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Abstract
We present a review of the correspondence problem and its solution methods, targeting the computer graphics
audience. With this goal in mind, we focus on the correspondence of geometric shapes represented by point sets,
contours or triangle meshes. This survey is motivated by recent developments in the field such as those requiring
the correspondence of non-rigid or time-varying surfaces and a recent trend towards semantic shape analysis,
of which shape correspondence is one of the central tasks. Establishing a meaningful shape correspondence is a
difficult problem since it typically relies on an understanding of the structure of the shapes in question at both
a local and global level, and sometimes also the shapes’ functionality. However, despite its inherent complex-
ity, shape correspondence is a recurrent problem and an essential component in numerous geometry processing
applications. In this report, we discuss the different forms of the correspondence problem and review the main
solution methods, aided by several classification criteria which can be used by the reader to objectively compare
the methods. We finalize the report by discussing open problems and future perspectives.

1. Introduction

Finding a meaningful correspondence between two or more
shapes is an important task whose specializations appear un-
der a variety of different names in the literature, such as
registration, alignment and matching. The correspondence
problem can be generally stated as: given input shapes
S1,S2, . . . ,SN, establish a meaningful relation between their
elements. Figure 1 presents an example of a correspondence,
where the elements are feature points on the surface of the
shapes and the relation links pairs of these points.

The properties that a correspondence has to satisfy to be
deemed meaningful depend on the task at hand. Our task
can range from the simpler case of finding portions of the
shapes that are geometrically similar, to the more complex
one where we seek to relate elements that represent the same
parts on the shapes or serve the same function. An exam-
ple of such a semantic correspondence problem is shown in
Figure 2. In general, computing a correspondence is a hard
problem, since it involves understanding the global struc-
ture of the shapes at local and global levels, and possibly
the functionality of its parts.

The correspondence problem has been traditionally stud-
ied in the computer vision and image analysis communi-
ties. However, in this report, our goal is to provide a survey
targeted towards the computer graphics audience. We focus

Figure 1: An example of a meaningful correspondence be-
tween two shapes automatically computed with the approach
in [ZSCO∗08]. The correspondence is shown as the blue
lines that relate a sparse set of feature points on the two
shapes (shown as the dots).

on methods directed at datasets that we denominate shapes,
which are represented as points sets, contours, or triangle
meshes, as opposed to digital images and volumes. The key
property of these datasets is that they provide explicit geom-
etry information (with or without connectivity information),
but generally lack a simple parameterization domain. An-
other distinction is that the analysis of images benefits from
rich local descriptors based on color and texture, while on
shapes the local descriptors that can be computed are not as
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Figure 2: An example of a collection of man-made shapes
(liquid containers) for which computing a correspondence
is a challenging problem. Note how the shapes can be con-
stituted by different types and numbers of parts (e.g., one or
two handles), how the parts of a same type can vary in their
geometry (e.g., long vs. short handles), and how they can
connect to each other in different manners.

distinctive. In this report, we also present a comprehensive
coverage of the correspondence of 3D datasets, which we
think needs special attention due to the importance of 3D
models in computer graphics and geometry processing, and
given the inherent increase in complexity that these datasets
introduce to the problem.

Correspondence methods have been commonly used for
graphics applications such as 3D scan alignment or shape
morphing. However, there have been a number of recent ad-
vances in the field that have prompted the development of
this survey in the present-day. These innovations have been
driven by new applications, such as time-varying surface re-
construction and markerless motion capture, which are now
possible due to advances in acquisition techniques.

Firstly, there have been emerging techniques for
surface deformation that work directly on the input
shapes and efficiently obtain a deformed surface. The
potential application of these techniques to non-rigid
registration of surfaces has been realized by different
authors [HAWG08, ZSCO∗08]. Secondly, progress in
matching approximately isometric shapes has also been
exposed in recent works [BBBK08, LF09]. Finally, there
appears to be a recent trend in the literature towards the
development of techniques that go beyond low-level geom-
etry and extract high-level semantic information from the
shapes, such as segmenting a mesh into parts [Sha08], find-
ing analogies between these parts [SSSCO08], transferring
information from one shape to another [SP04], or extracting
the high-level structure of the shapes for manipulation
or deformation [XWY∗09, GSMCO09]. Computing a
correspondence between shapes is one of the key problems
that can benefit from semantically-driven techniques, since
our aim is to understand the structure of the shapes in order
to find a meaningful correspondence between their parts.

In this report, we provide an up-to-date survey on shape
correspondence which should be beneficial to those seek-
ing familiarity with the topic. Although several compre-
hensive surveys have been written on image registration,
e.g., [Bro92, MV98, ZF03], only few aimed specifically at

the correspondence of shapes and 3D datasets. Therefore,
this survey focuses on this topic and also intends to cover all
of the recent developments in the field.

Our report is directed at researchers in computer graphics
who would like to obtain an overview of the different ap-
proaches for correspondence or who need to select the most
suitable method to solve a problem at hand. For the latter
purpose, we present several classifications of the correspon-
dence methods in our discussion, so that readers are able to
objectively compare the different techniques that are avail-
able, and understand their strengths, weaknesses, and appli-
cability. We also cover relevant techniques from other fields,
such as computer vision and machine learning, in order to
give a complete overview of the most important methods for
shape correspondence to the targeted audience. Finally, we
elaborate on challenges and future perspectives.

2. Problem statement

There is a variety of problems that can be classified under
the scope of shape correspondence. As we will see in Sec-
tion 3, significant differences exist between these problems
and the computational paradigms used for their solution also
differ. However, since all these different problems comprise
the same fundamental task, we can view them all in a unified
manner by considering the following problem statement:
given input shapes S1,S2, . . . ,SN, establish a meaningful re-
lation R between their elements. When two elements are re-
lated to each other (i.e., (s,z) ∈ R, for elements s ∈ Si and
z∈ S j, with i 6= j), we say that they are in correspondence or
that they match to each other. The relation can be constrained
in different manners, such as asking for a one-to-one, one-
to-many, or many-to-many correspondence.

Therefore, shape correspondence is generally defined as
identifying homologous elements of two or more shapes,
i.e., the elements that possess the same or similar structure
in terms of their local appearance and context. The mean-
ing of elements and similar structure depend on the prob-
lem at hand. However, a shape (represented as a point set,
surface, skeleton, etc.) will be usually composed of multi-
ple elements (primitives such as points, feature points, faces,
skeletal features, or higher-level entities such as parts, com-
posed of a group of primitives). To establish the similarity
between the elements, we resort to measures of geometric or
structural similarity, although in certain applications our ul-
timate goal behind this step is to recognize the elements and
infer their semantics. The forms that the components of the
problem definition can assume to make our problems more
concrete are discussed in detail in Section 4.

One important distinction to raise here is the difference
between the problems of shape correspondence and retrieval.
Retrieval is the task where, given a query shape, we wish to
find shapes from a database that are similar to the query,
tolerating a variety of transformations and possibly consid-
ering partial similarities. Therefore, we are only interested
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Figure 3: An example of partial correspondence between
parts of shapes: the goal here is to find a correspondence
between Neptune’s statue (left) and the human (right), by re-
lating the parts in yellow and ignoring the extra parts shown
in green and blue.

in quantifying the similarity between shapes, while in corre-
spondence we want to explicitly relate the elements of one
shape to those of the other. The evaluation of shape similar-
ity in retrieval is sometimes referred to as shape matching in
the literature [KFR04], which conflicts with the nomencla-
ture followed by other authors who refer to shape matching
as computing a correspondence. Perhaps the reason for the
interchangeable use of these terms in the literature is that
retrieval and correspondence are closely related problems,
since computing a correspondence and evaluating its quality
is one possible manner of assessing shape similarity.

The general correspondence problem stated above can be
specialized in different ways, which we discuss as follows.

Full vs. partial correspondence: following our problem
definition, here we focus on the inclusion properties of the
relation R defined between shape elements. We can require
our correspondence to be full (defined for all the shape ele-
ments) or partial (defined for a subset of the elements). The
motivation for the latter is that the shapes under consider-
ation may be constituted by different parts (i.e., one shape
can have missing or additional parts when compared to the
others), and so it may not be meaningful to establish a cor-
respondence between all their elements. These parts can dif-
fer by their geometry, scale, and connecting location on the
overall object. An example is shown in Figure 3.

Computing a partial correspondence is a more difficult
problem than computing a full correspondence, due to the
combinatorial explosion in the solution space. If we con-
sider all one-to-one assignments between shapes with n el-
ements, the solution space is composed of n! correspon-
dences. If we add the possibility for partial matching, the
solution space includes all the possible subsets of these n!.
Moreover, searching for the right subset increases the com-

Figure 4: Motivation for group correspondence: in this ex-
ample, we compare the skeletonization computed individu-
ally for each 2D shape (top row) to the result of pruning
these skeletons with the method in [WH09] (bottom row),
which takes group information into account. We see how us-
ing group information improves the coherence of the skele-
tons across shapes and also the quality of the branch corre-
spondence (shown by coinciding colors).

plexity of the problem and also requires a careful definition
of the optimality criterion.

Dense vs. sparse correspondence: another aspect to take
into account is the density of the relation R. A dense cor-
respondence is defined for all the elements or primitives on
the shape (e.g., faces). A sparse correspondence is defined
for a small number of pre-selected elements. The elements
are usually a set of features. For example, to infer the se-
mantics of human shapes, it is sufficient to match represen-
tative points located at the legs, arms, head and body of the
shapes (a sparse correspondence). On the other hand, for ap-
plications such as morphing or attribute transfer between two
shapes, we require a dense correspondence in order to guar-
antee global smoothness in the morphing or transfer result.

It is generally accepted that computing a sparse corre-
spondence between representative points is as hard a prob-
lem as computing a dense one between two shapes, since
both problems necessarily involve taking into consideration
the global structure of the shapes [ZSCO∗08]. However, a
typical approach for the dense case is to obtain a solution
from a sparse correspondence with techniques such as the
computation of a cross-parameterization or interpolation, in-
volving decisions at a more local level [Ale02].

Group correspondence: a specialized form of shape cor-
respondence involves a group of shapes simultaneously (i.e.,
N > 2, in our problem definition). Although this problem can
be straightforwardly solved by computing correspondences
between all the pairs of shapes in the group, considering all
the shapes at once can have advantages in the process. For
example, as illustrated in Figure 4, the group information
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(b) (c) (d)(a)

Figure 5: Different manners of solving the correspondence problem for the input shapes shown in (a) and their feature points
(indicated by the circles): (b) computing a correspondence without explicitly bringing the shapes into alignment, (c) computing
a global rigid transformation to align the two shapes, and (d) computing local non-rigid transformations for the shape primitives
to deform one shape into the other.

can act as a reinforcement to distinguish what structures or
parts are common to all the shapes and should be considered
in the correspondence, and which parts can be characterized
as noise and ignored in the computation [WH09]. A robust
correspondence between a group of shapes is the desired in-
put for tasks such as building a statistical description of the
group of shapes [DTC∗02].

3. Overview of correspondence problems

Now, we proceed to give an overview of correspondence
problems by discussing them in a more concrete manner,
while also describing some example applications. We can
obtain a correspondence directly from the similarity of the
elements, or we can first align the shapes and then derive a
correspondence from the proximity of the aligned elements.
Moreover, we can also iterate between the two procedures.
These options directly affect how we solve the correspon-
dence problem. It is worth noting that the alignment between
the shapes is a side product of the computation which is use-
ful and sometimes essential to the underlying application.
We will start by considering the case in which no alignment
is utilized, and then we discuss the scenarios where the re-
lation R is derived from aligning the shapes in a rigid or a
non-rigid manner. We illustrate the distinction between these
three cases in Figure 5. We finalize with the instance where
the time dimension is added to the input datasets.

Similarity-based correspondence: one of the most fun-
damental ways of computing a correspondence is to esti-
mate the similarity between pairs of shape elements or fea-
ture points collected from the shapes and derive a corre-
spondence from those estimates, which is sometimes called
the feature matching approach. The elements are commonly
characterized by shape descriptors. A correspondence is then
obtained by selecting pairs of assignments between elements
while optimizing an objective function composed of two
terms. The first term seeks to maximize the similarity be-

tween the descriptors of corresponding elements, while the
second term seeks to minimize the distortion that would be
introduced in the shapes if they were deformed to align with
each other. However, the second term can be estimated from
the correspondence without the need to explicitly align the
shapes. Ideally, satisfying these objectives should translate
into a solution that is geometrically or semantically mean-
ingful. Such a solution is typically obtained with an opti-
mization method.

This approach can be applied in any context where it
is possible to compute a set of descriptors for the el-
ements. Example applications include registration of 3D
scans [CCFM08] and deforming surfaces [ASP∗04], or
skeleton matching [BMSF06]. Moreover, this approach is
not restricted to its own domain and can be combined with
alignment-based approaches to provide a proper initializa-
tion to these methods [RL01], or to restrict the size of the
solution space [GMGP05, AMCO08, CZ08, ACOT∗10].

Rigid alignment: under certain assumptions, it is possible
to pose the correspondence problem as finding a geomet-
ric transformation that aligns the shapes. One example ap-
plication is the rigid alignment of geometry scans used for
shape acquisition. Our goal here is to capture a real-world
3D shape and obtain its digital representation. However, we
may not be able to capture the entire object in a single scan-
ning pass due to self-occlusions and physical constraints of
the scanner, so it might become necessary to acquire mul-
tiple scans and optimally align them to reconstruct the full
object [TL94, RL01, GMGP05, AMCO08]. The key charac-
teristic of this alignment problem is that our objects do not
change from one scanning pass to another. Thus, we assume
that each scan can be transformed with a single rigid trans-
formation in order to align it perfectly with the other scans.
Rigid transformations comprise mainly translations and ro-
tations, and one of their important characteristics is that they
reside in a low-dimensional space.
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Scan alignment is just one example of many applications
where we assume rigidity in the datasets. If the input shapes
are given as sets of 3D points, the problem of rigid alignment
can be posed as: for each point set S, find the rigid transfor-
mation that, when applied to S, maximizes the number of
points in S that align to points in the other sets. This goal is
usually dependent on a threshold ε that indicates when two
points are close enough and can be considered as matching
to each other [IR96]. Since finding the best aligning trans-
formation might be an involved task, we can make use of the
feature matching approach to aid in the search of the optimal
alignment.

Non-rigid alignment: sometimes it might be necessary to
lift the assumption that each scan can be perfectly aligned
with a rigid transformation, e.g., when large amounts of
noise are present in the scans. More significant examples
of datasets that cannot be perfectly aligned with a rigid
transformation include the correspondence of articulated
shapes [EK03, ASP∗04, JZvK07, CZ08, HAWG08], where
certain parts of the shapes can bend independently, the cor-
respondence of anatomical shapes (e.g., organs) [AFP00],
which can deform in an elastic manner and introduce stretch-
ing to localized portions of the shape, and finally the corre-
spondence between shapes with different geometries but that
represent a same class of objects or which have parts that are
semantically related [ACP03, ZSCO∗08]. In the latter case,
we can see the problem as that of establishing a correspon-
dence between shapes that can differ in both local stretching
and bending.

In this setting, it becomes necessary to add more freedom
to how the shapes can be brought into correspondence. This
can be achieved by generalizing two aspects of the problem.
First, we deviate from the rigid case and allow non-rigid
(possibly non-linear) transformations to be taken into con-
sideration, e.g, thin-plate splines [CR03]. Secondly, these
transformations can be applied separately to local portions
of the shape. For example, we can represent the transforma-
tion applied to a shape as a displacement vector associated to
each vertex on the shape [PMG∗05]. Then, finding the best
transformation amounts to computing the displacements that
bring each vertex in correspondence with the target shape.
The distinction to the rigid case is that the space of geo-
metric transformations being considered is now inherently
high-dimensional.

Time-varying registration: due to recent technological ad-
vances, an application that is attracting increasing attention
is the reconstruction of 3D shapes acquired over time while
moving and deforming. In this setting, a fixed number of
scans is acquired per unit of time, and these scans have to be
registered to allow the reconstruction of both the object and
the motion sequence [MFO∗07, WJH∗07, SAL∗08, PG08,
dAST∗08, LAGP09, GSdA∗09, CZ09, TBW∗09, ZST∗10].
Although this may sound as another instance of the non-
rigid alignment problem, there are certain particularities that

make this problem unique. In the classic registration prob-
lem, it is assumed that all the scans can be registered to
compose a single and coherent object. On the other hand,
the time-varying setting introduces the additional difficulty
that the shape might have deformed significantly from one
frame to the other. Therefore, scans acquired later in time
may only be registered to the earlier scans if the deforma-
tion is taken into account. Moreover, additional challenges
are the large amount of missing data (due to occlusion) that
can be present in each frame [PG08], and datasets that were
captured over sparse time frames [CZ09, ZST∗10].

Having established the basic notions and definitions re-
lated to shape correspondence, we proceed to the next sec-
tion to divide the problem into its relevant components and
analyze each of them in a detailed manner.

4. Classification of correspondence methods

In this section, we present several ways of classifying the
correspondence methods discussed in this report. The pur-
pose of these classifications is to allow readers to compare
the methods not only by their algorithmic aspects, but also
by the properties of the problems that can be handled and the
requirements of the methods. These include questions such
as: what subproblems the method can handle (e.g., partial
correspondence, rigid registration, etc.), what datasets can
be handled, what initialization the method requires, etc.

We group the classification criteria based on the compo-
nents of the problem statement, which we review here once
more: given input shapes S1,S2, . . . ,SN, establish a mean-
ingful relationR between their elements. To make this state-
ment more concrete, we have to define the meaning for the
keywords that appear in it. We will do that by associating
them to the following questions.

Keyword → Question
1. shapes → how are the input shapes represented?
2. relation→ how is the output correspondence represented

and what properties does it possess?
3. meaningful → which correspondence to select (which

correspondence is closer to our objective)?
4. establish → what approach is used to compute the corre-

spondence?

Answering these questions will lead to the different clas-
sification categories. We follow with a detailed discussion of
these classifications, summarized in Figure 6.

4.1. Input shapes

The geometry of the input datasets can be represented as
point sets (feature points or not), oriented points (points with
normals), surfaces, skeletons, images, volumes, sets of parts.
Their dimensionality can be 2D, 3D, or they can be spatio-
temporal: 2D + time or 3D + time. We focus on 2D and 3D
shapes (point sets, surfaces, and skeletons). Surfaces can be
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Figure 6: Schematic view of the classification criteria followed in this work (a hierarchy read from left to right). The first
column are the components of the problem statement used to group the different criteria.

represented implicitly (e.g., level sets) or explicitly (e.g., tri-
angle meshes). One extra distinction in the case of triangle
meshes is whether they need to represent well-defined man-
ifolds or if they can be triangle soups.

Classic registration methods such as RANSAC [FB81],
geometric hashing [WR97], pose clustering [Ols97], and
alignment [HU90] typically work with point sets. Surfaces
are the common representation for recent methods based
on deformation [HAWG08, ZSCO∗08], methods that work
on isometric surfaces [BBBK08, LF09] or articulated
shapes [CZ08], and graphics applications based on template
matching [ACP03, PMG∗05, LAGP09]. Time-varying
surfaces are the focus of works on motion reconstruction
of deforming surfaces [MFO∗07, WJH∗07, SAL∗08, PG08,
GSdA∗09, LAGP09, ZST∗10]. Skeleton is a more general
name for shape representations such as the medial axis,
Reeb graphs, and curve skeletons [SP08, CSM07, HSKK01,
SSGD03, BMSF06, ACOT∗10].

These datasets can arise from a variety of sources, such
as 3D scanners (based on LASER, structured light, phys-
ical contact, etc.) that provide point clouds, manual model-
ing via software which commonly results in triangle meshes,
or images and volumes obtained with different imaging
equipment (digital cameras, ultrasound, magnetic resonance

imaging (MRI), computed tomography (CT), etc.) that pro-
vide surfaces via image segmentation or isosurfacing. Skele-
tons are commonly obtained from surfaces by an extra pro-
cessing step [CSM07], and they capture more structural in-
formation (such as shape parts represented as branches and
their associated thicknesses).

Shape descriptors: instead of making use of the datasets in
their original representation, we can sometimes characterize
them by extracting representative points (features) from the
shapes and computing descriptors for these points. These de-
scriptors will typically be scalar values or vectors of scalars
that capture some property of the shape around the neighbor-
hood of the interest point [TH08]. The shape descriptors are
then used to indirectly establish the similarity between the
datasets by assessing the similarity between the descriptors.
Ideally, if two descriptors are similar, their corresponding
points should also be similar. Alternatively, the descriptors
can be used to guide the search for initial solutions, while
the final verification of the correspondence quality is per-
formed with the original dataset [AMCO08]. Note that we
can see the approach of comparing descriptors as a general
correspondence framework, since the positions of the feature
points themselves can be regarded as descriptors.

A variety of descriptors have been proposed in the liter-
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Descriptor Type of dataset
Shape context [BMP00, KPNK03] Point sets
Spin images [JH99] Oriented points
Multi-scale features [LG05] Oriented points
Spherical harmonic-based [FS06] Oriented points
Curvature maps [GGGZ05] Surfaces
Integral invariants [GMGP05, MCH∗06] Surfaces
Salient geometric features [GCO06] Surfaces
Part-aware metric [LZSCO09] Surfaces
Heat Kernel Signature [SOG09] Surfaces

Table 1: An extract of shape descriptors proposed in the lit-
erature that can be used for shape correspondence.

ature and a discussion of their characteristics can be found
in [VH01, BKS∗05, TV08], while a comparison of descrip-
tors for the image case is presented in [MS05]. In Table 1,
we list a partial set of descriptors, which can be com-
puted at a local level and used in conjunction with shape
correspondence for 2D surfaces or 3D point sets. Such a
set of descriptors is the typical input to optimization- or
search-based matching methods used in vision and graph-
ics [MC03, ASP∗04, BBM05, LH05, GMGP05, ZSCO∗08].
Another interesting related problem is how to choose the set
of descriptors that gives the best correspondence results, a
problem known as feature selection in the machine learning
literature [GE03, WH07].

4.2. Output correspondence

The correspondence computed by the methods can be repre-
sented in different manners, and it can also differ in other
properties, such as whether it is a full, partial, dense, or
sparse correspondence.

Correspondence representation: We can represent a corre-
spondence as a transformation applied to the shapes (either
a single or multiple transformations) or simply as a relation
between elements of the datasets, i.e., a set of pairwise as-
signments between vertices, parts, etc.

Correspondence + transformation: when utilizing a single
transformation or a set of transformations, one of the dis-
tinguishing factors is the type of transformation that is uti-
lized. These transformations can be ordered by increasing
number of degrees of freedom: translation, rigid transforma-
tion (includes rotations), similarity transformation (includes
isotropic scaling), affine transformation (includes shearing),
and nonlinear deformation (includes nonlinear transforma-
tions). Notice that the group of rigid transformations also
includes reflections.

A rigid transformation preserves the pairwise distances
between the transformed points, and can be decomposed
into translations, rotations and reflections. Therefore, it is
the common choice when dealing with problems such as

Figure 7: Utilizing Möbius transformations for shape cor-
respondence [LF09]: the meshes for a cat in two different
poses are flattened onto the complex plane. Next, a Möbius
transformation can be defined from three corresponding
pairs of points (red, green, and blue). By applying the trans-
formation to the flattening of the first pose (top-left), the re-
sult at the bottom-left is obtained, which looks similar to the
flattening of the second pose (bottom-right).

scan registration [RL01, GMGP05]. Similarity transforma-
tions incorporate the possibility of uniform scaling into the
rigid transformations, which might be necessary in cer-
tain contexts such as matching patterns to limited por-
tions of larger datasets (e.g., repeated pattern detection as
in [PMW∗08]). Moreover, affine transformations extend the
previous set of transformations by also taking into consid-
eration the possibility of shearing, which can be used at a
global [IR96,AMCO08] or local [ACP03,SP04] level. When
matching non-rigid surfaces that possess the topology of a
sphere, the natural transformation to use is the group of ho-
mographic or Möbius transformations (Figure 7), which are
conformal (preserve angles) and contain the group of isomet-
ric transformations (which preserve distances) [LF09] . Fi-
nally, in more general cases of non-rigid alignment, it might
be necessary to allow the shape elements to move freely in
order to match with the corresponding dataset, which can
be seen as assigning a nonlinear deformable transformation
(e.g., a displacement) to each element [PMG∗05].

Another distinction here is whether the transformation is
applied to the shape as a whole (a global transformation),
or whether it is applied in a local manner, i.e., to parts or
elements of the shape. The global case is a central concept
in the problem of rigid alignment, while the local case is
usual in tasks of a non-rigid nature.

Correspondence only: in the case of working only with a
correspondence, we can limit the relation R to represent a
bijection (one-to-one mapping), an injection (the relation has
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to be defined for every element of one of the shapes taken as
reference, but it can be a one-to-many mapping), or we can
allow a full relation to be defined (many-to-many). More-
over, we might require a one-to-one or one-to-many map-
ping only for a subset of elements, such as in a partial corre-
spondence context where we allow some elements not to be
part of any assignment.

Certain methods allow to select which type of mapping
we desire, such as [LH05], where we obtain the final corre-
spondence by filtering an initial result according to the map-
ping constraints. Other approaches assume that we are inter-
ested in a specific type of mapping and build upon that as-
sumption, e.g. [MC03, BBM05], which pose the correspon-
dence problem as an optimization where we constrain the
mappings to be one-to-one.

We can also distinguish a correspondence by whether we
assign a confidence value to the pairwise assignments. The
assignments can be characterized as crisp (either an assign-
ment is part of the correspondence or not), or they can have
a degree of confidence attached to them (a measure of fuzzi-
ness or probability). The first case can be seen as that where a
binary confidence is associated to each assignment. The type
of confidence measure that is available depends on the cor-
respondence algorithm. For example, the method in [ZS08]
directly returns a probability associated to each assignment,
since it formulates the correspondence problem in a proba-
bilistic manner, while [MC03,BBM05] return mainly binary
outputs, since they define the correspondence problem as an
integer optimization.

Full vs. partial correspondence: some methods are only
suitable for contexts in which the full extent of the shapes is
considered, while others are able to compute a partial cor-
respondence. In general, if a method can find solutions for
the partial case, it will also be applicable to the full corre-
spondence case. Since computing a partial correspondence
is an important problem, we discuss such methods in detail
in Section 5.5.

Dense vs. sparse: the advantage of defining the problem
in terms of a sparse correspondence is that the complex-
ity of the computation (in time and space requirements)
might be reduced by considering smaller sets of elements.
Some techniques were designed by taking this view into
consideration, such as the search-based methods described
in [GMGP05, ZSCO∗08]. Despite their associated exponen-
tial search space, these methods can be utilized in practice
by considering a sparse set of feature points extracted from
the shapes. Other methods do not make a strong distinction
between these two cases and work interchangeably for com-
puting both sparse and dense correspondences, since their
complexity can be thought of as increasing linearly with
the number of elements in the shapes (e.g., the optimization
methods discussed in Section 5). Finally, a whole collection
of methods were created to compute a dense correspondence
from an initial sparse one, such as the cross-parameterization

methods surveyed in [Ale02] or more general algorithms
which take an initial set of markers as input for computing a
non-rigid correspondence [ACP03,SP04,PMG∗05,SSB05].

4.3. Objective function

The objective function provides a measure of how good a
given correspondence is, or how far it is from the desired
solution. It can sometimes be referred to as the error mea-
sure, the cost function, or the energy, in the case of methods
that formulate the problem as the minimization of some en-
ergy function. Its formulation depends on the type of input
dataset that we are considering (points, surfaces, etc.), and
also on the specific problems that we desire to solve (partial
correspondence, rigid alignment, etc.). Here, we will mainly
look at the objective function from the perspective of the
overview given in Section 3.

Similarity-based correspondence: when we are interested
in finding a correspondence between two datasets without
first aligning the shapes, we need to utilize shape descriptors
and intrinsic measures to quantify the quality of the corre-
spondence. Therefore, for two shapes P and Q and a corre-
spondence relation R, the objective takes the form

Obj(P,Q,R) = Sim(P,Q,R)+αDistor(P,Q,R), (1)

with a similarity term that is linear on the number of feature
points and a distortion term that is usually quadratic on the
number of feature points, since it commonly involves com-
paring properties of pairs of points. The weight α controls
the influence of each term in the objective function. Auto-
matically setting α to a value that reflects the user goal can
also be a challenging problem [CMC∗09].

Similarity term: this term encodes the similarity of the shape
descriptors of points in correspondence. The descriptors can
encompass geometric attributes such as point normals or lo-
cal frames, which can give an indication of whether the ori-
entation of the points is coherent across the two matched
point sets [ASP∗04].

Distortion term: the distortion term quantifies how much the
shapes would be deformed if brought into correspondence. A
common candidate for a distortion measure is the disparity
in the distances between pairs of matched points. The dis-
parity is an approximate way of measuring the distortion in-
troduced by the correspondence without having to first align
the shapes. It can be expressed as

Dispar(P,Q,R) = ∑
{p1, p2} ⊂ P
{q1,q2} ⊂ Q

Dispar(p1, p2,q1,q2),

(2)
where (p1,q1) ∈ R and (p2,q2) ∈ R. The disparity term
between two pairs {p1, p2} and {q1,q2} can be given by the
difference in the distances between the pairs of points. Any
appropriate distance measure can be used. Examples include
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(a) (b)

(c)

Figure 8: Example of using a deformation to assess the
quality of a correspondence (with the method described
in [ZSCO∗08]): the triceratops in (a) is deformed to match
the pig in (b), according to a set of pairwise assignments be-
tween feature points (colored in red and blue). The result of
the deformation is shown in (c).

Euclidean distance [CZ08],

Dispar(p1, p2,q1,q2) = |‖p1− p2‖−‖q1−q2‖| , (3)

or geodesic distance, in the case of surfaces [ASP∗04],

Dispar(p1, p2,q1,q2) =
∣∣geodP (p1, p2)−geodQ(q1,q2)

∣∣ ,
(4)

where geodS(s1,s2) is the geodesic distance between s1 and
s2 on the surface S .

Deformation: a more elaborate form of quantifying distor-
tion is to use a global deformation measure, such as by the
methods described in [HAWG08,ZSCO∗08]. Once we know
which feature points should be matched, we deform one
shape into the other so that the matched points are aligned.
An example of this procedure is shown in Figure 8. Notice
that this is different from the non-rigid deformation case,
since here we already have a correspondence and just need
to estimate its distortion, while on the former case we de-
form the shapes to establish the actual correspondence. For
this step, we can utilize one of the recently proposed defor-
mation methods (as in the surveys [Sor06, SSP07]). Then,
measuring how much the surfaces had to deform to align to
each other (an intrinsic rigidity energy) gives an indication of
the distortion introduced by the correspondence. An advan-
tage of using a surface-based deformation energy is that it
is able to differentiate between correspondences that switch
symmetric parts of the shape (Figure 9), which usually pass
undetected when only pairwise distances are utilized.

Rigid alignment: for the problem of rigid alignment be-
tween two or more datasets (e.g., point sets), the objective
is commonly defined in terms of the number of matching
points, or given by a metric that quantifies how well the
datasets align to each other.

Largest Common Pointset (LCP): here we are interested
in finding a transformation that brings the largest number
of points into correspondence [IR96, AMCO08], given a
threshold ε which indicates if two points are close enough
and can be considered as matching to each other. Therefore,
the objective is to maximize the cardinality of the set of
matched points, which can be expressed for two point sets
P and Q as

LCP(P,Q) = ∑
p∈P

Match(p,Q), (5)

where

Match(p,Q) =
{

1 if ∃q ∈ Q, s. t. ‖p−q‖< ε

0 otherwise
(6)

for some distance measure ‖ . . .‖.

Geometric distance: another common objective does not
rely on such a parameter ε but minimizes the alignment error
given by the sum of squared distances between points. That
is, for each point in the transformed set, we find the closest
point in the reference set and add the distance between these
two points to the error measure, expressed as

Dist(P,Q) = ∑
p∈P

Dist(p,Q), (7)

where

Dist(p,Q) = min
q∈Q

‖p−q‖. (8)

This is the common measure utilized in algorithms such
as the Iterated Closest Point (ICP) [RL01]. Variants of this
scheme can also be utilized, e.g., by adding orientation or
surface information [CM92], where Dist(p,Q) is replaced
by a more elaborate point-to-surface measure when our
datasets P and Q are given as surfaces.

From the above, the LCP formulation has the advantage
that partial matching can be directly handled by the objective
function, since the largest set of matching points will corre-
spond to the region of overlap between the two point sets.
The sum of squared distances will necessarily consider all
the points in the objective, unless we also incorporate some
estimate of the amount of overlap between the point sets or a
threshold to quantify points that are too far away from each
other [RL01].

Non-rigid alignment: in the case that the shapes are
matched to each other by deforming them in a non-rigid
manner, the objective will have to incorporate terms to
quantify when such a transformation is meaningful. That
is, if each vertex can move freely according to its own
transformation or displacement, we need to enforce some
form of global consistency (regularization). Such a regular-
ization can be obtained by limiting the number of degrees of
freedom of the transformations or by penalizing large defor-
mations. The error measure in the non-rigid case resembles
the one for similarity-based matching (Equation 1), and will
typically incorporate the following two terms.
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Figure 9: When searching for a correspondence between the two dinosaur models shown on the left, a rigidity energy assigns a
higher value to a correspondence that switches the limbs of the dinosaur (to the right), than to a correspondence that does not
switch any symmetric parts of the shape [ZSCO∗08].

Alignment quality: a measure to quantify how well the
datasets are aligned by the transformation, given by a mea-
sure of geometric distance (similar to the rigid case dis-
cussed above) [SP04, PMG∗05] or distance to plane in the
case of surfaces [ACP03].

Regularization: a term which enforces the global consis-
tency of the transformations by demanding that the transfor-
mations of neighboring vertices are similar (which provides
a smooth transition of transformations from one vertex to the
other). Such a transformation similarity can be measured in
a direct manner (e.g., by the norm between the matrix repre-
sentations of the transformations [ACP03,SP04]) or accord-
ing to derivatives of the transformations [PMG∗05].

4.4. Solution approach

There is a variety of techniques that can be utilized to
search for the best correspondence. In terms of the solution
paradigm, there are methods that search for a transformation
that aligns the shapes, methods that only consider the pair-
wise assignments between elements and find a solution us-
ing well-known optimization methods or search techniques,
and methods that perform a hybrid search, alternating be-
tween alignment and correspondence computation. We dis-
cuss these solution strategies in detail in Section 5. Here we
consider additional classification criteria based on particular
properties of the solution approaches.

Fully-automatic vs. semi-automatic: semi-automatic
methods require user input, such as a proper initialization
or a set of corresponding landmarks between the shapes.
Automatic methods do not require any user input besides a
few parameter values. Semi-automatic methods include the
approaches for cross-parameterization [Ale02] and methods
that take markers as input [ACP03,SP04,PMG∗05,SSB05].

Although user input is required for the proper initializa-
tion of certain methods, this can also be seen as a neces-
sary requirement when the semantics of the shapes cannot

be easily inferred. Therefore, a track open for future re-
search is that of methods based on a feedback loop, where
the user gradually improves a correspondence based on his
or her preferences. Ideally, such a method would minimize
the amount of user interaction and provide hints on what in-
formation is missing to refine the correspondence.

Global vs. local search: the distinction here is whether
the method explores the whole solution space in search
of a good solution (e.g., by performing an exhaustive
search [GMGP05, ZSCO∗08]) or whether the results
of the method depend directly on its initialization. The
initialization can be given by a user, such as in the case
of semi-automatic methods. However, it can also include
automatic initializations which will be used as the starting
point for the local search of the algorithm.

The most prominent example of the local search category
is the ICP [RL01] algorithm, which alternates the computa-
tion of correspondences between points (given by the closest
points) with the computation of an aligning transformation.
Since this iterative process follows a single path in the so-
lution space, it can end up with a result that is a local min-
ima. Thus, the initial state clearly influences the final result
of the algorithm, and therefore different forms of initializa-
tion have been proposed for this algorithm (which take the
form of computing a prealignment between the shapes to be
matched). These are discussed in detail in Section 5.

Another example of algorithms that perform local search
are the methods for non-rigid alignment based on explicitly
computing the transformation for each shape element. Since
these transformations are computed with a method based on
gradient descent or Newton’s optimization, the initialization
will also necessarily influence the final correspondence re-
sult [ACP03, SP04, PMG∗05].

Pairwise vs. groupwise: methods for group correspondence
appear predominantly in the computational anatomy com-
munity [HM09], where it is important to obtain a coherent
correspondence for a group of shapes, so that an accurate
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Figure 10: Example of the alignment procedure in 3D for
two partial scans of the Coati model (shown to the left): three
points are sampled on each scan (the colored dots) and a
rigid transformation is derived. If the transformation aligns
the largest possible number of points (to the right), then we
have found the transformation sought [AMCO08].

statistical model can be constructed. Therefore, methods tar-
geted at this problem seek to optimize the group correspon-
dence so that the generated statistical model is as compact
as possible [DTC∗02]. This optimization typically consists
in making local adjustments to the correspondence of pre-
aligned shapes (a process known as landmark sliding).

Although the term group correspondence is not used in
the field of time-varying reconstruction, a certain class of
methods applied to this problem can also be seen as follow-
ing this approach, since all the scans are considered simul-
taneously in the registration. The difference to the case of
anatomical shapes is that each scan can deform over time
and there can be a significant amount of missing data be-
tween frames, while in the anatomy case we typically search
for a full correspondence between complete shapes, which
are seen as variations from the same mean shape of an or-
gan or bone. These methods pose the time-varying recon-
struction problem as the reconstruction of a space-time sur-
face [MFO∗07, SWG08, SAL∗08], or obtain a skeleton that
is coherent for all the time frames [ZST∗10]. The advantage
of such a formulation is that missing data can be filled in
with data from frames that are further away in time.

5. Main representative methods

We use the classification based on how the correspondence is
obtained as the starting point to cover the discussion of the
individual methods. Thus, the methods are primarily clas-
sified into those that search for an aligning transformation,
those that search directly for a correspondence without per-
forming alignment, and the ICP method, which works in
a hybrid manner alternating between transformation search
and correspondence search. Next, we discuss the use of em-
beddings, which can be applied for non-rigid alignment by
combining them with methods for the rigid case, and then
we conclude with a discussion on methods for computing
partial correspondences.

It is worth noting that most of the methods discussed here

are also applicable to images. The main differences are in
the procedures that extract feature points, compute shape de-
scriptors, and quantify the distortion introduced by a corre-
spondence, which are dependent on the data representation.
In the case of images, the problems of measuring distances
and preserving the neighborhood structures of elements are
simplified by the regular parameterization that is enforced
by these datasets [TH08]. Furthermore, we might also have
to consider different types of transformations (e.g., projec-
tion of a 3D shape onto a 2D plane), for problems such as
matching stereo images or registration of images taken from
different viewpoints [Bro92].

5.1. Transformation and alignment search

Recall that the methods in this class first search for a trans-
formation that aligns the shapes, and then derive the corre-
spondence from the proximity of the aligned elements.

Rigid alignment: the methods in this class rely on the fact
that the transformations used for alignment can be derived
from a small set of sample of points. For example, if con-
sidering a rigid transformation between two point sets in
3D, we can derive its parameters (given by a rotation ma-
trix and a translation vector) from an initial configuration of
three points and their transformed positions. After sampling
a transformation, we can either verify its quality in aligning
the shapes or vote on it.

Sample and verify: under assumptions of rigidity, a naive
alignment algorithm is given by a direct application of the
sampling idea above [HU90]. Specifically, we take three
points from the first shape, three points from the second
shape, derive a rigid transformation, and test how well the
transformation aligns the two shapes (e.g., with one of the
objectives discussed in Section 4.3). This is illustrated in
Figure 10. After testing all possible triplets of points in the
two shapes, we return the best transformation. This naive al-
gorithm in 3D has a complexity of O(m3n3) for sampling the
triplets of points and O(m logn) for the verification, yielding
a total complexity of O(m4n3 logn) for aligning two point
sets of size m and n.

Clearly, such an algorithm is far from efficient. Thus,
different modifications have been proposed to improve
upon this idea. Approaches following the philosophy of the
random sample consensus (RANSAC) method propose to
randomize the different steps in the procedure described
above [FB81]. Instead of sampling all possible triplets of
points, we can consider only a random sample of points in
one shape, reducing the complexity by a factor of O(m3).
Furthermore, we can also randomize the verification step,
reducing the complexity by another factor of O(m) in the
typical case [IR96].

We can also explore the geometric invariances maintained
by the transformations. One such case is the ratio between
three coplanar points, which is preserved by rigid and affine
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Approach Method
2D 3D

Time Space Time Space

Alignment

Naive algorithm O(m3n2 logn) – O(m4n3 logn) –
Randomized O(mn2 logn) – O(mn3 logn) –
Randomized verification O((n2r + lm) logn)≈ O(n2 logn) – ≈ O(n3 logn) –
Sets of 4 coplanar points O(n2 + k) O(n) O(n2 + k) O(n)

Pose clustering
Naive algorithm O(m2n2 +h) O(h) O(m3n3 +h) O(h)
Randomized O(mn2 +h) O(h) O(mn3 +h) O(h)

Approach Method Pre-processing Space Query

2D Geometric hashing
Original algorithm O(m3 logm) O(m3) O(n3 logn)
Randomized O(r3 logr) O(r3) O((n3 + lm) logn)≈ O(n3 logn)

Table 2: Complexity of rigid registration methods for two sets with m and n points. r is the size of a subset of points used for
random verification. l is the number of times that such a subset of points match consistently and further verification is needed.
k is the size of the output. h denotes the size of the accumulation table in pose clustering.

transformations. Thus, the problem of searching for triplets
of points that provide the optimal transformation can be
transposed to that of finding four sets of coplanar points that
share the same ratios [Hut91]. By pre-processing these in-
variances and keeping them in appropriate data structures
that allow for efficient retrieval, output sensitive methods
can be achieved [AMCO08], reducing the complexity of the
alignment problem even further to O(n2 + k), where k is the
size of the reported output.

Sample and vote: instead of sampling a transformation and
evaluating its quality, we can simplify the verification step
by voting on the transformation. For this purpose, pose clus-
tering utilizes an accumulation table [Sto87, Ols97]. After
enumerating two triplets of points and deriving a transforma-
tion, a vote indexed by the parameters of the transformation
is stored in the table. At the end of this O(m3n3) process, the
cells with most votes correspond to the best candidate trans-
formations that align the point sets. Note that processing the
accumulation table requires an extra O(h) step dependent on
the size h of the table.

Geometric hashing is a voting-based method that makes
use of the concept of pre-processing to speed up the align-
ment [WR97]. The main idea here is to store in a hash table
all the possible configurations of a group of reference point
sets, so that when we seek the reference point set that best
matches to a query point set, this search can be performed
efficiently. We can informally look at this method as break-
ing the O(m3n3) complexity of the naive enumeration into
an O(m3 logm) pre-processing phase (which samples all the
possible configurations of a reference set and stores them in
the hash table) and an O(n3 logn) query phase (which sam-
ples all the possible configurations of the query set and ac-
cumulates votes in the hash table to allow the retrieval of
the best matching reference set). The increase in speed in

the query phase is gained at the expense of utilizing more
memory resources.

Remarks: as we see from the discussion, these techniques
are all closely related and their complexity can be compared
as in Table 2. Randomized versions of geometric hashing
and pose clustering are also proposed in the literature. Note
that a special case of rigid alignment arises when we wish
to minimize the mean squared error between two point sets.
In this case, we do not need to search for the best aligning
transformation, but we can obtain it directly via the singu-
lar value decomposition of a covariance matrix [Ume91].
Another observation is that the principle of sampling and
verifying transformations also applies to other contexts with
different types of transformations. For example, in [LF09],
Möbius transformations (which define a mapping from one
Riemann sphere to another) are used to establish the corre-
spondence between shapes that are approximately isometric.
These transformations can also be derived from triplets of
points sampled from each shape (as illustrated in Figure 7).

Piecewise-rigid alignment: the methods discussed so far
utilize one global transformation to match one shape to an-
other. A different class of methods generalizes this idea by
applying transformations to local portions of the shapes.
In [CZ08], these transformations are applied in a piece-wise
rigid manner to establish a correspondence between articu-
lated shapes. The problem is formulated as labeling the ver-
tices of the shapes with candidate transformations, which
where estimated from aligning the local frames of vertices
with similar descriptors (Figure 11). Since now we are re-
stricting the vertices to possess a transformation from a pre-
defined set, this greatly simplifies the solution search, in con-
trast to the methods that allow any transformation to be as-
signed to a vertex. By also adding a regularization term to the
labeling optimization, a grouping of the vertices into rigid
components is guaranteed. An alternative to this approach is
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Figure 11: Example of non-rigid alignment of articulated
shapes: candidate correspondences are obtained by match-
ing vertices with similar shape descriptors (top left). The
candidates are used to derive transformations, which are
then clustered (top right) and assigned to the shape vertices
according to a labeling algorithm [CZ08]. The result of la-
beling two corresponding shapes is shown on the bottom.

to explicitly fit the shapes to a kinematic skeleton of artic-
ulated bones, so that the skeleton can be used to track the
movement of the shape and also infer in which regions there
is missing data [PG08, CZ09, GSdA∗09].

Non-rigid alignment: for the methods described in [ACP03,
SP04, PMG∗05], different transformations are assigned to
each vertex on the shape. The problem is formulated as find-
ing the best transformation that brings each vertex in a ref-
erence shape close to its counterpart in the target shape. The
optimization is solved with a Newton-based method, and
a regularization term is added to enforce the similarity of
transformations across neighboring vertices. The difficulty
in this setting is to avoid solutions that are local minima.
This is achieved by initializing the methods with a set of
corresponding marker points and solving the optimization
in a multi-level fashion. Alternatively, we can also utilize
Markov Random Fields for this optimization [PH03].

Instead of computing local deformations or displacements
for the vertices, in [SSB05], the displacements are implic-
itly obtained by learning a function that warps one shape
into the other. The warp is obtained by solving a convex op-
timization problem similar to learning a support vector ma-
chine classifier (which includes a form of regularization in
its definition). Thus, global minima are avoided.

An extension of this class of methods which circumvents
the need of marker points is proposed in [LSP08], where the
alignment between two shapes is performed with two sep-
arated transformations: a global rigid transformation which
roughly aligns the shapes and per-vertex affine transforma-
tions that bring the non-rigid shapes into full alignment. A

robust alignment can also be obtained by deforming one
shape into the other in terms of a 3D optical flow [dATSS07]
or a Laplacian deformation of the meshes [dAST∗08].

Image registration: deforming one shape into the other can
also be achieved by adopting methods developed for image
registration [MV98]. First, the shapes are transformed into
2D images (or 3D volumes) by mapping each feature point
to its nearest pixel (or voxel). The value that is assigned
to the pixel can be a vector of descriptors computed at the
point [TH08], or the generated image can represent a level
set function of the shape [HNM06]. Finally, the resulting im-
ages or volumes are registered by computing a global align-
ment followed by a non-rigid deformation. The advantage
of such an approach is that we transform the shapes into a
parameterized representation where a variety of registration
algorithms can be utilized [MV98]. However, creating a vol-
ume with enough resolution to capture all the details on the
shapes can imply considerable memory consumption in 3D.

5.2. Correspondence search

The main characteristic of the methods discussed in this sec-
tion is that they work mainly with the pairwise assignments
between feature points, without considering transformations
that align the shapes. The correspondence problem is typi-
cally posed as optimizing an objective function of the form
Obj(P,Q,R) = Sim(P,Q,R) + αDistor(P,Q,R), as de-
scribed in Section 4.3, which is based on the quality of pair-
wise assignments (a linear term) and the compatibility be-
tween pairs of such assignments (a quadratic term). The so-
lution is found by using well-known discrete or continuous
optimization methods. A special group of methods in dis-
crete optimization utilize a tree-based search to explore the
solution space. We discuss this specific category of methods
in a special section.

Optimization: if the objective being optimized is only com-
posed of a similarity term Sim(P,Q), then the formulation
becomes a Linear Assignment Problem (LAP). This simpli-
fied objective can be solved by the simplex algorithm, since
it is a special case of a linear program [PS82]. However, if
we constrain the correspondence to a one-to-one mapping,
the problem becomes that of finding an optimal matching in
a weighted bipartite graph, which can be solved more effi-
ciently by the Hungarian algorithm in O(n3) time, where n
is the number of feature points in each shape [PS82].

On the other hand, if the objective comprises both the lin-
ear and quadratic terms, we arrive at a Quadratic Assignment
Problem (QAP), which is known to be NP-hard [PRW94].
Several techniques have been proposed to compute approxi-
mate solutions to this problem. One group of methods poses
the problem as an integer optimization, which is relaxed to
the continuous setting and solved with a continuous opti-
mization technique, e.g., the softassign technique [GR95]
(which iteratively normalizes rows and columns of an affin-
ity matrix), concave programming [MC03], approximations

c© The Eurographics Association 2010.

73



O. van Kaick et al. / A Survey on Shape Correspondence

...

...

Figure 12: Example of search-based correspondence for a
set of feature points [ZSCO∗08]: each node of the tree en-
codes a partial correspondence. All possible assignments
are added when expanding a new level of the tree.

based on linear programming [BBM05], spectral cluster-
ing [LH05], or relaxation labeling [ZD06]. It can also be
formulated in probabilistic terms and solved as a convex op-
timization problem [ZS08].

Another group of methods solves the problem in the dis-
crete setting without resorting to the continuous domain.
One common solution approach in the discrete case is to
solve the problem by computing an optimal labeling of a
graph, e.g., we can pose the problem in terms of a Markov
network where the set of labels corresponds to matching
points on the target shape [ASP∗04, ZST∗10]. Other meth-
ods make use of metaheuristics for combinatorial optimiza-
tion, such as ant colony optimization [vKHZW07]. We can
also sample the space of correspondences in search of a so-
lution, guided by geodesic distances and importance sam-
pling [TBW∗09].

2D contour correspondence: a considerable part of the lit-
erature has also focused on the specific case of 2D con-
tour correspondence, since these datasets can be easily ex-
tracted from 2D images. A collection of techniques were
developed by taking into account the fact that the vertices
on a contour can be linearly ordered. This observation is
used in combination with optimization techniques such as
dynamic programming [LWZ∗04, SN06], which can also be
used to solve the problem posed in terms of computing short-
est paths [MCH∗06], and graph cuts [STCB07]. The last two
techniques are able to find an optimal correspondence for
two contours.

Tree-based search: one specific group of methods in dis-
crete optimization find a solution by making use of tree-
based search techniques, such as branch-and-bound, priority
search, etc [GMGP05, FS06, ZSCO∗08, ACOT∗10]. During
the expansion of the tree, each node represents a partial solu-
tion. A full solution is found by following the path from the
root of the tree to one of its leaves. These techniques usually

involve three important steps: expanding a node that repre-
sents a new partial solution (branching), estimating how far
the partial solution is from the optimum solution (bounding),
and eliminating nodes that will not lead to the optimum so-
lution (pruning).

In the case of correspondence, solutions are mainly repre-
sented as collections of assignments between pairs of feature
points, and the expansion step involves adding a new pair-
wise assignment to a given solution (Figure 12). Bounding
and pruning can be performed by verifying the quality of the
registration given by the current solution, either by aligning
the shapes [GMGP05] or by deforming one shape into the
other [ZSCO∗08]. Other pruning methods include testing the
compatibility between pairwise assignments, such as quanti-
fying the distortion introduced in the Euclidean [GMGP05,
FS06] or geodesic distances [ZSCO∗08,ACOT∗10] between
pairs of points, or testing the agreement in the spatial config-
uration of the shapes [ACOT∗10]. Naturally, the descriptors
computed for the feature points are also considered in the
bounding and pruning steps.

When a hierarchical or multi-resolution structure can be
extracted from the shape representation, this information can
also be considered in the solution search. Skeletons are com-
monly represented as trees or graphs for which a tree can be
easily extracted. Therefore, in this context, it is common to
resort to search-based algorithms that take this hierarchy into
account [SSGD03]. Methods of a more greedy nature can
also benefit from such hierarchical [BMSF06] or coarse-to-
fine representations of the shapes [HSKK01].

5.3. ICP and variants

This section discusses mainly the ICP method, which iter-
atively computes a correspondence by alternating between
two steps. In the first step, we search for an alignment be-
tween the shapes, while in the second step, we derive a corre-
spondence from the alignment. Finally, we reiterate this pro-
cedure by using the correspondence to estimate a new align-
ing transformation. Thus, we call it a hybrid search method,
since it searches for both alignment and correspondence so-
lutions, which in turn affect each other. The different vari-
ants of the ICP algorithm are obtained when the two steps
are solved in different manners (e.g., by changing the type
of transformation or the way in which we determine the cor-
respondences) [RL01].

Rigid alignment: in the “classic” variant of the ICP algo-
rithm for rigid alignment, given two point sets P and Q, we
establish a correspondence between every point p ∈ P and
its closest point in Q, according to a given distance metric.
Next, from all the pairwise assignments that were defined in
the previous step, we estimate the best rigid transformation
that aligns the two point sets (by solving a linear system) and
realign the point sets according to this transformation. Fi-
nally, we repeat the two-step procedure, stopping when there
is no significant change in the estimated transformation.
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Figure 13: Example of shape normalization: by applying MDS to the meshes on the top row, we obtain the embeddings on
the bottom row. Note how the pose of limbs and fingers is normalized, turning the non-rigid alignment problem into that of
rigid alignment. The last column shows an example containing topological noise, where two fingers were connected after the
reconstruction [GSCO07].

As we can infer from this description, the initial position
of the point sets tremendously influences the final result of
the ICP algorithm, since the first correspondence is derived
from this initial configuration. Thus, a crucial step in ICP-
based methods is to perform a prealignment of the shapes
so that the algorithm does not get trapped in local minima.
Different forms of prealignment have been proposed in the
literature to address this issue. The classic solutions are to
rely on a set of matching feature points, an initial set of
markers given by a user, or to automatically prealign the
shapes with Principal Component Analysis (PCA) [RL01].
Recently, prealignment based on the reflectional symmetry
axes of the shapes has been suggested as another effective
solution [PSG∗06].

Non-rigid alignment: the ICP method can also be used
for non-rigid alignment by modifying some of its com-
ponents. One set of methods computes a weighted corre-
spondence where each assignment has an associated confi-
dence value. These confidences are crucial for robust out-
lier detection. After rigidly aligning the shapes with the
weighted ICP, the shapes are non-rigidly deformed into each
other by computing a warp function based on thin-plate
splines [CR03, BR07]. In [HAWG08], the rigid transforma-
tion of the original ICP algorithm is substituted by a defor-
mation based on rigid-body components, in order to address
the registration of approximately isometric shapes. More-
over, the alignment of articulated shapes can also be ob-
tained by first embedding the shapes in a space that normal-
izes them for bending (discussed in Section 5.4), and then
rigidly aligning the shapes in this space.

Recently, variants of ICP are also utilized in the context of
time-varying surface reconstruction to align the geometry of

adjacent time frames [WJH∗07, PG08, WAO∗09, LAGP09].
If a sufficient number of scans is acquired per unit of time,
we can assume that only small changes take place in the
spatial configuration of the shapes (i.e., we can consistently
track their rigid-body components), and so the initial align-
ment of each frame is not a strong issue in the registration.

5.4. Use of embeddings

The non-rigid alignment of shapes, especially that of ar-
ticulated shapes, can also be accomplished by first embed-
ding the shapes in a space where the configuration of the
rigid parts is normalized, and then treat the problem sim-
ply as a case of rigid alignment in this embedding space
(shown in Figure 13). The rigid alignment can then be ob-
tained by any of the methods discussed so far. The key to
create such an embedding is to obtain an intrinsic represen-
tation of the shape which is invariant to bending (e.g., by col-
lecting geodesic distances between surface points) and then
utilize this representation to embed the shape in a new am-
bient space, so that the intrinsic geometry of the shape is
translated into its extrinsic geometry in this new space. This
embedding can be obtained with techniques such as Multi-
Dimensional Scaling (MDS) [EK03, BBK06, BBBK08] or
the spectral transform [JZvK07, MHK∗08, SY10]. A com-
prehensive coverage on different forms of embeddings is
given in [ZvKD07]. Embedding the shapes for normaliza-
tion can also be used for other types of datasets (Figure 14).

5.5. Partial correspondence

Since computing a partial correspondence is an important
specialization of shape correspondence, we discuss in this
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Figure 14: The skeletons of the dog in two different poses (to
the left) are normalized by applying MDS (to the right). The
embeddings are used to measure the spatial consistency of a
correspondence, which acts as a pruning test in the search-
based method of [ACOT∗10].

section a few strategies proposed for this task. The problem
is defined as finding a subset of shape elements for which a
meaningful correspondence can be computed, as opposed to
finding a full correspondence that could include additional
parts or features which do not exist in both shapes. This task
can be seen as composed of two subproblems: searching for
an optimal subset of k feature points that match consistently,
and finding the correspondence between these k elements.

One approach to determine the subset is to examine the
objective function in search of sharp increases in the align-
ment error, which appear when an outlier point is added
to the set of matched points [GMGP05, ZSCO∗08]. Alter-
natively, we can add to the optimization problem an esti-
mate on the number of outlier features, which limits the
number of points that appear in the computed correspon-
dence [MC03, BBM05]. Such an estimate can be derived
from the data itself [OEK08].

Another strategy to determine the subset of features is to
rely on voting [LF09,ACOT∗10]. Here, we compute a series
of candidate correspondences and cast a vote on the pairwise
assignments that constitute each candidate. At the end of this
process, the assignments that are certain emerge as the ones
with the highest number of votes, while the assignments re-
lating points that do not have any meaningful matching pos-
sess a negligible quantity of votes. The reason for sampling
candidate correspondences is that this procedure acts as a
form of group reinforcement, where we only vote on an as-
signment if it can be part of a consistent correspondence.

It is also natural to look at the partial correspondence
problem as that of matching two graphs. We can consider the
feature points on a shape or skeleton as the nodes in a graph,
and connect every pair of nodes with an edge whose weight
is proportional to some geometric quantity (e.g., distance
between the nodes). Then, partial matching becomes the

problem of subgraph isomorphism, whose decision variant
is known to be NP-complete. Since different heuristics have
been proposed to address this problem, it is also possible to
use these methods for shape correspondence. For example,
the notion of matching two graphs by finding a set of opera-
tions that transform one graph into the other (e.g., by merg-
ing nodes [NB07]) is used to derive heuristic algorithms for
skeleton matching in 2D [SKK04] and 3D [BMSF06]. Then,
the subset of matching features is given by the nodes that are
not removed during the editing of the graph.

6. Validation of correspondence methods

Validation is an important and necessary aspect of the cor-
respondence problem, since we need to be able to effec-
tively compare the results of the different methods. The most
common form of validation is certainly the visual inspec-
tion of the results. Displaying a morph between shapes is
also a similar way of assessing the visual quality of the
correspondences, where we expect to see a smooth tran-
sition from one shape to the other for a good correspon-
dence [KS04,ZSCO∗08]. Such procedures allow for a quali-
tative comparison of the results. However, since this form of
evaluation can be subjective, more objective or quantitative
procedures are also sought.

One possibility for more objective comparisons is to use
the output of an objective function (Section 4.3) to derive a
similarity measure, so that the correspondence method can
be indirectly evaluated in terms of retrieval [FS06, JZ07].
The assumption is that the accuracy of the retrieval results
will be proportional to the accuracy of the computed cor-
respondences. Additionally, in the computational anatomy
community, it is also common to assess the computed
correspondences in terms of the quality of the statistical
shape models that they generate, which can be evaluated
with measures such as generality, specificity, or compact-
ness [DTC∗02, SRN∗03, KE06]. As in the case of retrieval,
the assumption is that more accurate correspondences will
lead to better statistical models.

However, to allow for a direct comparison of the re-
sults, the most reasonable procedure is to utilize a set of
shapes already in correspondence, so that the computed cor-
respondences can be compared against the ground-truth.
This can be achieved with a discrete measure such as the
Hamming loss (counting the number of points incorrectly
matched [CMC∗09]) or more continuous measures such as
the endpoint error (where, for each point, we compute the
distance from its matching point to its known ground-truth).
We can add up the endpoint errors [KE06] or compute statis-
tics on them [CMC∗09].

These considerations lead us to the question of a bench-
mark for shape correspondence. Benchmarks have been de-
veloped for other important problems, such as mesh seg-
mentation [CGF09], however, there is no specific benchmark
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(a) Rigid registration [GMGP05] (b) Non-rigid registration [CZ08] (c) Shape morphing [KS04]

(d) Deformation transfer [SP04] (e) Self-similarity detection [GCO06]

(f) Time-varying surface reconstruction [PG08]

Figure 15: Examples of applications that make use of correspondence methods: (a) a set of scans (to the left) is rigidly aligned
to reconstruct the shape of the bunny (to the right), (b) the horse in two different poses (to the left) is non-rigidly aligned (result
shown to the right), (c) the dino-skeleton is morphed into the human, (d) the motion defined on the horse (top line) is transferred
to the camel (bottom line), (e) an application of partial matching: the suction cups on the tentacles of the octopus are detected
as being similar (highlighted in yellow), (f) a set of range scans of an object in motion (shown to the left in blue) provides a
single reconstructed model on which the motion is defined (shown to the right in color).

for general shape correspondence problems. A number of
datasets developed for shape retrieval and analysis have been
utilized for this task. Shapes from the well-known Princeton
Shape Benchmark [SMKF04] and McGill 3D Shape Bench-
mark [SZM∗08] have been widely used for the compari-
son of methods that work on articulated shapes. Moreover,
the datasets related to the various tracks of the Shape Re-
trieval Contest (SHREC) have also been considered. These
datasets are aimed at various problems such as partial shape
retrieval and retrieval of specific models, e.g., CAD mod-
els and faces. Recently, datasets involving non-rigid de-
formations have been made available, such as the SCAPE
dataset [ASK∗05], the Non-rigid World Dataset [BBK06]
and the TOSCA dataset [BBK08].

From the above datasets, the TOSCA dataset can be char-
acterized as a true benchmark for correspondence, since the
models have a compatible triangulation (i.e., the ordering of
vertices corresponds across all the deformations of a same
model), and thus the correct correspondences can be implied
from the models. The creation of a dataset with ground-truth
correspondences has also been considered for anatomical
shapes, where a reduced set of shapes in correspondence was

enlarged by applying random (yet realistic) deformations on
the original shapes [HJT08].

However, there is still the absence of a benchmark di-
rected at more general correspondence problems (e.g., in-
cluding shapes of a same class that possess significant ge-
ometric differences). Such a dataset would have to include
a collection of challenging correspondence cases and also a
list of prominent features on the shapes and their correspon-
dence across different shapes.

7. Applications of correspondence

In this section, we discuss what we view as the most impor-
tant applications that make use of correspondence methods.
Examples of these applications are illustrated in Figure 15.

Shape registration: given a number of scans in arbitrary
initial positions, the goal of registration is to match regions
that correspond across the scans, so that the scans can be
aligned and the target object can be fully reconstructed. We
can either assume that the shapes do not change during the
scanning (rigid registration) [RL01, AMCO08] or that they
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are free to deform during the acquisition (non-rigid registra-
tion) [ASP∗04, JZvK07, BR07, CZ08, HAWG08].

Time-varying surface reconstruction: the challenge in
this area is to take the great amount of generated data
and organize it into one single model that represents a
deforming shape. Correspondence methods are central to
time-varying surface reconstruction, since the point sets of
different frames have to be registered to yield the final
model [MFO∗07, WJH∗07, SAL∗08, PG08, LAGP09, CZ09,
TBW∗09, ZST∗10].

Shape interpolation: the goal in interpolation or morphing
is to gradually transform one shape into another. The trans-
formation has to satisfy certain aesthetic requirements, so
that the gradual change of the shape has a visually pleasing
aspect [Ale02]. One important property in this aspect is that
the correspondence relating the starting shape to the target
shape should be meaningful, i.e., it should correspond parts
in the shapes that are semantically equivalent.

Information transfer: A task that is becoming common is
to transfer information from a source 3D object to a tar-
get 3D object, especially to enable the reuse of attributes or
motion information associated to the source shape. Exam-
ples include transferring the deformation or morph from one
mesh to another [SP04], or transferring textures while de-
forming a mesh [DYT05]. Such a task clearly requires a cor-
respondence, since we need to obtain a motion or attribute
for each element in the target shape from its corresponding
element in the source shape.

Recognition and retrieval: understanding a scene described
by a range image is certainly one of the classic challenges
in computer vision [FP03]. Shape correspondence is one of
the approaches that can be used for this task. Given a query
object in the scene, we compute a correspondence between
the query and models in a database. Next, the identity of the
object is inferred from the best match to one of the models
(according to a correspondence quality measure). A similar
procedure can be utilized for shape retrieval [FS06].

Statistical shape modeling: the analysis of anatomical
structures such as organs or bones can be facilitated when
a statistical shape model is available. These models are use-
ful for extracting shapes from images, since they are able to
describe the valid variations in the appearance and the size
of a shape. Such a model can be constructed from a group of
shapes that represent the same structure. One of the require-
ments of building such models is an accurate correspondence
between the group of shapes [DTC∗02, HM09].

Change detection: another application of correspondence
is to track changes in a shape (e.g. displacements, growth)
over time. Examples include, in the medical field, tracking
the change in the number and density of moles on a patient’s
skin (for cancer prediction), which is posed as a problem of
point cloud correspondence [MHL09], and in remote sens-

ing, tracking the change over time in the structure of cities
and their land usage [LLFM00].

8. Previous surveys on shape correspondence

Surveys that reviewed a partial list of the topics covered in
this report have appeared before. We discuss the most recent
and relevant references here.

Tangelder and Veltkamp [TV08], Iyer et al. [IJL∗05], and
Bustos et al. [BKS∗05] provide comprehensive surveys on
content based 3D shape retrieval, mostly discussing global
shape signatures. Biasotti et al. [BFF∗07] present a tutorial
on 3D shape description based on properties of real func-
tions, which can be used as signatures for shape matching.

In terms of correspondence surveys, Alexa [Ale02] covers
recent advances in mesh morphing, where the computation
of dense correspondences from an initial set of sparse cor-
respondences is also part of the discussion. Veltkamp and
Hagedoorn [VH01] discuss similarity measures and algo-
rithms for shape matching. This is certainly the publication
that is the most similar to this report, and includes a solid
introduction to the correspondence problem. However, most
of the survey focuses on similarity metrics, while the discus-
sion on the algorithms is brief, and important new develop-
ments have appeared since the publication of that survey.

The book by Bronstein et al. [BBK08] is a recent source
for a comprehensive discussion on the analysis of non-rigid
shapes. It covers problems such as determining the similar-
ity between non-rigid shapes and techniques for correspon-
dence based on MDS.

Audette et al. [AFP00] present an overview of surface reg-
istration techniques for medical imaging. The survey dis-
cusses in detail techniques based on applying geometric
transformations to the data (rigid-body motion, etc), but
does not go into techniques that work in the correspondence
space. Heimann and Meinzer [HM09] survey the topic of
statistical shape modeling and briefly review techniques for
registration and group correspondence.

Some of the aforementioned surveys only discuss the re-
lated topics of shape retrieval and shape descriptors. More-
over, the publications that focus specifically on shape corre-
spondence only cover a subset of the available methods, and
the recent developments in the field are not discussed.

9. Open problems and future perspectives

Finding a meaningful correspondence between shapes be-
longing to the same class but differing geometrically, struc-
turally, even topologically remains a challenge, since meth-
ods based on assumptions of rigidity, isometry or direct geo-
metric similarity are inadequate. The more challenging sce-
nario involves man-made shapes, where the objects differ not
only by geometric deformations, but also by the part consti-
tution of the shapes (as the example shown in Figure 2). In
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this case, shape correspondence departs from the low-level
sphere of geometry analysis and becomes the higher-level
problem of semantic reasoning, where we seek to recognize
the parts of shapes and infer their semantics or functionality.
A meaningful correspondence can then be established be-
tween the recognized parts. The utilization of prior knowl-
edge is one of the possible solutions for this problem, where
the main difficulty is how to model the knowledge and make
use of it effectively.

Works which made the first steps towards knowledge-
driven shape correspondence have recently appeared.
Knowledge can be incorporated by utilizing a set of ex-
amples where a few landmark points have already been
matched by an expert user [WH07], or by using a set of
examples already in full correspondence [PDT07]. Another
direction is to learn how the terms in the various objective
functions should be weighted, depending on the restricted
domain of the problem that we are considering [CMC∗09].
One more possibility is to consider group information
when performing correspondence-related tasks, such as
skeletonization [WH09]. Finally, it would also be interesting
to apply ideas related to feature selection to the correspon-
dence problem [GE03]. Given a set of different shape
descriptors computed for a dataset, these techniques seek
to learn which subset of the descriptors (or alternatively,
which weighted combination of the descriptors), gives the
best correspondence results for a class of shapes.

On the other hand, a great variety of effective correspon-
dence methods are already available, yet their objective val-
idation is difficult. Therefore, we see the urgent need for a
benchmark designed specifically for shape correspondence,
so that automatic methods can be compared in a qualitative
and quantitative manner, and their strengths and deficiencies
clearly exposed. The envisioned benchmark would possibly
contain different classes of problems (rigid, non-rigid) and
should certainly also contain a collection of man-made ob-
jects (as shown in Figure 2), which would serve as the set of
examples that are one of the current challenges in the field.
To alleviate the amount of work required to create such a
benchmark, one possible strategy is to take a reduced set of
shapes for which the correspondence ground-truth is known
and deform the shapes with random (yet statistically or phys-
ically plausible) transformations, similar to what is done for
landmarks of anatomical shapes [HJT08].

We have seen the recent development of a benchmark
for mesh segmentation [CGF09], where human participants
provided a set of segmentations that they considered mean-
ingful. This naturally leads to the question of how humans
tend to segment shapes and then establish a correspon-
dence between these segments. Such a correspondence re-
flects the process of recognition. Hence it seems apparent
that there is a deep connection among the three tasks: seg-
mentation, recognition and correspondence. Therefore, we
conjecture that the ultimate approach for the semantic anal-

ysis of shapes would not treat these problems separately, but
solve them all simultaneously and with the aid of group or
prior information.
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[SY10] SAHILLIOĞLU Y., YEMEZ Y.: 3D shape correspondence
by isometry-driven greedy optimization. In Proc. IEEE Conf. on
CVPR (2010). To appear.

[SZM∗08] SIDDIQI K., ZHANG J., MACRINI D., SHOKOUFAN-
DEH A., BOUIX S., DICKINSON S.: Retrieving articulated 3-D
models using medial surfaces. Machine Vision and Applications
19, 4 (2008), 261–275.

[TBW∗09] TEVS A., BOKELOH M., WAND M., SCHILLING A.,
SEIDEL H.-P.: Isometric registration of ambiguous and partial
data. In Proc. IEEE Conf. on CVPR (2009).

[TH08] TANG L., HAMARNEH G.: SMRFI: Shape matching via
registration of vector-valued feature images. In Proc. Computer
Vision and Pattern Recognition (CVPR) (2008), pp. 1–8.

[TL94] TURK G., LEVOY M.: Zippered polygon meshes from
range images. In Proc. ACM SIGGRAPH (1994), pp. 311–318.

[TV08] TANGELDER J. W. H., VELTKAMP R. C.: A survey of
content based 3D shape retrieval methods. Multimedia Tools and
Applications 39, 3 (2008), 441–471.

[Ume91] UMEYAMA S.: Least-squares estimation of transforma-
tion parameters between two point patterns. IEEE PAMI 13, 4
(1991), 376–380.

[VH01] VELTKAMP R. C., HAGEDOORN M.: State of the art
in shape matching. In Principles of visual information retrieval.
Springer-Verlag, 2001, pp. 87–119.

[vKHZW07] VAN KAICK O., HAMARNEH G., ZHANG H.,
WIGHTON P.: Contour correspondence via ant colony optimiza-
tion. In Proc. Pacific Graphics (2007), pp. 271–280.

[WAO∗09] WAND M., ADAMS B., OVSJANIKOV M., BERNER
A., BOKELOH M., JENKE P., GUIBAS L., SEIDEL H.-P.,
SCHILLING A.: Efficient reconstruction of non-rigid shape and
motion from real-time 3D scanner data. ACM Trans. Graph. 28,
2 (2009).

[WH07] WARD A. D., HAMARNEH G.: Statistical shape mod-
eling using MDL incorporating shape, appearance, and expert
knowledge. Lecture Notes in Computer Science (Proc. MICCAI)
4791 (2007), 278–285.

[WH09] WARD A. D., HAMARNEH G.: The groupwise medial
axis transform for fuzzy skeletonization and pruning. IEEE PAMI
Accepted for future publication (2009).

[WJH∗07] WAND M., JENKE P., HUANG Q.-X., BOKELOH M.,
GUIBAS L., SCHILLING A.: Reconstruction of deforming ge-
ometry from time-varying point clouds. In Proc. Symp. on Geom.
Processing (SGP) (2007), pp. 49–58.

[WR97] WOLFSON H. J., RIGOUTSOS I.: Geometric hashing:
an overview. IEEE Computational Science & Engineering 4, 4
(1997), 10–21.

[XWY∗09] XU W., WANG J., YIN K., ZHOU K., VAN DE
PANNE M., CHEN F., GUO B.: Joint-aware manipulation of de-
formable models. ACM Trans. on Graphics (Proc. SIGGRAPH)
28, 3 (2009).

[ZD06] ZHENG Y., DOERMANN D.: Robust point matching
for nonrigid shapes by preserving local neighborhood structures.
IEEE PAMI 28, 4 (2006), 643–649.

[ZF03] ZITOVÁ B., FLUSSER J.: Image registration methods: a
survey. Image and Vision Computing 21, 11 (2003), 977–1000.

[ZS08] ZASS R., SHASHUA A.: Probabilistic graph and hyper-
graph matching. In Proc. IEEE Conf. on CVPR (2008).

[ZSCO∗08] ZHANG H., SHEFFER A., COHEN-OR D., ZHOU
Q., VAN KAICK O., TAGLIASACCHI A.: Deformation-driven
shape correspondence. Computer Graphics Forum (Proc. SGP)
27, 5 (2008), 1431–1439.

[ZST∗10] ZHENG Q., SHARF A., TAGLIASACCHI A., CHEN B.,
ZHANG H., SHEFFER A., COHEN-OR D.: Consensus skeleton
for non-rigid space-time registration. Computer Graphics Forum
(Proc. EUROGRAPHICS) (2010), to appear.

[ZvKD07] ZHANG H., VAN KAICK O., DYER R.: Spectral meth-
ods for mesh processing and analysis. In Proc. of Eurographics
State-of-the-art Report (2007), pp. 1–22.

c© The Eurographics Association 2010.

82


