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Abstract
In this report we present the state of the art on segmentation, or partitioning techniques used on boundary meshes.
Recently, these have become a part of many mesh and object manipulation algorithms in computer graphics.
We formulation the segmentation problem as an optimization problem and identify two primarily distinct types
of mesh segmentation, namelypartssegmentation andpatchsegmentation. We classify previous segmentation
solutions according to the different segmentation goals, the optimization criteria and features used, and the various
algorithmic techniques employed. We also present generic algorithms for the major techniques of segmentation.

1. Introduction

Mesh segmentation (or mesh partitioning) has become a
key ingredient in many mesh manipulation algorithms and
applications in recent years. These include parametriza-
tion, texture mapping, shape matching, morphing, multi-
resolution modeling, mesh editing, compression, animation
and more. Furthermore, recent advances in geometry pro-
cessing aims at extracting shape features and structure from
3D meshes to enhance semantic-based shape representations
(see e.g. [aim]). Numerous techniques presented for segmen-
tation were developed. Some were borrowed from related
fields such as image segmentation, finite element meshes
partitioning, unsupervised machine learning and other fields.
In this report we will survey the different techniques used for
various purposes, and classify them to a small set of general
algorithms. These can then provide understanding as to the
strengths and weaknesses of each technique and assist in fu-
ture choices for different applications.

We first present a formulation of mesh segmentation prob-
lem as an optimization problem, and distinguish between the
two major types of segmentations.Part-typesegmentation,
where the 3D object is partitioned into meaningful compo-
nents, which are mostly volumetric, andsurface-typeseg-
mentation, where the boundary surface of the object is parti-
tioned into charts (Figure3).

Further we present the different criteria used for guiding
the segmentation of a mesh. These can be defined asfea-
turesor properties of the mesh and must be extracted prior

to the segmentation of the mesh. These include simple sur-
face measures such as area, size or length, various differen-
tial properties such as curvature, normal direction, some dis-
tance measures such as geodesic distances, distance to the
medial axis, or the shape diameter, and more.

Lastly, we concentrate on the algorithmic side and present
the major algorithms used in mesh partitioning. We classify
these algorithms to several approaches and provide the link
to general clustering algorithms.

2. Definitions

A three dimensional boundary meshM is defined as a tu-
ple{V,E,F} of vertices V= {pi |pi ∈R3,1≤ i ≤m}, edges
E = {(pi , p j )|pi , p j ∈ V}, and faces F, which are usually
trianglesF = {(pi , p j , pk)|pi , p j , pk ∈ V}, but can also in-
clude other types of planar polygons (Figure1). We use
the term boundary mesh to distinguish these meshes from
3D volumetric meshes (e.g. tetrahedral), and to emphasize
the fact that these meshes represent a 2D surface embedded
in 3D. There are many constraints on the relations between
the different elements (e.g. vertices, edges and faces) of the
mesh which impose a valid representation. For example, in
a 2-manifold mesh the neighborhood of every point which
lays on the mesh is homeomorphic to a disk. In water-tight
meshes the mesh will not contain any boundary edges. Gen-
erally we will restrict our discussion to 2-manifold bound-
ary mesh representation, although many of the techniques
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Figure 1: Vertices, faces and edges in a 3D boundary mesh.

reviewed do not directly rely on such constraints to work
correctly.

Our basic definition of mesh segmentation is as follows:

Mesh segmentationΣ: Let M be a 3D boundary-
mesh, andS the set of mesh elements which is ei-
therV,E or F . A segmentationΣ of M is the set
of sub-meshesΣ = {M0, . . . ,Mk−1} induced by a
partition ofS into k disjoint sub-sets.

Using a sub-set of elementsS′ ⊂ S, an induced sub-mesh
M′ ⊂ M can be created by choosing all vertices which are
included inS′ asV′, and then definingM′ = {V′,E′,F ′}.
WhereE′ = {(pi , p j )∈E|pi , p j ∈V′} are all edges in which
both vertices are a part ofV′, andF ′ is defined similarly as
F ′ = {(pi , p j , pk) ∈ F|pi , p j , pk ∈ V′}. As can be seen,S
can either be the vertices, edges or faces of the mesh and the
partitioning ofS induces a segmentation ofM. Most mesh
segmentation algorithms partition the faces of the mesh (i.e.
S = F), some partition the vertices (S = V), and few the
edges (S= E).

The key question in all mesh segmentation problems is
how to partition the setS. Obviously, this relies heavily on
the application in mind. However, one can formulate a mesh
segmentation problem as an optimization problem by defin-
ing a specific criterion functionJ : 2S→ R which is a func-
tion of the partitioning ofS. This is done in the following
manner:

Mesh segmentation as an optimization prob-
lem: Given a meshM and the set of elements
S ∈ {V,E,F}, find a disjoint partitioning ofS
into S0, . . . ,Sk−1 such that the criterion function
J = J(S0, . . . ,Sk−1) be minimized (or maximized)
under a set of constraintsC.

The set of constraints can give conditions both on the par-
titioning subsetsSi such as a limit on the number of ele-
ments, and on the segmentation sub-meshesMi induced by
the partition. For instance, that each sub-mesh be connected
or be homeomorphic to a disk. In the simplest caseC can be
empty.

Figure 2: Part of the face-adjacency dual-graph of a mesh.

There are at least three closely related fields in computer
science where similar segmentation or partitioning problems
are encountered and where there is a large body of literature.
These are image segmentation [ZHPZ96, TM98, CM02],
finite-element and simulation meshes partitioning [KK98,
KK99, NN99, MK01], and point-sets clustering in statis-
tics and machine learning [AHD96,Rob97,DHS00]. As we
would like to concentrate on recent results in 3D boundary
mesh segmentation, it is out of the scope of this paper to re-
view these fields. Furthermore, although similar techniques
can be applied in these fields, there are also some notable
differences between them and 3D boundary mesh segmen-
tation. Images are highly regular and are not embedded in
higher dimensional space. Volumetric meshes for simulation
are also full dimension meshes, hence their geometric prop-
erties are different than boundary meshes. Furthermore, the
goal of their partitioning is usually to increase load balancing
of computation between processors and reduced their com-
munication. This means that the geometry of the mesh does
not play as central role as in boundary embedded meshes.
Point-sets in statistics are often defined in higher dimensions
representing abstract notions and do not hold any explicit
connectivity relation and hence are different in nature than
3D meshes.

A most useful analogy of mesh segmentation and graph
partitioning is often introduced by defining the dual graph of
the mesh [Got03]. Let S be the set of elements partitioned
in M. We build the dual graphG of M by representing each
element inS by a node inG and defining the edges inG
by the adjacency relation inM of the elements ofS. For in-
stance, ifS= F then each node inG will represent a face
in M and each edge will connect adjacent faces (Figure2).
WhenS= V each node inG will represent a vertex inM,
and the edges inG will in fact be the edges inM.

Using such a representation, a mesh segmentation prob-
lem can be cast as a (constrained) graph partitioning prob-
lem. In fact, by examining this analogy one can conclude that
mesh segmentation is at least an NP-complete problem and
often NP-hard (partitioning of a graph into approximately
equal subsets of nodes so that the number of cut edges be-
tween the subsets is minimized is NP complete [GJS76]).
Furthermore, if|Σ| = k and |S| = n, then a complete enu-

c© The Eurographics Association 2006.



Ariel Shamir / Segmentation and Shape Extraction of 3D Boundary Meshes

meration of all possible segmentations is unfeasible as the
search space is of orderkn. This means we must resort to
approximate solutions in feasible computation time.

We have classified the possible approximate solutions for
mesh segmentation according to the approaches taken as fol-
lows:

1. Region growing.
2. Hierarchical clustering.
3. Iterative clustering.
4. Spectral analysis.
5. Graph-Cut techniques.
6. Other approaches.

In the following sections we elaborate on each of these
approaches, define a generic algorithm for the main ap-
proaches, and classify the different mesh segmentations
techniques found in literature. We have tried to detach the
technique from the goal of segmentation and the criterion
functions used. This view enhances the commonality of dif-
ferent works. Nevertheless, We also examine the different
technique in view of their application domain or segmenta-
tion objective, and present constraints and optimization cri-
teria which are frequently used in several algorithms.

3. Segmentation Type and Objectives

The type of mesh segmentation desired and the criterion
function definition for optimization are affected by the seg-
mentation objective. Although there are various objectives,
we have found that there is a distinction between two differ-
ent principal types of mesh segmentations. The major dis-
tinction between the two is based on a different point of view
on the object being partitioned – either a 3D volumetric view
or a 2D surface view (Figure3). Hence, the first type, which
we will termpart-typesegmentation, is targeted more at par-
titioning theobjectdefined by the mesh into meaningful or
‘semantic’ components [Bie87], creating in general volu-
metric parts. The second type, which we will termsurface-
typesegmentation, uses mostly surface geometric properties
of the mesh such as planarity or curvature to createssurface
patches. Obviously, there are also times when ‘semantic’
components are used by surface-type segmentation, e.g. in
CAD oriented segmentations [SAKJ01], where an object is
decomposed into geometric primitives such as planes, cylin-
drical patches, spherical parts etc. Similarly, there are times
when surface-based attributes are used to partition an ob-
ject into volumetric parts, such as minimum curvature in the
minima-rule [HR84,HS97].

Although there are segmentation objectives that are
shared by both segmentation types, in general surface-
type and part-type segmentation imply different objectives.
Hence, in the following we list the different objectives based
on the two segmentation types.

Figure 3: Two different types of mesh segmentation: part-
type segmentation (left, taken from [LLS∗05]) and surface-
type segmentation (right, taken from [SSGH01])

3.1. Surface-type Segmentation

Surface-type segmentation is often used for texture
mapping [SSGH01, SCOGL02, ZMT05], building
charts [LPRM02, ZSGS04] and geometry-image cre-
ation [SWG∗03]. In such applications the sub-mesh patch
must be topologically equivalent to a disk and must
not impose large distortion after parametrization onto
2D. Parametrization driven segmentations are also used
in [ITA∗01].

Other applications where surface-type segmentation is
used are remeshing and simplification [EDD∗95, KT96,
GWH01,She01,ZTS02,BM03,CSAD04]. In most of those,
each patch is replaced either by one or a set of planar poly-
gons, hence planarity is the desired property of the patches.
More recently, other types of proxies have been used to re-
place mesh patches defining different types of patch proper-
ties for spherical, cylindrical, and rolling ball blends [WK05,
AFS06]. For actual reconstruction and creation of physical
models and toys, strips and quasi-developable patches are
built in [MS04, JKS05, STL06]. Other surface-type decom-
positions impose convexity constraint [CDST97] or constant
curvature [MW98,MW99].

In morphing, complex transformations between shapes
can be simplified by a reduction to transformations between
sub-patches [GSL∗99,ZSH00,ZTS02]. Similarly, the trans-
fer of details, movement or deformation from one mesh to
another can be achieved if there is a map between them.
Finding such a mapping on the whole object is difficult and
is often simplified by segmentation and matching parts or by
simultaneous parameterizations [KS04,SAPH04].

For compression purposes by spectral analysis in [KG00]
the set of mesh vertices is partitioned. The main motivation
for breaking the mesh into smaller sub-meshes is to reduce
the size of the Laplacian matrix of each sub-mesh for eigen-
vector computation.
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Other applications which benefit from surface-type seg-
mentation include radiosity, where the form-factor calcula-
tions usually uses planar patches, collision-detection, where
bounding boxes are used on whole sub-mesh patches for
efficiency [GWH01], and animation with subdivision sur-
faces [DKT98].

3.2. Part-type Segmentation

Part-type segmentation objective is rooted in the study of
human perception. Examining human image understanding
many works indicate that recognition and shape understand-
ing are based on structural decomposition of the shape into
smaller parts [HS97, Bie87, HR84]. Towards this end, part-
type segmentation decomposes a 3D object into sub-meshes
which often correspond to physical 3D “semantic parts” of
the object.

In [MPS∗03, MPS∗04], part-type semantic segmentation
is created based on analyzing the intersection curves of a
ball centered around each vertex, and the mesh. This anal-
ysis segments a surface into connected components that are
either body parts or elongated features, that is, handle-like
and protrusion-like features.

Part-type segmentation was used for modeling by assem-
bling parts of objects to create new designs from existing
ones [FKS∗04]. It was also used to create bead-style toys
in [RGS04].

Decomposing and, later on, recognizing and matching ob-
ject sub-parts can assist shape matching and retrieval, and
shape reconstruction [ZTS02, PAKZ03, Bia03]. Such part
matching can also be utilized for morphing [STK02]. Object
part decomposition has also facilitated object skeleton cre-
ation [MPS∗03, KT03, WML∗06], which in turn was used
for deformations and animation. Lastly, bounding boxes de-
fined around whole object parts can assist in fast collision
detection calculations [LTTH01].

A recent comparative study on various part-type segmen-
tation technique can be found in [AKM ∗06].

4. Attributes and Partitioning Criteria

No matter what algorithm is used for mesh segmentation, the
most important factor affecting the result is the criteria for
deciding which elements belong to the same segment and
the constraints imposed on the partitioning process. These
criteria are usually based on attributes extracted from the
mesh. Although there are many different attributes chosen
based on the goal of segmentation, some reoccur frequently
in several works. Hence, we present those independently of
the algorithms they appear in, and the final goal of segmen-
tation. We will first describe some of the constraints used on
partitions and then some of the attributes commonly used for
segmentation.

4.1. Constraints

There are three major types of possible constraints for seg-
mentation: cardinality constraints, geometric constraints and
topological constraints. Some typical cardinality constraints
regarding the partition sets are:

• A bound on the maximum and/or minimum number of
elements in each part. This is often used to eliminate too
small or too large partitions.

• A bound on the ratio between the maximum and minimum
number of elements in all parts. This is used to create a
more balanced partition.

• When applicable (i.e. when this number is not set a-priori)
A bound on the maximum or minimum number of seg-
ments may also be used to balance the partition.

Geometric constraints are imposed on the sub-mesh in-
duced by the partitioning. Some typical geometric con-
straints are:

• Maximum/minimum area of sub-mesh.
• Maximum/minimum length of diameter or perimeter of

sub-mesh.
• More complex constraints that are either hard constraints

(convexity) or add a bias towards specific shapes. For
instance, maximum or minimum ratio of diameter or
perimeter to area can provide a bias towards roundly
shaped sub-meshes.

Lastly, topological constraints are also used to restrict the
sub-mesh shape:

• Restriction of the segment to a single connected compo-
nent.

• Restriction of the segment to be topologically equivalent
to a disk.

4.2. Mesh Attributes

The most important factor that governs the segmentation re-
sults is the criterion function used for clustering mesh el-
ements. We will discuss the following set of attributes ex-
tracted from the mesh:

1. Planarity of various forms.
2. Other geometric proxies (spheres, cylinders, developable

surfaces).
3. Difference in normals of vertices or dihedral angles be-

tween faces.
4. Slippage.
5. Geodesic distances on the mesh.
6. Curvature.
7. Medial axis and related functions.

One of the leading criteria used for segmentation is
planarity. This criteria assists segmentation goals such as
parametrization, simplification, texture mapping and other
algorithms. Different works have used different types of
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norms to define planarity of segments. Assuming each seg-
ment is a cluster of elements best represented by a plane
ax+ by+ cz+ d = 0, most criteria are a variants of the fol-
lowing:

L∞ distance norm: given a cluster representative plane,
for any vertexv = (vx,vy,vz) it measures the maximum
distance from the plane:|(vx,vy,vz,1) · (a,b,c,d)| ≤ ε

L2 distance norm: given a cluster representative plane, and
a set of verticesvi it measures the average distance from
plane:1

k ∑k
i=1((vx,vy,vz,1)i · (a,b,c,d))2 ≤ ε

L∞ orientation norm: given a cluster representative plane,
for any face (or vertex) normaln= (nx,ny,nz) it measures
the maximum difference of normals:(1− (nx,ny,nz) ·
(a,b,c))≤ ε

L2 orientation norm: given a cluster representative plane,
and a set of face (or vertices) normalsni it measures the
average difference of normals:1

A ∑k
i=1

1
Ai

(1−(nx,ny,nz)i ·
(a,b,c))≤ ε, whereAi is a weighting factor for the region
of the normal andA = ∑i Ai . For instanceAi could be the
area of the face for face normals, or simply 1 for uniform
averaging.

To cluster non-planar regions, other cluster representa-
tives must be used and other criteria must be defined. Several
works use primitives such as spheres and cylinders and try
to find the best fitting primitive in least square sense. Other
types of regions include rolling ball blends, triangle strips,
and cones as quasi-developable surfaces (see Section5.3
for specific examples). A more straightforward approach to
cluster non-planar regions is simply to measure the differ-
ences in normal direction or in dihedral angles between mesh
elements. Depending on the tolerance of this difference, ei-
ther almost planar or also curved parts can be created.

A different approach is presented in [GG04] for slippage
analysis. slippable motions are rigid motions which, when
applied to a shape, slide the transformed version against
the stationary version without forming any gaps. slippable
shapes include rotationally and translationally symmetrical
shapes such as planes, spheres, and cylinders, which are of-
ten found as components of mechanical parts. A slippable
motion of each point P must be tangential to the surface at
that point. Hence, by posing this as a minimization problem
one can search for an instantaneous motion vector[r, t] that,
when applied to P minimizes the motion along the normal
direction at each point:

min
[rt ]

n

∑
i=1

((r× pi + t) ·ni)
2

This equation leads to least-squares problem whose mini-
mum is the solution of a linear system. Hence, the slippable
motions of a local neighborhood of a point can be deter-
mined by computing its eigenvalues.

Two most useful functions in various algorithms are sur-
face properties of the mesh. The first is a differential property

of the mesh - curvature (Figure4, left), while the second, av-
erages geodesic distances (AGD), depends more on global
embedded geometry (Figure4, middle). There are many
variations for curvature calculations either using discrete ap-
proximations or by locally fitting a quadratic function and
taking its curvature as the curvature at the fitting point. Some
examples can be found in [MDSB02,ACSD∗03]. The AGD,
also sometimes called centricity, is taken as the average
geodesic distance from each point to all other points on the
mesh. This means that points in the center of the object will
have low AGD value, and points on the periphery will have a
large value. Calculating the AGD is usually done by finding
the geodesic distances from all vertices to all vertices. This
can be done using Dijsktra algorithm for all pairs shortest
path on the mesh graph. A more accurate approach is to use
the fast marching method of [KS98].

The medial axis and medial axis transform (MAT) are an
important topological attributes of the object [ACK01,DZ02,
CCM97]. They carry information on the structure and size of
the object and can often be used as guidelines for segmenta-
tion. Another related function is defined in [SSCO05] as the
shape diameter function (SDF). This function measures the
local diameter of the object at points on its boundary instead
of the local radius (distance to the medial axis). The function
values on a point laying on the mesh surface are averaged
from sampling the length of rays sent from the point inward
to the other side of the object’s mesh (Figure4, right).

5. Segmentation Techniques

In this section we classify previous mesh segmentation al-
gorithms according to the approximation technique used to
reach a solution, i.e. the technique used to find the approxi-
mation for the segmentation optimization problem.

5.1. Region Growing

The simplest of all possible approaches for segmentation is
the local-greedy approach which we termregion growing.
The algorithm for region growing starts with a seed element
from Sand grows a sub-mesh incrementally as follows:

Region Growing Algorithm
Initialize a priority queue Q of elements
Loop until all elements are clustered

Choose a seed element and insert to Q
Create a cluster C from seed
Loop until Q is empty

Get the next element s from Q
If s can be clustered into C

Cluster s into C
Insert s neighbors to Q

Merge small clusters into neighboring ones

The main difference between various algorithms which
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Figure 4: Example of mesh attributes used for partitioning. Left: minimum curvature, middel: average geodesic distance, right:
shape diameter function.

use region growing is the criterion which determines if an el-
ement can be added to an existing cluster. The priority used
in the priority-queue is usually tightly coupled with this cri-
terion as well. Other issues in region growing include the
seeds selection mechanism, dealing with too small regions
(for example if a single face cannot be clustered to any of its
neighboring clusters), and post-processing of the segmenta-
tion borders for smoothing or straightening.

The super-face algorithm [KT96] uses a region growing
algorithm with a set of representative planes for the cluster
approximated by an ellipsoid. The clustering criteria used
are anL∞ face-distance (distance of all face vertices) and
a variant of the face-normal criteria along with a geometric
constraint that prevents a face from ‘folding-over’ it’s rep-
resentative planes. The seed faces are chosen randomly. The
borders between the segments are straightened in a post pro-
cessing stage. Convex decomposition of the mesh also uses
region growing with random starting faces [CDST97]. An
additional size constraint was added to the convexity criteria
to achieve better decompositions.

A common variation of the region growing algorithm
starts from multiple source seeds and advances from all of
them in parallel. For instance, for the purpose of creating a
base triangle mesh with subdivision connectivity, a multiple
source region growing is employed in [EDD∗95]. The main
idea is to create Voronoi-like patches on the mesh and then
use the dual of the patches as the base triangular mesh. This
imposes three constraints on the patches: 1. A patch must be
homeomorphic to a disk, 2. Two patches cannot share more
than one consecutive boundary, and 3. Not more than three
patches can meet at a vertex. An approximation of geodesic
distance between faces is used as the priority for selecting
faces. The algorithm starts with one seed and then iteratively
adds another seed in places where one of the constraints are
violated, until the above constraints are met.

Multiple Source Region Grow
Initialize a priority queue Q of pairs
Choose a set of seed elements {si}
Create a cluster Ci from each seed si

Insert the pairs < si ,Ci > to Q
Loop until until Q is empty

Get the next pair < sk,Ck > from Q
If sk is not clustered already and
sk can be clustered into Ck

Cluster sk into Ck

For all un-clustered neighbors si of sk

insert < si ,Ck > to Q
Merge small clusters into neighboring ones

A method which simultaneously segments the mesh and
defines a parametrization is defined in [SCOGL02]. The seed
faces are chosen randomly and greedy region growing is ini-
tialized which is capable of optimizing different criteria. For
parametrization the criteria for adding a face to a region mea-
sures the distortion caused to a triangle during flattening to
2D. This is done using the singular values of the Jacobian
of the affine transformation between the original 3D triangle
and its counterpart in the plane.

Texture Atlas Generation in [LPRM02] uses region grow-
ing but instead of using seed faces and growing outward,
the algorithm first extracts feature contours and uses them as
boundaries between charts to grows the region inward. This
also simplifies the test criteria which determines if an ele-
ment can be added to an existing cluster since the boundaries
are somehow pre-determined.

The watershed algorithm, originally used for images seg-
mentation, is in fact a region growing algorithm with multi-
ple sources. The seeds for growing are found based on the
definition of a height function on the mesh. The algorithm
finds and labels all local minima of this function. Each min-
imum serves as the initial seed for a surface region. Next, a
region is grown incrementally from each seed until it reaches
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a ridge or maxima in the function, thus partitioning the func-
tion terrain into regions.

The watershed region growing algorithm can be found in
many variations, where the main difference between them is
the definition of the feature energy or the height function in
which “the water rises”. For instance, in [ZH04] the aver-
age geodesic distance function is used for the height func-
tion definition. In [WL97] a simulation of electrical charge
distribution over the mesh is used. The charge density is
very high and very low at sharp convexities and concavi-
ties, respectively. Thus, the object part boundary can be lo-
cated at local charge density minima. In [MW98, MW99]
the function is based on vertex discrete curvature calcula-
tions [MDSB02,PRF01]. In [SPP∗02] the algorithm approx-
imates the feature strength of each vertex based on “normal-
voting”, i.e. the surface normal variation within a neigh-
borhood of a vertex, and in [ZTS02] dihedral angles be-
tween faces is used. A more elaborate functional is used
in [PKA03] by defining a directional curvature height func-
tion between each two adjacent verticesu andv using the
Euler’s formula:fuv = κmaxcos2 θ+κminsin2 θ, whereκmax

andκming are the maximum and minimum curvatures atu,
andθ is the angle between the maximum principal direction
and the vector connectingu to v in the tangent plane ofu.
In [PAKZ03] this height function is further quantized into
discrete values preventing spills from one region to another.

The major drawback in region growing is its dependence
on the initial seed selection. Using watershed formulation
this is solved by starting at function minima, e.g. in [ZH04]
the critical points of the average geodesic distance of the
vertices are used as seeds. However, often in practice when a
height function cannot be determined, random seed selection
is used and may result in bad segmentation. Multiple source
region growing is often used also as a sub-routine in the vari-
ational approach of iterative clustering (Section5.3). There,
the seed selection problem is alleviated since the seeds are
replaced in each iteration to better reflect their cluster. A dif-
ferent approach that lets the data values ’lead’ the clustering
of segments is given by the hierarchical clustering algorithm.

5.2. Hierarchical Clustering

The search for local optimum of each region separately may
sometimes create unsatisfactory global results. For example,
the number of regions depends heavily on the choice of ini-
tial seeds. Furthermore, there are times when a hierarchical
segmentation structure is beneficial for specific applications.
Hierarchical clustering, while still a greedy approach, can
be seen as “global-greedy” since it always chooses the best
merging operation for all clusters and doesn’t concentrates
on growing one:

Figure 5: Raw segmentation results may require post-
processing to smooth the boundary between patches (exam-
ple taken from [SSGH01]).

Hierarchical Clustering Algorithm
Initialize a priority queue Q of pairs
Insert all valid element pairs to Q
Loop until Q is empty

Get the next pair (u,v) from Q
If (u,v) can be merged

Merge (u,v) into w
Insert all valid pairs of w to Q

Similar to region-growing, the difference between various
hierarchical clustering algorithms lies mainly in the merging
criteria and the priority of elements in the queue.

Hierarchical clustering starts initially when each face is
its own cluster. Each pair of clusters is assigned a cost for
merging. Hierarchical face clustering [GWH01] usesL2 dis-
tance and orientation norms from representative planes as a
measure of planarity, but formulates them using quadric er-
ror metric for efficient computation. This algorithm also uses
a bias term to create circular compact cluster shapes by using
the ratio between the square of the perimeter and 4πA where
A is the area of the cluster. More recently [AFS06] use a fi-
nite set of fitting primitives (planes, spheres, cylinders) and
the cost of merging a set of triangles into a single cluster is
the minimum of the approximation errors computed against
all possible primitives. Segmentation based on slippage anal-
ysis [GG04] also uses hierarchical clustering to merge points
to larger regions based on slippage similarity scoring.

Charts creation based on hierarchical clustering uses
Mean squared distance of a patch to the best fitted plane
in [SSGH01]. However, the measure is integrated on all
patch faces and not only on vertices. Compactness of patches
is measured simply as the squared perimeter length. Addi-
tional tests are performed before merging two clusters to take
care of topology constraints such that each clustered patch
remain homeomorphic to a disk. In post processing smooth
boundaries between the charts are created calculating con-
strained shortest path (Figure5).

When working on the dual graph of the mesh such as
in [She01], an edge contraction in the graph is equivalent to
a merge of two clusters of faces in the original mesh. Hence
this is in fact equivalent to hierarchical clustering. The pri-
ority of edges used in the algorithm for clustering is a com-
bination of geometric and topological costs including size,
shape, curvature and more.
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5.3. Iterative Clustering

The two previous methods are often described as non-
parametric, as the number of resulting clusters is unknown
in advance. In aparametricsearch, the number of clusters is
given a-priori. The segmentation can then be formulated as a
variational problem of finding the optimal segmentation by
iteratively searching for the best segmentation for the given
number of clusters. The basis of this approach is the k-means
algorithm, sometimes referred to as Lloyd or Lloyd-Max al-
gorithm [Llo82,DHS00]. The iterative process begins with k
representatives representing k clusters. Each element is then
assigned to one of the k clusters. Subsequently, the k rep-
resentatives are re-calculated from the k-clusters and the as-
signment process begins again. The process terminates when
the representatives stop changing:

Iterative Clustering Algorithm
Initialize k representatives of k clusters
Loop until representatives do not change

For each element s
Find the best representative i for s
Assign s to the ith cluster

For each cluster i
Compute a new representative

The key issue concerning iterative clustering algorithm
is convergence. The measure of ‘best’ representative for an
element and the computation of new representatives from
clusters should be chosen with care so that the process con-
verges. Other issues such as the choice of initial represen-
tative can also affect the convergence and the final result.
It is interesting to note that most iterative clustering algo-
rithms on meshes use region growing as a sub-routine. The
reason for this is that the elements (faces or vertices) lie on a
manifold mesh embedded in 3D. Therefore, one cannot use
Euclidean distances between elements to assign an element
to a cluster (or a representative of a cluster). Geodesic dis-
tances are more appropriate for measuring distances on the
mesh. However, calculating geodesic distances on-the-fly is
extremely expensive. Therefore, using the representatives as
seeds for a region growing algorithm alleviates the computa-
tional cost. This also provides the advantage of constraining
the clusters to be connected.

To create compatible segmentation of two objects for mor-
phing purposes, a k-means based face-clustering algorithm
is proposed in [STK02]. A distance measure between faces
is defined as a weighted combination of the approximate
geodesic distance (the sum of distance from centroid to the
center of edge) and the difference in dihedral angle.

Dist(F1,F2) = (1−δ)cos2(α)+δPhysDist(F1,F2)

After representatives are chosen each face is assigned to
the cluster of its closest representative. New representatives

are chosen as the faces which minimize the sum of distances
to all other faces in the cluster.

Another variant of k-means algorithm is presented
in [CSAD04] for the creation of planar shape proxies. Two
different error metrics are defined.L2 measures the integral
over a patch of the squared error between point on the patch
and its planar proxy. The point-difference is the distance be-
tween the point on the patch and its orthogonal projection on
the proxy.

L2(Ri ,Pi) =
∫ ∫

x∈Ri

||x−πi(x)||2dx

A superior metric both in terms of results and in terms
of calculation cost and simplicity isL2,1, which is defined
simply as theL2 norm on the normal field of the mesh. This
means the error is an integral over the difference between the
normal of a point in the patch and the proxy normal.

L2,1(Ri ,Pi) =
∫ ∫

x∈Ri

||n(x)−ni ||2dx

These metrics are used also to define new proxy repre-
sentatives in each iteration. In order to keep the clustered
regions connected and non-overlapping, only triangles adja-
cent to currently grown regions are inserted to the queue.

An extension of the possible proxies to other surface ele-
ments was defined in [WK05] where planes, spheres, cylin-
ders and rolling ball blend patches are used. The motivation
for this choice is mainly due to the fact that most technical
CAD objects consist of patches from these four categories.
For instance, for sphere fitting robust least-square method
of [Pra87] is used where the sphere is represented implicitly
as:

f (x,y,z) = A(x2 +y2 +z2)+Bx+Cy+Dz+E

.

To geometrically fit a cylinder to a region the curvature
tensor field is used to determine the directiondi of the cylin-
der axis. If the region is indeed anisotropic, the barycenters
of the region triangles are projected onto the plane passing
through the origin with normaldi and are fitted with a 2D
circle. Since the fitting process for all types of proxies can
be time consuming the algorithm progresses by first fitting
planes and only then cylinders and spheres and lastly rolling
ball blend patches.

A different variation on the iterative clustering algorithm
uses quasi-developable patches as proxies in [JKS05]. The
detection mechanism is actually narrowed to a subset of de-
velopable surfaces, i.e. unions of uni-axial conics. A surface
is a union of conics with aligned axes and the same cone
angle if and only if the angle between the normal to the sur-
face at every point and a common axis is constant. Hence,
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to measure how well a given trianglet with a normalnt fits
into a given developable chartC with normalNC and angle
θC, the fitting error is defined as:

F(C, t) = (NC ·nt −cosθC)2

Mesh charts are also defined in [SWG∗03] for geometry
image creation using iterative clustering. This algorithm also
ensured connectivity by adding only neighboring faces to ex-
isting charts. The cost of adding a face is a measure of ge-
ometric distance between the face and its neighboring face
in the chart, and difference between the face normal and the
chart normal.NC: Whenλ is usually 1:

cost(F,F ′) = (λ− (NC ·NF′))(PF′ −PF )

The new seeds for the next iteration are simply the central
faces in each chart. To assure the disk topology of all charts
some face assignments are disallowed. This may lead to a
possibility of an orphan face left not clustered. The solution
to this is to add this face as a seed in the next iteration, hence
enlarging k by one. This idea is also used to initialize the
seed set by adding the last face assigned in the previous iter-
ation as a new seed in the next iteration, starting from 1 seed
until k seeds are created.

5.4. Spectral Analysis

Spectral graph theory [Chu97,SM00] states the relationship
between the combinatorial characteristics of a graph and the
algebraic properties of its Laplacian [Got03]. If A is the adja-
cency matrix of a graphG andD is a diagonal matrix which
holds the degree (valance) of vertexi asdi,i , then the Lapla-
cian ofG is defined as the matrixL = D−A.

Let {ξ0,ξ1, . . . ,ξn−1} be the eigenvectors ofL. By em-
bedding the graphG into the spaceRd usingd first eigen-
vectors, one can reduce the combinatorial graph partitioning
problem to a geometric space-partitioning problem [AY95,
Got03].

The Laplacian matrix of the vertex adjacency graph was
used for mesh compression purposes in [KG00]. Due to high
computation cost the mesh was segmented into smaller sub-
meshes and each one treated separately. However, these sub-
meshes should be balanced in size and the edge straddling
the different sub-meshes should be minimized in order to re-
duce the visual effects. These conditions are similar to FEM
mesh decomposition and hence MaTiS [KK98] graph parti-
tioning application was used.

Using a slightly different formulation in [LZ04] a sym-
metric affinity matrixW ∈ Rn×n is constructed where for all
i, j, Wi j encodes the probability that face i and face j can be
clustered into the same patch 0≤Wi j ≤ 1. This matrix may
be viewed as the adjacency matrix of a complete (weighted)
graph whose nodes are the mesh faces. The Spectral analysis
of this matrix creates a partitioning which induces a segmen-
tation of the mesh. Later, [ZL05] utilize a novel sampling

scheme to make effective use of Nyström approximation at
a sample size of two. The algorithm also adopts a different
optimization criterion, based on part salience [HS97], that is
specific for mesh segmentation.

An interesting observation is provided in [ZSGS04] on the
properties of spectral analysis of the normalized geodesic
distance matrix of vertices on the mesh. The geodesic dis-
tance distortion of multi-dimensional scaling to 2D based on
spectral analysis is found to give good results also in stretch
minimization criterion for parameterizations. This is used
to define simultaneous chartification and parametrization of
3D meshes. When the distortion is too large, the mesh is
segmented using region growing, where the candidate seed
vertices are selected based on the spectral analysis of the
geodesic distance matrix.

5.5. Graph Cuts & Image-Based Techniques

Graph cuts have been used extensively on images for seg-
mentation and feature extraction [BJ01, LSTS04]. For the
purpose of mesh partitioning, this technique is often used
as a refinement step of the borders between two or more
clusters on the mesh. This idea has been used in [KT03] to
define a hybrid algorithm between iterative clustering and
graph cut. At the initial stage iterative clustering is used to
create general partitioning. However this partition remains
fuzzy around the boundary regions of the segments. The fi-
nal decomposition is created using graph cut inside the fuzzy
region to refine the borders between the segments. The algo-
rithm is also capable of creating hierarchical decomposition
by top down binary partitioning.

Another scheme which targets the segment boundaries
instead of building the segments by clustering is pro-
posed in [LLS∗05] for intelligent scissoring. Following the
minima-rule from perception [HR84,HS97], minimum cur-
vature feature-contours are extracted from the mesh. These
contours are then closed to form loops around mesh parts.
Finally snakes are used to smooth the cuts which define a
part-type segmentation of the object.

An approach based on image segmentation is presented
in [BM03]. The problem of 3D boundary mesh segmenta-
tion is reduced to image segmentation by using geometry
images [GGH02] to represent the mesh. The portioning of
the image imposes a mesh segmentation in 3D.

5.6. Other Methods

There are several other methods which do not fall into one of
the above mentioned classifications. An approach based on
skeletonization is proposed in [LTTH01]. First, an approxi-
mation of the skeleton of the mesh is extracted. Next, a plane
perpendicular to the skeleton branches is sweeped over the
mesh and critical points are identified. Each critical skeleton
point is used to define a cut using the sweep plane which
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segments the mesh to different parts. Using this scheme, the
segmentation is defined implicitly by the creation of cuts.

Lastly, fully automatic segmentation remains a hard prob-
lem especially since it concerns semantics of shape and
form. Therefore, there are several manual segmentation and
partitioning techniques found in literature [GSL∗99,ZSH00,
FKS∗04, LLS∗04]. Segmentation is often created using cut
that define the boundaries between segments either explic-
itly or by designating some vertices and calculating shortest
path between them. More recently These are concerned more
with user interface design issues which imitate the physical
notion of cutting [SBSCO06].

5.7. Advanced Algorithms

More recently, the basic problem of mesh segmentation has
been extended in several directions. For instance, when the
object being segmented is flexible or dynamic and may come
in various poses such as a human or animal models, it is
important that the object’s segmentation remain consistent
despite the pose changes.

To construct a pose-invariant segmentation, multi-
dimensional scaling (MDS) to 3D is used on a coarse ap-
proximation of the mesh in [KLT05]. MDS finds an embed-
ding of the mesh into an Euclidean space where Euclidean
distances approximate well the geodesic distances between
points on the mesh. Often this means that different poses
of the same object will map to similar poses using MDS.
Later, feature points which are, intuitively, points that reside
on tips of prominent components of a given model, are ex-
tracted. Each prominent component of the object is defined
by one or more of these feature points. Using spherical mir-
roring, the core of the object is extracted and then the other
segments. A final refinement stage uses graph cut to finalize
the boundaries of the segments.

A different approach was taken in [SSCO05]. It turns out
that the shape-diameter-function (SDF) remains largely con-
sistent through pose changes of the same object and can thus
guide pose-invariant segmentations. Using iso-contours of
this function on the mesh along with graph cut refinement,
a segmentation algorithm is presented. Another direction for
extension is the segmentation of multiple meshes compati-
bly. This enables correspondence between objects, which is
important to motion transfer, shape matching or editing. The
SDF function [SSCO05] maintains similar values in ana-
logue parts of different objects, allowing correspondence be-
tween parts on different objects to be developed using the
signature of various parts.

6. Concluding Remarks

We have presented the main approaches for boundary mesh
segmentation and identified different optimization criteria
used. It is obvious that the key factor in choosing both the

algorithm and the criteria is the application in mind. For ex-
ample, we have identified a distinct difference between the
results of surface-type segmentations and part-type segmen-
tations. This difference originates from a different point of
view on the object - either 2D surface or 3D object, and is
reflected in the segmentation goal. For this reason, it is dif-
ficult to assess quality and compare the different results, and
we have focused more on extracting and formulating the ma-
jor algorithmic techniques used to date.

Although there are already numerous techniques for mesh
segmentation, it seems that directions to address this prob-
lem are only beginning, and we have tried to present possible
extensions as well.
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