as
shear-warp rendering, has become increasingly popular. It
achieves its speed by first aligning (using a shear) the vol-
ume and the viewing direction so that a line of voxels can
project directly to a pixel, and secondly compensating for
the first transformation by an image warp transformation.

Unstructured Grids As in the image order approach, re-
searchers have looked at efficient techniques for unstruc-
tured grids.

Texture Mapping The emergence of texture mapping hard-
ware has fostered a new object order approach in which the
volume is seen as a 3D texture, and slices are projected and
composited using this hardware.

4.3. Advances in Image-based Techniques

4.3.1. Volume Rendering Equation

The classical volume rendering equation 9 is a complex in-
tegral which cannot be evaluated analytically. The usual ap-
proach is to compute numerically using Riemann sums, lead-
ing to the simple formulation of equation 10. Novins and
Arvo 57 experimented with other numerical integration meth-

ods, including the trapezoidal and Simpson’s rule. More re-
cently, Jung et al 35 showed how a semi-analytical solution
can be found. They use a numerical approximation to the ex-
ponential term in equation 9 and replace the term g w s x by the
trilinear interpolant. Within any cell this is a polynomial and
so can be integrated exactly. They are able to show that this
approach enables fine detail to be observed that is not appar-
ent in the classical Levoy discrete approach.

For some applications, the effort of compositing samples
is simply not worth it. For example, in angiography, the vi-
sualization requirement is to highlight blood vessels in the
volume and perfectly good results can be obtained by locat-
ing the maximum intensity along the ray and using that in-
tensity value as I. This Maximum Intensity Projection (MIP)
approach has been studied by a number of authors recently,
with a key aim being to traverse the data quickly to reach the
significant cells. For example, if the datavalues at the vertices
of a cell are each less than the current maximum, then there
is no need to calculate any sample inside the cell using trilin-
ear interpolation - the resulting value will be automatically
bounded by the vertex values. There is a nice description of
this technique in Heidrich et al 29. Parker et al 60 extend their
fast ray casting of isosurfaces to provide a fast MIP algorithm
for shared memory architectures.

4.3.2. Interpolation

There are many trade-offs in volume rendering that are of-
ten hard to resolve. An interesting issue involves whether to
classify then interpolate, or to interpolate then classify, when
calculating the colour and opacity at a sample point. This is
discussed in detail by Gasparakis 23, following on from dis-
cussion in Lichtenbelt et al 43. Gasparakis concludes that a
smoother image results from first classification then interpo-
lation. However care is needed in the interpolation. The clas-
sical approach is to trilinearly interpolate colour values in or-
der to get the colour of a sample to use in equation 16. Wit-
tenbrink et al 83 show that this can produce unexpected ef-
fects: suppose one vertex value has red colour, but zero opac-
ity (ie is transparent). This is included in the colour interpo-
lation process, even though its contribution is null when a ray
passes directly through it. This is corrected if the colours used
in the trilinear interpolation are weighted by their opacity -
this is known as opacity-weighted colour interpolation. Gas-
parakis 23 gives a rigorous proof that this is the correct way
to carry out the interpolation.

Other authors favour interpolation then classification, see
for example Lichtenbelt et al 43. The argument for this or-
der is that fine detail within a voxel can sometimes be picked
out. On the other hand, since the sample points are view-
dependent (points along a set of rays in direction of view), the
classification itself is then view dependent. Indeed the clas-
sification process moves from being a pre-processing step to
being a necessary step in each rendering. Furthermore the
shading calculation is carried out at the sample point, not the

c
y

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

vertex - thus the approach is analogous to Phong shading,
rather than Gouraud. Note that an interpolation of the gradi-
ent is also needed. For a discussion of how to do this, see the
papers by Moller et al 50 and Bentum et al 6.

Wittenbrink et al 83 give a thorough comparison of the
above issue.

Some of the highest quality medical volume rendering
has been carried out in Hamburg by Hohne and his research
group. They have created detailed segmentation of medical
images to create an anatomical atlas. We include mention
of them in this section through their recent work on accu-
rate identification of partial volume effects in medical vol-
ume rendering. See the paper by Tiede et al 73 for this work,
and for pointers to other work by this group.

4.3.3. Curvilinear and Unstructured Grids

Many problems in computational science involve non-
rectilinear grids, and there has been much recent work on
extending the classical ray casting approach to handle these
grids.

The two common types are: curvilinear grids and unstruc-
tured grids. One option of course is to resample the data onto
a rectilinear grid and use the classical approach. This is un-
satisfactory for many reasons: the grid will reflect the nature
of the problem and a very fine rectilinear grid may be needed
to capture all the detail. Curvilinear grids can be converted to
unstructured, by decomposing each hexahedral cell into five
tetrahedra, but this then destroys the connectivity implicit in
the curvilinear grid. Hence special methods both for curvilin-
ear and unstructured grids have emerged.

For curvilinear grids, there is a mapping from the curvi-
linear grid in physical space (P-space) to a corresponding
rectilinear grid in computational space (C-space). Fruhauf 22

shows how it is possible to traverse and interpolate along rays
in C-space and transform back to P-space for rendering using
the Jacobian matrix. Hong and Kaufman 32 argue that there
is a loss of accuracy in this process.

Hong and Kaufman 32 themselves propose a different ap-
proach. The basic algorithm for ray casting into a curvilinear
volume is presented as follows:

1. Cast ray from pixel z x { y |
2. Find first intersection with a cell-face
3. Repeat

a. Find exit cell face, and exit point
b. Interpolate to get value s at exit point
c. Accumulate colour and opacity using s and depth of

cell

The repetition terminates when the opacity is 1 or the
ray leaves grid. The key to Hong and Kaufman’s work is to
project cell faces onto the image plane in order to reduce the
complexity of the algorithm. The exterior faces are projected

and bucket-sorted to get a depth ordering. Each hexahedral
cell is described as a set of 12 bounding triangles, two per
face - given the entry triangle, the determination of the exit
triangle is also accelerated by projection of the 11 candidates
onto the image plane. We shall see later in this section other
instances of complexity of a 3D problem being handled by
reduction to 2D.

For unstructured grids, the major issue is again computa-
tional complexity. Whereas for rectilinear grids we know the
ordering of cells along a ray and thus can process them with-
out sorting, this is not the case for unstructured grids. The
challenge for ray casting unstructured grids is to identify the
cells which are intersected by a ray, and order these front-to-
back so that compositing can be carried out. The naive ap-
proach is to compute (for an NxN image and a mesh with n
edges) the intersection of all N2 rays with all }.z n | facets,
and sort the intersections along each ray. This has complex-
ity upper bound of }.z N2n logn | . There has been significant
progress in recent years on lowering this complexity bound.

The seminal paper was by Giertsen 25 who introduced the
idea of a sweep plane. Imagine a viewing co-ordinate sys-
tem in which the xy-plane is the display, with the y-axis in an
up direction, and rays being fired into the volume parallel to
the z-axis direction. Now imagine a scanline on the display,
with a given y-value, and consider a plane through this scan-
line and in the viewing direction (ie orthogonal to the display
plane). This is a sweep plane, and for a parallel projection
will contain all the rays through the scan line. If we can find
the intersection of the cells with this sweep plane, then we
have reduced the sorting problem from 3D to 2D, with corre-
sponding saving in complexity. Giertsen transforms the ver-
tices of the mesh to the standard viewing system, orders them
by y-value and then proceeds scanline-by-scanline, maintain-
ing an active set of cells intersected by the current sweep
plane. By exploiting coherence between scanlines, Giertsen
is able to make efficiency gains.

This basic idea has been developed throughout the last
decade with steady improvements in efficiency. In a series
of papers, Silva and colleagues have worked to improve
the complexity measure mentioned earlier. The Lazy Sweep
Ray Casting Algorithm 68 avoids some of the transformation
and sorting required by the original Giertsen method. This
achieves a worst case upper bound of }.z k ~ n ~ n logn ~
Nn logn | where k �U}.z N2n | is the size of output (ie number
of facets crossed by all rays).

Westermann and Ertl 77 exploit polygon rendering hard-
ware to construct the projection of cells onto the sweep plane
(taking a view from above the volume and using clipping to
isolate the correct cells). This is stored in a buffer, with the
cells in line of sight order. In a second pass, the buffer is tra-
versed in order to carry out the volume rendering integration.

c
�

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

4.3.4. Fast Traversal

Performance of volume rendering by ray casting has been
an active area of research throughout the last decade as the
search has gone on to bring the process down to interactive
speed.

An early development was template-based ray traversal
proposed by Yagel et al 86. This work is based on the observa-
tion that, with parallel rays, the path through the voxel struc-
ture is common to all rays, ie a template for the path can be
used.

Another approach is to pre-process the volume so that the
regions of significance are identified, and volume rendering
integration is begun from the intersection with the first object
rather than the intersection with the volume boundary. This
can be done by using a hierarchical data structure such as oc-
trees (used by Parker et al 59, 60 and by Levoy 42). An alter-
native, suggested by Wan et al 74, is to record the boundary
voxels in the volume, and to project these cells onto the im-
age plane, storing information in two projection buffers - one
giving the nearest distance to a boundary cell, the other the
furthest distance, for each pixel. In the ray casting process,
only rays which intersect boundaries need be considered, and
for those which do intersect, the traversal need only proceed
from nearest boundary to furthest boundary. In a further pa-
per 75, the authors show how the algorithm may be easily par-
allelised and they report 20 frames per second rendering on a
16 processor SGI Challenge, for a 256x256x225 dataset and
256x256 grey scale image.

4.3.5. Hardware Advances

The holy grail of volume rendering for many years has
been real-time, interactive visualization of moderate-sized
datasets. Kaufman over many years has led the research into
hardware architectures which seek this prize. His series of
Cube architectures progressively got closer to the holy grail,
culminating in the Cube-4 architecture described by Pfister
and Kaufman 62. Research on volume rendering hardware
has also been very active in Germany, where two machines
have been implemented: VIRIM described by Guenther et al
26 and VIZARD described by Knittel and Strasser 38. All fol-
low the ray casting approach. For a general overview, see the
paper by Ray et al 64.

There has been a very exciting development in the last
year, showing the holy grail to be fully in sight. Mitsubishi
Electric have enhanced the Cube-4 architecture, and created
a commercial product, as a PC-board which can fit into a
standard PC. The VolumePro system is fully described in a
landmark paper by Pfister et al 61. The system is based on a
ray casting approach but with many important acceleration
techniques, such as the use of shear-warp transformations to
improve speed of data access (see later).

4.4. Advances in Object-based Techniques

4.4.1. Better Splatting

The research group at Ohio, and others, have continued
throughout the last decade to improve the Westover splat-
ting algorithm. Recent work has addressed a perceived weak-
ness of splatting in that the image appears rather blurred. This
problem can be traced to the issue of shading before or after
interpolation. The original splatting algorithm shades, then
interpolates, which has a smoothing effect. Mueller et al 51

re-order the splatting computation so that shading takes place
after interpolation. In this way edges are more clearly picked
out.

In another recent paper, Mueller et al 52 continue devel-
opment of a sheet-buffer approach, in which all the splats
from one slice are added into a colour and opacity sheet
buffer - and then the resulting sheets are composited either
back-to-front, or front-to-back. This gives a smoother ap-
pearance in animated viewing. The original sheet buffer pro-
posed by Westover 79 used axis-aligned sheets, but this new
work shows improved results are achieved by working with
sheets aligned with the image plane.

4.4.2. Shear Warp Rendering

The idea of shear warp rendering is to pre-transform the data
into an orientation from which rendering can be fast. Based
on earlier work by, among others, Cameron and Undrill 8,
the idea was developed into a very effective algorithm by
Lacroute and Levoy 40. It is illustrated in Figure 9. Instead
of projecting voxels from the volume at an angle to the im-
age plane, we shear the volume by translating each slice, and
resampling along the direction shown. Projection is now triv-
ial: the slices are composited front-to-back using the standard
operation, creating an intermediate image. This intermediate
image is then corrected by an affine 2D warp. The algorithm
exploits coherence in the volume data by using run-length en-
coding, and the overall algorithm has proved highly compet-
itive.

volume
slices

image
plane

shear

warp

project

viewing rays

Figure 9: Shear Warp

The algorithm can be parallelised and analysis of its per-
formance is covered in the paper by Lacroute 39.

c
�

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

4.4.3. Unstructured Grids

As mentioned earlier, there are many applications where the
data is on an unstructured grid. A common approach is to
project cells on to the image plane, and for all pixels cov-
ered by the projection, a compositing operation is performed
to build the image. Because compositing is not commuta-
tive, the cells need to be ordered before projection and this
is a challenging computational geometry problem. A series
of papers have developed progressively better sorting meth-
ods. A seminal paper was published by Williams 82. An im-
portant recent paper by Williams et al 81 describes a highly
accurate rendering system based on this approach, and using
a detailed treatment of optical models within the volume ren-
dering integral.

Research continues to try to improve the original Williams
algorithm. For example, see the paper by Silva et al 69.

4.4.4. Texture Mapping Techniques

Traditional approaches to volume visualization are very ex-
pensive to perform with respect to cpu usage. To improve this
situation specialist hardware has been developed to acceler-
ate many of the standard operations, but it is expensive and
not generally found on the desktop. For this reason an alter-
native approach has been devised that attemps to make use of
more generic computer equipment, using hardware accelera-
tion where possible. Modern graphics workstations and PCs
now come with texture mapping hardware, for acceleration
of 2D and 3D texture operations, as part of the basic graphics
system. Work has been presented by Cabral et al 7 that rep-
resents the volume using 2D or 3D texture maps exploiting
any available hardware.

2D Texture Mapping

If a machine has only 2D texture mapping hardware then
this can be used for volume visualization of regular struc-
tured data if the data is prepared in the right manner. Slices
are taken through the volume orthogonal to each of the prin-
cipal axes and the resulting information for each slice is rep-
resented as a 2D texture which is then pasted onto a rectan-
gle of the same size (see Figure 10). The texture hardware
can then be used to quickly manipulate the 2D slices, doing
the appropriate bilinear interpolations, when the viewpoint
is changed. The reason for making 3 sets of slices is that if
just one set is taken, say in the xy-plane, as the viewpoint is
moved around to the yz-plane then the user will be looking di-
rectly along the slice and hence it will seem to disappear. Us-
ing the 3 sets of slices means that this cannot happen since,
in the example above, the yz-plane would be directly in the
viewing direction. There is one further consideration, how-
ever, with the three sets of orthogonal slices visible, the ends
of slices not aligned to the view direction cause visual clutter.
To remedy this only the set of slices most aligned to the view-
ing direction are "turned on", the other two sets are invisible.
As the viewpoint moves the underlying system selects the ap-

X

Z

Y

Z

Y

A B

C

Figure 10: Using 2D textures for Volume Rendering: A) Rep-
resents a volume of binary data containing a solid cone; b)
shows the volume being sliced in the XY plane with a texture
map being pasted onto each rectangle; c) shows the same
process, but in the XZ plane

propriate slices to be visible. Transparency is used to make
internal information visible.

A nice application of this approach to volume rendering is
given by Hendin et al 30. They describe a web-based visual-
ization system for medical imaging,using a combination of
VRML and Java. It also allows the incorporation of isosur-
face geometry within the displayed volume.

OpenGL Volumizer

Silicon Graphics have developed an API for volume vi-
sualization, called Volumizer, which uses the techniques de-
scibed above. It provides a set of classes that allow an ap-
plication to query the underlying hardware at run time to get
optimal parameters for best performance. The user’s data is
stored as a set of 3D tiles called bricks which are sized to
a power of 2 depending on the amount and type of texture
memory available. If the data is not naturally a power of 2
in size then the user can pad the data to fit before loading, or
the system offers 3 options (some of which are only avail-
able on certain hardware). It will either truncate the data to
the nearest power of 2 below the data size (e.g a 343 vol-
ume would be clipped to a 323 volume), augment the data to
the next size up (643) or create bricks of different sizes (323

plus a number of 23). This allows for maximum performance
when paging them into memory. The system represents the
volume as a series of texture mapped polygons, the advan-
tage being that it allows the combination of both volume data
and geometricaly represented objects in the same scene. Vo-
lumizer uses a 3D geometric representation made up from

c
�

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

tetrahedra and/or pyramids to define the region of the vol-
ume that will be visible. The system clips the texture poly-
gons to the bounds of the tetrahedra (and/or pyramids). For
example, to volume render a cube of data, 5 tetrahedra could
be defined that cover the space of the entire volume and the
system would clip the textured polygons to the 5 tetrahedra.
Using a geometric description allows applications to create
shapes that are not necessarily cubic, it can create doughnut
shapes for instance that leaves a hole through the centre of the
volume due to the textured polygons being clipped. Material
properties such as colour and opacity can be added before or
after the texture volume has been loaded using lookup tables.
It is more interactive to use a post lookup table, but its avail-
ability is hardware dependent.

5. Conclusions

The subject of volume visualization has come a long way
over the past fifteen years. The main approaches of isosur-
face rendering through marching cubes, and volume render-
ing through ray casting and splatting were all crystallised
during the late 1980s, but the past decade has seen these ap-
proaches develop a maturity - in terms of robustness, accu-
racy and performance.

There are strong advocates of the surface extraction ap-
proach, arguing that it gives excellent definition of features
within a dataset, and exploits polygon rendering hardware to
give fast performance. There are equally strong voices ar-
guing for the volume rendering approach, and their case is
strengthened by the new hardware developments. There is a
useful comparison of the two approaches by Bartz and Meiss-
ner 4. The truth is probably that both approaches are useful
and the winner in all the competition between researchers is
the user - who now has a battery of very powerful techniques
to apply to any volume visualization problem.

Acknowledgements

Thanks to Adriano Lopes for Figure 5 and Figure 4.

References

1. L. Arge and J.S. Vitter. Optimal interval management in
external memory. In Proceedings of IEEE Foundations
of Computer Science, pages 560–569. 1996.

2. Michael Bailey. Manufacturing isovolumes. In Min
Chen, Arie E. Kaufman, and Roni Yagel, editors, Vol-
ume Graphics, pages 79–93. Springer, 2000.

3. C.L. Bajaj, V. Pascucci, and D.R. Schikore. Accelerated
isocontouring of scalar fields. In Chandrajit Bajaj, edi-
tor, Data Visualization Techniques, pages 31–48. Wiley,
1999.

4. Dirk Bartz and Michael Meissner. Voxels versus poly-
gons: A comparative study for volume graphics. In Min
Chen, Arie E. Kaufman, and Roni Yagel, editors, Vol-
ume Graphics, pages 171–184. Springer, 2000.

5. J. Bentley. Multidimensional binary search trees used
for associative search. Communications of the ACM,
18(9):509–516, 1975.

6. M.J. Bentum, B.B.A. Lichtenbelt, and T. Malzbender.
Frequency analysis of gradient estimators in volume
rendering. IEEE Transactions on Visualization and
Computer Graphics, 2(3):242–254, 1996.

7. B. Cabral, N. Cam, and J. Foran. Accelerated vol-
ume rendering and tomographic reconstruction using
texture mapping hardware. In Proceedings of the
ACM/IEEE Symposium on Volume Visualization, pages
91–98. IEEE Press, 1994.

8. G.G. Cameron and P.E. Undrill. Rendering volumetric
medical image data on a SIMD- architecture computer.
In Proceedings of 3rd Eurographics workshop on ren-
dering, pages 135–145. 1992.

9. E.V. Chernyaev. Marching cubes 33 : Construc-
tion of topologically correct isosurfaces. Techni-
cal Report CN/95-17, CERN, 1995. Available as
http://wwwinfo.cern.ch/asdoc/psdir/mc.ps.gz.

10. Y. Chiang and C. Silva. I/o optimal isosurface extrac-
tion. In Proceedings IEEE Visualization 97, pages 293–
300. IEEE Press, 1997.

11. Y. Chiang, C. Silva, and W. Schroeder. Interactive out-
of-core isosurface extraction. In Proceedings IEEE Vi-
sualization 98, pages 167–174. IEEE Press, 1998.

12. P. Cignoni, F. Ganovelli, C. Montani, and R. Scopigno.
Reconstruction of topologically correct and adaptive tri-
linear surfaces. Computers and Graphics, 24(3):399–
418, 2000.

13. P. Cignoni, P. Marino, C. Montani, E.Puppo, and
R.Scopigno. Speeding up isosurface extraction using
interval trees. IEEE Transactions on Visualization and
Computer Graphics, 3(2):158–170, 1997.

14. Daniel Cohen-Or, Arie Kadosh, David Levin, and Roni
Yagel. Smooth boundary surfaces from 3d datasets. In
Min Chen, Arie E. Kaufman, and Roni Yagel, editors,
Volume Graphics, pages 71–78. Springer, 2000.

15. P. Criscione, C. Montani, R. Scateni, and R. Scopigno.
Discmc: An interactive system for fast fitting isosur-
faces on volume data. In Proceedings of Virtual En-
vironments and Scientific Visualization ’96, pages 178–
190. Springer Wien, 1996.

16. A. Doi and A. Koide. An efficient method of triangulat-
ing equi-valued surfaces by using tetrahedral cells. IE-
ICE Trans Commun. Elec. Inf. Syst., E-74(1):214–224,
1991.

17. Martin Durst. Letters: Additional reference to marching
cubes. Computer Graphics, 22(2):72–73, 1988.

c
�

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

18. H. Edelsbrunner. Dynamic data structures for orthogo-
nal intersection queries. Technical Report F59, Inst In-
formationsverarb, Tech. Univ. Graz, 1980.

19. T. T. Elvins. A survey of algorithms for volume visual-
ization. Computer Graphics, 26(3):194–201, 1992.

20. K. Engel, R. Grosso, and Th. Ertl. Progressive iso-
surfaces on the web. In Late Breaking Hot Topics, IEEE
Visualization 98. 1998.

21. K. Engel, R. Westermann, and T. Ertl. Isosurface extrac-
tion techniques for web-based volume visualization. In
Proceedings of IEEE Visualization 99, pages 139–146.
1999.

22. T. Fruhauf. Ray casting of nonregularly structured vol-
ume data. Computer Graphics Forum, 13(3):294–303,
1994.

23. C. Gasparakis. Multi-resolution multi-field ray tracing:
A mathematical overview. In Proceedings of IEEE Vi-
sualization99. ACM Press, 1999.

24. Thomas Gerstner and Martin Rumpf. Multi-
resolutional parallel isosurface extraction based
on tetrahedral bisection. In Min Chen, Arie E. Kauf-
man, and Roni Yagel, editors, Volume Graphics, pages
267–278. Springer, 2000.

25. C. Giertsen. Volume visualization of sparse irregular
meshes. IEEE Computer Graphics and Applications,
12(2):40–48, 1992.

26. T. Guenther, C. Poliwoda, C. Reinhard, J. Hesser,
R. Maenner, H-P. Meinzer, and H.-J. Bauer. VIRIM- a
massively parallel processor for real-time volume visu-
alization in medicine. In Proceedings of the 9th Euro-
graphics Workshop on Graphics Hardware, pages 103–
108. 1994.

27. R.B. Haber and D.A. McNabb. Visualization idioms :
A conceptual model for scientific visualization systems.
In B. Shriver G.M. Nielson and L.J. Rosenblum, edi-
tors, Visualization in Scientific Computing, pages 74–
93. IEEE, 1990.

28. Bernd Hamann, Isaac J. Trotts, and Gerald E. Farin.
On approximating contours of the piecewise trilinear
interpolant using triangular rational-quadratic Bezier
patches. IEEE Transactions on Visualization and Com-
puter Graphics, 3(3):215–227, 1997.

29. Wolfgang Heidrich, Michael McCool, and John
Stevens. Interactive maximum projection volume
rendering. In Gregory M. Nielson and Deborah Silver,
editors, Proceedings of IEEE Visualization95, pages
11–18. IEEE Computer Society Press, 1995.

30. Ofer Hendin, Nigel W. John, and Ofer Shochet. Medi-
cal volume rendering over the WWW using VRML and
JAVA. In Proceedings of Medicine Meets Virtual Real-
ity 1998. 1998.

31. S. Hill. Tri-linear interpolation. In P. S. Heckbert,
editor, Graphics Gems IV, pages 521–525. AP Profes-
sional, 1994.

32. Lichan Hong and Arie E. Kaufman. Accelerated ray
casting for curvilinear volumes. In Proceedings of IEEE
Visualization 98, pages 247–254. 1998.

33. T. Itoh and K. Koyamada. Automatic isosurface propa-
gation using an extrema graph and sorted boundary cells
lists. IEEE Transactions on Visualization and Computer
Graphics, 1(4):319–327, 1995.

34. M.W. Jones and M. Chen. Fast cutting operations on
three dimensional volume datasets. In Visualization
in Scientific Computing, pages 1–8. Springer-Verlag,
1995.

35. Moon-Ryul Jung, Hyunwoo Park, and Doowon Paik.
An analytical ray casting of volume data. In Pacific
Graphics 98, pages 79–86. 1998.

36. J.T. Kajiya and B.P. Von Herzen. Ray tracing volume
densities. In Proceedingsof SIGGRAPH 84, pages 165–
174. 1984.

37. Gordon Kindlmann and James W. Durkin. Semi-
automatic generation of transfer functions for direct vol-
ume rendering. In Proceedings of 1998 Symposium on
Volume Visualization, pages 79–86. ACM SIGGRAPH,
1998.

38. G. Knittel and W. Strasser. VIZARD - visualization
accelerator for real-time display. In Proceedings of
the SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 139–146. 1997.

39. P. Lacroute. Analysis of a parallel volume rendering
system based on the shear-warp factorisation. IEEE
Transactions on Visualization and Computer Graphics,
2(3):218–231, 1996.

40. P. Lacroute and M. Levoy. Fast volume rendering using
a shear-warp transformation of the viewing transforma-
tion. In Proceedings of SIGGRAPH 94, pages 451–458.
1994.

41. M. Levoy. Display of surfaces from volume data.
IEEE Computer Graphics and Applications, 8(3):29–
37, 1988.

42. M. Levoy. Efficient ray tracing of volume data. ACM
Transactions on Graphics, 9(3):245–261, 1990.

43. Barthold Lichtenbelt, Randy Crane, and Shaz Naqvi.
Introduction to Volume Rendering. Hewlett-Packard
Professional Books, 1998.

44. Y. Livnat, H. Shen, and C. Johnson. A near optimal iso-
surface extraction algorithm using the span space. IEEE
Transactions on Visualization and Computer Graphics,
2(1):73–84, 1996.

c
�

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

45. S. Lombeyda and M. Rajan. Simple parallel isosur-
face calculation and rendering of large data sets. In
HPC users group conference March 99. 1999. See
http://www.erpnews.com/conference/iworks99/iwrkhpc.html.

46. Adriano Lopes. Accuracy in scientific visualization.
PhD thesis, University of Leeds, Leeds, UK, 1999.

47. Adriano Lopes and Ken Brodlie. Accuracy in contour
drawing. In Eurographics UK 98 Conference Proceed-
ings. 1998.

48. W.E. Lorensen and H.E. Cline. Marching cubes : A high
resolution 3d surface reconstruction algorithm. Com-
puter Graphics, 21(4):163–169, 1987.

49. Nelson Max. Optical models for direct volume render-
ing. IEEE Transactions on Visualization and Computer
Graphics, 1(2):99–108, 1995.

50. T. Moller, R.K. Machiraju, K. Mueller, and R. Yagel. A
comparison of normal estimation schemes. In Proceed-
ings of IEEE Visualization 97, pages 19–26. 1997.

51. Klaus Mueller, Torsten Moller, and Roger Crawfis.
Splatting without the blur. In David Ebert, Markus
Gross, and Bernd Hamann, editors, Proceedings of
IEEE Visualization 99, pages 363–370. ACM Press,
1999.

52. Klaus Mueller, Naeem Shareef, Jian Huang, and Roger
Crawfis. High-quality splatting on rectilinear grids with
efficient culling of occluded voxels. IEEE Transactions
on Visualization and Computer Graphics, 5(2):116–
134, 1999.

53. B Narajan. On generating topologically consistent iso-
surfaces from uniform samples. The Visual Computer,
11:52–62, 1994.

54. G.M. Nielson. Scattered data modelling. IEEE Com-
puter Graphics and Applications, 13(1):60–70, 1993.

55. G.M. Nielson and B. Hamann. The asymptotic decider:
Resolving the ambiguity in marching cubes. In Pro-
ceedings of IEEE Visualization92, pages 83–91. IEEE,
1991.

56. Gregory M. Nielson. Volume modelling. In Min
Chen, Arie E. Kaufman, and Roni Yagel, editors, Vol-
ume Graphics, pages 29–48. Springer, 2000.

57. Kevin Novins and James Arvo. Controlled precision
volume integration. In 1992 Workshop on Volume Vi-
sualization, pages 83–89. ACM SIGGRAPH, 1992.

58. J. Painter, H. Bunge, and Y. Livnat. Case study: Mantle
convection visualization on the cray t3d. In Proceedings
of Visualization 96, pages 409–412. 1996.

59. S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P-P.
Sloan. Interactive ray tracing for isosurface rendering.

In David Ebert, Hans Hagen, and Holly Rushmeier, ed-
itors, Proceedings of Visualization ’98, pages 233–238.
ACM Press, 1998.

60. Steven Parker, Michael Parker, Yarden Livnat, Peter-
Pike Sloan, Charles Hansen, and Peter Shirley. In-
teractive ray tracing for volume visualization. IEEE
Transactions on Visualization and Computer Graphics,
5(3):238–250, 1999.

61. Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh
Lauer, and Larry Seiler. The VolumePro real-time ray
casting system. In Proceddings of SIGGRAPH99, pages
251–260. ACM Press, 1999.

62. Hanspeter Pfister and Arie Kaufman. Cube 4 - a scalable
architecture for real-time volume rendering. In 1996
ACM/IEEE Symposium on Volume Visualization, pages
47–54. 1996.

63. T. Porter and T. Duff. Compositing digital images.
Computer Graphics, 18(3):253–259, 1984.

64. Harvey Ray, Hanspeter Pfister, Deborah Silver, and
Todd A. Cook. Ray casting architectures for volume
visualization. IEEE Transactions on Visualization and
Computer Graphics, 5(3):210–223, 1999.

65. Han-Wei Shen. Isosurface extraction in time-varying
fields using a temporal hierarchical index tree. In David
Ebert, Hans Hagen, and Holly Rushmeier, editors, Pro-
ceedings of Visualization ’98, pages 159–164. ACM
Press, 1998.

66. H.W. Shen, C.D. Hansen, Y. Livnat, and C.R. John-
son. Isosurfacing in span space with utmost efficiency.
In Proceedings IEEE Visualization 96, pages 287–294.
IEEE Press, 1996.

67. Will Shroeder, Ken Martin, and Bill Lorensen. The
Visualization Toolkit: An Object-Oriented Approach to
3D Graphics. Prentice-Hall, 1996. See also the vtk web-
site: www.kitware.com.

68. Claudio T. Silva and Joseph S.B. Mitchell. The lazy
sweep ray casting algorithm for rendering irregular
grids. IEEE Transactions on Visualization and Com-
puter Graphics, 3(2):142–157, 1997.

69. Claudio T. Silva, Joseph S.B. Mitchell, and Peter L.
Williams. An exact interactive time visibility ordering
algorithm for polyhedral cell complexes. In Proceed-
ings of 1998 Symposium on Volume Visualization, pages
87–94. ACM SIGGRAPH, 1998.

70. D. Speray and S. Kennon. Volume probe: Interactive
data exploration on arbitrary grids. Computer Graphics,
24(5):5–12, 1990.

71. P. Sulatycke and K. Ghose. A fast multithreaded out-
of-core visualization technique. In IEEE Symposium on
Parallel and Distributed Processing 1999, pages 569–
575. 1999.

c
�

The Eurographics Association 2000.

Ken Brodlie and Jason Wood / Recent Advances in Visualization of Volumetric Data

72. Philip Sutton and Charles D. Hansen. Isosurface extrac-
tion in time-varying fields using a temporal branch-on-
need tree (T-BON). In David Ebert, Markus Gross, and
Bernd Hamann, editors, Proceedings of IEEE Visualiza-
tion 99, pages 147–153. ACM Press, 1999.

73. Ulf Tiede, Thomas Schiemann, and Karl Heinz Hohne.
High quality rendering of attributed volume data. In
David Ebert, Hans Hagen, and Holly Rushmeier, edi-
tors, Proceedings of Visualization ’98, pages 255–262.
ACM Press, 1998.

74. M. Wan, S. Bryson, and A. Kaufman. Boundary cell-
based acceleration for ray casting. Computers and
Graphics, 22(6):715–721, 1998.

75. Ming Wan, Arie Kaufman, and Steve Bryson. High per-
formance presence-accelerated ray casting. In Proceed-
ings of IEEE Visualization 99, pages 379–386. 1999.

76. Chris Weigle and David C. Banks. Extracting iso-
valued features in 4-dimensional scalar fields. In Pro-
ceedings of 1998 Symposium on Volume Visualization,
pages 103–110. ACM SIGGRAPH, 1998.

77. Rudiger Westermann and Thomas Ertl. The VS-
BUFFER: Visibility ordering of unstructured volume
primitives by polygon drawing. In Proceedings of IEEE
Visualization 97, pages 35–42. 1997.

78. Lee Westover. Interactive volume rendering. In 1989
Chapel Hill Volume Visualization Workshop, pages 9–
16. 1989.

79. Lee Westover. Footprint evaluation for volume render-
ing. In Proceedings of SIGGRAPH 90, pages 367–376.
1990.

80. J. Wilhelms and A. Van Gelder. Octrees for faster iso-
surface generation. ACM Transactions on Graphics,
11(3):201–227, 1992.

81. Peter L. Williams, Nelson L. Max, and Clifford M.
Stein. A high accuracy volume renderer for unstruc-
tured data. IEEE Transactions on Visualization and
Computer Graphics, 4(1):37–54, 1998.

82. P.L. Williams. Visibility ordering meshed polyhedra.
ACM Transactions on Graphics, 11(2):103–126, 1992.

83. Craig M. Wittenbrink, Thomas Malzbender, and
Michael E. Goss. Opacity-weighted color interpolation
for volume sampling. In Proceedings of 1998 Sympo-
sium on Volume Visualization, pages 135–142. ACM
SIGGRAPH, 1998.

84. Geoff Wyvill, Craig McPheeters, and Brian Wyvill.
Data structure for soft objects. The Visual Computer,
2:227–234, 1986.

85. R. Yagel. Efficient techniques for volume rendering of
scalar fields. In Chandrajit Bajaj, editor, Data Visual-
ization Techniques, pages 15–30. Wiley, 1999.

86. R. Yagel, D. Cohen, and A. Kaufman. Discrete ray
tracing. IEEE Computer Graphics and Applications,
12(5):19–28, 1992.

87. Y. Zhou, B. Chen, and A. Kaufman. Multiresolution
tetrahedral framework for visualizing regular volume
data. In Proceedings of Virtual Environmentsand Scien-
tific Visualization ’97, pages 135–142. Springer Wien,
1997.

c
�

The Eurographics Association 2000.

