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Abstract

Recent research on high-performance ray tracing has achieved real-time performance even for highly complex
surface models already on a single PC. In this report we provide an overview of techniques for extending real-time
ray tracing also to interactive volume rendering. We review fast renderingtechniques for different volume repre-
sentations and rendering modes in a variety of computing environments. The physically-based rendering approach
of ray tracing enables high image quality and allows for easily mixing surface,volume, and other primitives in
a scene, while fully accounting for all of their optical interactions. We present optimized implementations and
discuss the use of upcoming high-performance processors for volumeray tracing.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Raytracing

1. Introduction

This report presents the current state in interactive vol-
ume rendering based on ray tracing extending [MHB∗00,
MFS05]. The following introductory sections provide a brief
overview about ray tracing, volume rendering, their correla-
tions and introduce the terminology used in this report.

1.1. Ray Tracing

Ray tracing is a physically-based image synthesis tech-
nique [PH04] which is well-known for its excellent image
quality. In past this rendering algorithm was considered too
slow for interactive applications but recently even real-time
frame rates on commodity PCs were achieved for polygo-
nal scenes [RSH05,WBS02,WIK∗06,WBS06] and for vol-
ume data sets (e.g. [GBKG04]). Its core concept is theray
for computing visibility and simulating the distribution of
light in a virtual environment. A camera model is used to
generateprimary rays that are cast through the pixels in
the image plane to determine the objects visible along a ray
R(t) = O+D∗ t with origin O and directionD. For comput-
ing the light received atO all contributions alongR(t) need
to be sampled and accumulated whilesecondary raysmay
be used to include global lightning effects such as shadows,
or multiple scattering of light (see Figure1). However, in

this report we concentrate on basic volume rendering with-
out secondary rays.

We define the ray tracing algorithm as an algorithm that
given a ray – or set of rays – enumerates or accumulates the
contributions along the ray(s):

for all pixels do

enumerate primitives along ray

accumulate contribution

Figure 1: A simple 2D ray tracing example: A ray is cast
from a camera through a pixel in the image plane into the
scene. After hitting thesphere, a color is computed at thehit
point using a secondary ray (shadow ray) to calculate if the
hit-point on thesphere is lit by the light sourceor blocked by
an occluder.
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Figure 2: 2D examples of volumetric grid types (from left): regular, anisotropic regular, rectilinear, curvilinear, and unstruc-
tured.

This is exactly the invertedrasterizationalgorithm, which
iterates over primitives, determines the rays affected, and
then accumulates contributions to each of them:

for all primitives do

determine covered rays

accumulate contribution

Ray tracing corresponds to the common classification of
image-orderrendering, while rasterization corresponds to
the classification ofobject-orderrendering. Hybrid methods
exist as well. Note that the necessary sorting is implicit in
ray tracing but not in rasterization.

In this paper we discuss volume rendering algorithms that
follow the presented ray tracing definition and only briefly
summarize other volume rendering approaches for refer-
ence.

1.2. Volume Rendering

Volume rendering is a process to generate 2D images from
3D volumetric data. Primary acquisition sources for volu-
metric data sets are (among others) Computed Tomography
(CT) and Magnetic Resonance Imaging (MRI) scanners as
well as computational simulations like field and fluid simu-
lations.

1.2.1. Volumetric Data and Interpolation

Volumetric data sets consist of (multiple) scalar, vector, or
tensor entities that are given at discrete locations in space.
However, here we focus solely on single scalar values called
voxels(volumetric elements). They are the smallest element
of computation in volume rendering and represent physical
quantities like pressure or density. The data type of the voxel
values can be arbitrary ranging from binary up to floating
point numbers. The structure of these scalar fields of voxels
is versatile. Principle categories are whether the data set is
structuredor unstructured(aka. irregular). Structured data
sets have an inherent organization that allows for simple ad-
dressing of the voxels given a position in the data set. On the
other hand, unstructured data sets require additional infor-
mation in the form of an adjacency list for addressing opera-
tions i.e. neighborhood computations. Figure2 depicts some
widely used volumetric grid types and their terminology.

pi

pi

Figure 3: Left: a cell defined by eight voxel locations. Mid-
dle: within a cell at each location pi a value can be calcu-
lated by trilinear interpolation. Right: Within a tetrahedron
a piecewise linear interpolation can be used to interpolate
in-between values.

For regular and rectilinear data sets we can definecells in
the grid as a box defined by eight grid points. For curvilinear
data sets a transformation fromphysical spaceto computa-
tional space[WCA∗90] maps the distorted values into a reg-
ular grid which allows for using the box cell structure. Since
volume data is defined only at discrete locations in space an
interpolation must be performed to reconstruct in-between
values. In the case of regular, rectilinear and curvilinear data
sets, a piecewise trilinear interpolation is usually applied but
higher order interpolations are also possible [The01] (see
Figure3).

Unstructured data sets have an irregular cell structure that
is typically obtained by partitioning the data set into a tetra-
hedra mesh such that a piecewise linear (or higher order)
interpolation can be applied within each tetrahedron. The
tetrahedral partitioning yields also a useful adjacency infor-
mation that can be used for rendering.

In general a value at pointpi can be reconstructed as
weighted sum of the scalar values at the vertices of the cells.
The weights are obtained by computing the local coordinates
of pi relative to the cell using barycentric coordinates (see
Figure3).

1.2.2. Ray Casting

In contrast to surface ray tracing, theray casting algo-
rithm (ray tracing with just primary rays) has to be changed
slightly in order to render images of volumetric data sets.
Since we do not only have empty space together with an
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Figure 4: Various volume rendering methods used to render the engine data set (from left): decomposition (one slice rendered
as hight map), iso-surface, semi-transparent, maximum intensity projection (MIP), and x-ray.

opaque surface definition, it is necessary to step along the
ray through the volume to accumulate the contribution from
the semi-transparent voxels (see Section1.3). The stepping
distance is not necessarily equidistant and can be set adap-
tively i.e. for importance sampling.

Ray casting based volume rendering has many benefits
compared to other techniques like superior image quality,
many acceleration techniques to speed-up the rendering pro-
cess, and finally is embarrassingly parallel which can be ex-
ploited in various ways i.e. via software SIMD computa-
tions, multiple CPUs, multiple hardware pipelines, and com-
pute cluster.

1.3. Volume Rendering Techniques

In order to obtain a meaningful visualization, amappingis
used to translate voxel values to optical properties, i.e. ab-
sorption and emission coefficients (aka. color and opacity),
and other entities that convey visual information.

In general the literature differentiates between five vol-
ume rendering techniques that operate in image order each
with a special field of application [SM00,LCN98,HJ04]. See
Figure 4 for typical images and Figure5 for a schematic
overview.

Decomposition: Decomposition methods convert the data
set into geometric primitives, e.g. spheres, or slices. The
primitives are placed in space and are scaled and colored
based on the mapping. Slices are commonly rendered as
pseudo-colored textures, height maps, or are used for further
processing like segmentation.

Iso-surface: In some applications it is important to exam-
ine the distribution of a certain single value (theiso-value)
within the data set. The visualization of all pointsp within
the data set with the same iso-value (the so calledlevel set)
yields a surface and therefore this method is widely called
iso-surface rendering. We can define iso-surfaces formally
as f (x,y,z) = const. A particular important application for
this rendering method is virtual endoscopy.

Maximum Intensity Projection: For each view and pixel
to be rendered, the Maximum-Intensity-Projection method
computes the maximum value encountered along the ray.
This method is often used for Magnetic Resonance An-
giograms where thin structures, e.g. blood vessels, have to
be rendered accurately.

Semi-transparent: Semi-transparent rendering considers
the volume as a transparent medium. If light passes a volume
it may beabsorbed, scattered, or light may beemitted. To
render a volume as a transparent medium atransfer-function
(the mapping) maps the scalar voxel values to absorption,
scattering, and emission parameters. Then, the contribution
along a ray can be computed by solving the general volume
rendering integral. The volume rendering integral in its low

Depth

Quantity

MIP

X-Ray

Iso

Transparent

Figure 5: A one dimensional example for ray tracing based
volume rendering: MIP seeks along the ray the maximum
value. X-Ray computes the absorption along the ray. Iso-
surface rendering ends at the first hit-point of the ray with a
user specified iso-value. The semi-transparent method accu-
mulates emission and in-scattered light until the ray is satu-
rated.
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albedo form (scattering is ignored) [HJ04]:

Iλ(x,y,D) =
Z L

0
cλ(p)µ(p)exp−

R p
0 µ(t)dt dp (1)

computes for every pixelx,y with ray directionD and ray
lengthL the incoming lightI . λ is the wavelength andµ de-
notes the absorption factor [HJ04].

For the sake of rendering performance the general integral
is usually greatly simplified and scattering is completely ne-
glected. This simplified integral becomes after some trans-
formations (i.e. expansion to Riemann sum) two recursive
front-to-back compositing formulas, one for the colorc
(emission coefficient) and one for the opacityα (absorption
coefficient). This is ideally suited for ray casting.

ci+1 = c(pi+1)α(pi+1)(1−α)+ci (2)

αi+1 = α(pi+1)(1−α)+αi

At each sampling point (pi) along the ray this equations are
computed. Wherebyc(pi) denotes the color of the interpo-
lated voxel value from the transfer function, andα(pi) is the
opacity. A nice property of this solution is that an early ray
termination can be performed whenα is above some thresh-
old (1− ζ). This means that light behind that sample point
which would have little effect on the pixel of the image plane
is ignored. A back-to-front approximation of the volume ren-
dering integral exists as well but since no early ray termina-
tion can be performed [SM00] this method is seldom used in
volume ray casting applications.

X-Ray: rendering approximates also the volume rendering
integral but ignores additionally the emission and only accu-
mulates the absorption along a ray. This results in pictures
which look like typical x-ray images. No mapping is used
except for the final pixel value.

1.4. Content

In this report we present efficient software implementations
for MIP, iso-surface, and semi-transparent volume rending
in the context of regular/rectilinear data sets (see Section3)
as well as curvilinear and unstructured grids (Section4). We
discuss efficient traversal of the data structures and fast ren-
dering computations within traversed cells. We also focus
on optimized algorithms and efficient data layouts. For ref-
erence we briefly summarize in Section2 non-ray tracing
based volume rendering algorithms.

2. Alternative Rendering Approaches

In this section, we briefly cover alternatives to software vol-
ume ray tracing. We begin with projection, since this is
one of the most often used techniques. Projection meth-
ods can be further categorized in cell-projection, vertex-
projection (splatting) and texture-mapping. Software as well

as hardware implementations exist for this approach. How-
ever, since graphics hardware became more and more pow-
erful all approaches were adapted to GPUs for several years.

2.1. Cell Projection

An early software implementation based on projection was
proposed by Lucas [Luc92]. The projected faces of an ir-
regular grid are sorted using the Painter’s Algorithm known
from polygonal rendering. Lucas used only the centroids of
each face as sorting criteria which may lead to an incorrect
sorting. Wilhelm’s et al. [WGTG96] uses a software scan
conversion optimizing the sorting by using coherence be-
tween adjacent pixels as well as scan-lines. Cell faces are
always decomposed into triangles. A kd-tree culls invisible
regions from the current view point.

Williams et al. [WMS98] developed an elaborate volume
rendering system purely based on projection. The paper in-
cludes a detailed description of analytically solving the ren-
dering equation for producing high-quality images. As Ben-
net showed, this system can be well parallelized [BCM∗01].
Another distributed renderer was earlier suggested by Ma et
al. [MC97]. Here, the data set is partitioned allowing to ren-
der larger volumes. The volume cells are distributed round-
robin-like among the nodes. Each node scan converts its lo-
cal cells and sends the calculated ray segments to their final
destination in screen space for sorting and merging.

It is also possible to project irregular meshes onto screen
space but then process them in image-order using conven-
tional ray tracing. It is a hybrid approach since the cov-
ered cells by a ray are partly determined before accumulat-
ing. Bunyk et al. [BKS97] decompose the entire tetrahedral
mesh into triangles. Before applying ray casting, the com-
plete mesh is projected onto the screen, which simplifies the
intersection test from a 3D to a 2D problem. Adjacency in-
formation computed during preprocessing is used to accu-
mulate in correct order.

Hong [HK98] uses the same approach for curvilinear vol-
umes. Each hexahedral face is therefore decomposed into
two triangles, resulting in twelve triangles per hexahedron.
In a first version, each triangle was tested independently. In a
follow-up paper, Hong [HK99] suggested therefore to group
all twelve triangles together and apply a ray crossing tech-
nique. The number of intersections determines the triangle
where the ray exits the hexahedron.

Rendering unstructured data consisting of a tetrahedral
mesh was also early adapted to rasterization hardware.
Shirley and Tuchman [ST90] decompose each tetrahedra
in up to four triangles depending upon the view-point and
project each triangle onto the image plane. Correct colors
are only computed for the triangle vertices and linear inter-
polation is used for intersection points in-between a triangle.
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Using 3D texture mapping, Röttger et al. [RKE00] were
able to extend the projected tetrahedra algorithm [ST90] for
hardware-accelerated and accurate rendering of volumetric
data. Parts of the volume integral depending upon the length
of the segment are linearly approximated by a modulation
of the vertex colors. The remaining parts depend upon the
textural coordinates only and can therefore tabulated in a 2D
texture map.

Figure 6: The orbital data set rendered with a transfer func-
tion with Weilers GPU implementation using tetrahedral
strips [WMKE04].

Projection-based ray-casting for tetrahedral meshes were
also adopted for Graphics boards. Weiler et al. [WKME03]
uses the ray-plane intersection [Gar90] to determine the
face exiting a tetrahedron. The ray integration relies on pre-
integration, as described in [EKE01]. These computations
are performed in the fragment program. Ray tracing is re-
stricted to a single cell since multiple rendering passes have
to be applied due to the limited flexibility of graphics boards.
Interactive rendering of mid-sized models is possible with 2
to 5 fps. A more compact data set representation taking ad-
vantage of implicit neighbors [WMKE04] achieves the same
performance with less memory consumption.

Another adaption of a CPU based renderer was suggested
by Hong et al. [HQK05]. While Mora [MJC02] demon-
strated an object-order ray casting approach for the CPU,
here rasterization hardware allows for fast perspective pro-
jection of the volume cells. Both approaches are restricted to
regular volumes. A min-max octree is first used for an effi-
cient classification of cells. Sub-volumes ofN×N×N vox-
els are then projected onto the image plane. Fragments are
generated corresponding to the rays intersecting with that
cell. The correct order between sub-volumes is implicitly
given by the min-max octree. Dividing each sub-volume into
pre-computed layers further reduce the visibility ordering.

A fast iso-surface ray casting algorithm also based
on object-order ray casting is proposed by Neubauer et
al. [NMHW02] (see Figure7 for two example images). The

Figure 7: Two example images of the chest data set ren-
dered with two iso-surfaces (iso-values 440 and 1100) and
Neubauers [NMHW02] approach. An average frame rate of
0.8 is reported with an image resolution of512×512pixel
on a single PIV 1.9 GHz.

complete data set is subdivided intomacro-cellsof sizem3

wherem is usually between four and ten. This macro-cells
are then used to build a min/max octree (similar to [WV92]
and [WFM∗05]).

For each pixel on the image plane that has not yet pro-
cessed, the octree is traversed and at each traversal step the
min/max values are checked whether boundary-cells are in
the next sub-tree or not. At a leaf node the boundaries of
the macro-cell are projected/rasterized onto the image plane.
This yields a hexagonal footprint. For each pixel in this
hexagonlocal raysare used to traverse the macro-cell grid.
This reduces the number of traversal steps for the octree
structure since the pixels that are covered by the hexagon
would perform all the same traversal steps. For the macro-
cell traversal, the method of Amanatides and Woo [AW87]
is used. If a boundary cell is encountered, an intersection test
is performed with the iso-surface and eventually normal and
shading are computed.

2.2. Vertex Projection (Splatting)

Splatting is a forward mapping algorithm where the recon-
struction of the original signal is achieved by spreading each
data sample’s energy across the cell’s footprint in image
space. This is often approximated by some 2D basis func-
tion. The volume is therefore represented as an array of over-
lapping basis functions where their amplitudes are given by
the voxel values. Common kernels are Gaussian, which are
stored in a footprint table. It was first described by West-
over [Wes90] rendering regular grids on an CPU.

However, this approach is not well suited for perspective
projection. Müller et al. [MY96] suggests therefore a hybrid
method. The voxel contributions are partly pre-computed by
splatting in object space. However pixel accumulations are
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then ray tracing-like processed by shooting rays intersecting
the splats in space.

Splatting can be further distinguished between composit-
ing all splats back-to-front and the so-called sheet-buffer
method [MC98]. Here, the splats are organized in cache-
sheets, which are subsequently added back-to-front. These
cache-sheets are aligned with the volume face most paral-
lel to the image plane. This results in popping artifacts, if
the orientation of the compositing sheets suddenly changes.
Arranging the sheet-buffer parallel to the image plane over-
come this problem [MC98]. To this end it is necessary to add
slabs of partial kernels within the sheet.

Aliasing effects caused by the discrete evaluation of the
splatting equation can be relaxed by adapting Heckberts el-
liptical weighted average (EWA) re-sampling filter for vol-
ume splatting [ZPvBG01]. The footprint function is replaced
with a re-sampling filter. Each footprint function is now sep-
arately band-limited and hence respecting the Nyquest fre-
quency of the rasterized image. Chen et al. [CRZP04] pro-
posed an adaptive EWA filter to get rid of further aliasing
artefacts. Such artifacts are caused by voxels far away where
the sampling rate of diverging viewing rays falls below the
sampling rate of the volume grid. For close voxels, the sam-
pling rate of the rays is higher then the volume sampling rate.
Approximating the EWA re-sampling filter with the domi-
nant reconstruction filter only yields better rendering quality.

2.3. Texture Mapping

Cabral et al. [CCF94] was one of the first showing that tex-
ture capabilities of graphics boards can be used directly for
rendering volumetric data sets. It can be seen as a hybrid ap-
proach between backward and forward projection, since the
iteration over texture coordinates is ray tracing like while a
forward projection loops over all values to find the appro-
priate texture coordinates to sum into. The slicing plane tri-
linearly interpolates the scalar value and the texture mapped
slices are blended into the frame-buffer in a back-to-front
manner.

Engel et al. [EKE01] improved the rendering quality by
proposing pre-integrated volume rendering. The ideas pre-
sented in [RKE00] are extended and improved for regu-
lar grids. Basically, all slices are converted to slabs, i.e.
they are enriched with a thickness so that interpolated val-
ues in-between cannot be missed by an “unfavorable” de-
fined transfer function. The numerical integration is split
into two parts. One for the continuous scalar field and one
for the transfer functions. The lookup tables needs modifica-
tion only when the transfer function is changed. Röttger also
combined this approach later with volumetric clipping and
advanced lighting [RGW∗03].

The approaches discussed so far compute all scalar values
of the grid for rendering the volume, no matter if they are
visible or not. Li [LMK03] proposed therefore to partition

the volume into smaller sub-volumes with similar properties.
These properties depend on the transfer function, e.g. scalar
values within a certain range are grouped together. A kd-
tree is used to render this partitioned volume with correct
visibility order, where each node in the tree corresponds to a
sub-volume. Each sub-volume is culled and clipped against
an opacity map. This opacity map corresponds to a region
of the frame buffer and stores the minimum opacity of the
frame buffer pixels in that region.

Krüger et al. [KW03] addressed speed-optimizations re-
ducing per-fragment operations. The early Z-test is exploited
to terminate fragment processing for implementing early ray
termination and empty space skipping.

2.4. Shear-Warp

Shear-warp [LL94] is still one of the fastest software imple-
mentations for volume rendering. The basic idea is to factor-
ize the projection matrix into a 3D shear and 2D warp. Using
the shearing the data set is transformed into sheared object
space. In this space all viewing rays are parallel to one co-
ordinate axis and the volume is considered as a stack of 2D
slices. The 2D slices are then aligned and re-sampled such
that they are perpendicular to the viewing directing. Then an
intermediate image can be composed using the sheared ob-
ject space values. Finally the intermediate image is warped
to the image plane. For a perspective transformation each
slide needs an individual scaling during re-sampling.

Rendered images are prone to show stair-casing artifacts
near 45◦ viewing angle. Intermediate slices lying halfway
between two adjacent volume slices overcome this problem.
Images may furthermore blur during a zoom-in, since the
re-sampling of the warp matrix is not adaptive. An enhanced
version solving these problems can be found in [SM02] but
increase the computational cost.

2.5. Custom Hardware

The need for custom graphics hardware arise with the de-
mand for real-time volume rendering systems. Neither GPUs
nor CPUs were fast enough at that time to achieve this
goal. Most systems has been developed for rendering reg-
ular data, e.g.Cube [KK99], Vizard [KS97] and, Volume-
Pro [PHK∗99]. Due to the highly regular computation all
of them achieved real-time frame-rates allowing for inter-
active rendering. However, changing or extending custom
hardware is tedious and costly. Another disadvantage which
they share with GPUs is the limited memory. Out-of-core
solutions are in general not an alternative due to the high
bandwidth needed.

Cube [KK99] is based on a hybrid-order algorithm based
upon Shear-Warp. However, it was planed to compute only
the shear-step on-board and let the graphics board warp and
render the image. Eight identical rendering pipelines are able
to render a 2563 volume at 30 fps.
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Never commercially realized, Cube [KK99] was the pre-
decessor of the well-known VolumePro board [PHK∗99].
Although the scalability was enhanced, perspective render-
ing was still not possible. The latest generation consists of
separate sample and voxel processing pipelines. Voxel pro-
cessors traverse data slice-by-slice in memory order and
store them in on-chip buffers. These buffers are traversed
by sample processors responsible for illumination, filtering
and compositing. More interestingly, perspective rendering
is now possible [WBLS03].

Vizard [KS97] and Vizard II [MKW∗02] was based on
an image-order offering full ray casting including early-ray
termination. Phong shading was implemented using look-up
tables. The performance is not comparable toVolumeProdue
to the FPGA implementation. This makes this system more
flexible at the cost of the achieved frames rates.

The methods discussed so far provide fast and reliable
volume rendering. Parallization is in almost all approaches
possible which works, e.g. in favor of modern GPUs. How-
ever, as we will see in section5.3 the flexibility of modern
graphics boards allows the implementation of ray casting di-
rectly. This significantly improves the image quality while
preserving the speed. Splatting, Texture-Mapping and Shear-
Warp are also fast and memory-efficient but lacks rendering
quality. Custom hardware is fast and delivers high-quality
but offers so far only a limited flexibility.

Scientific visualization demands high-qualityandflexibil-
ity. Ray tracing naturally offers both, while being always
considered as too slow. In the following sections we will
present algorithms and data structures to accelerate volume
rendering and techniques to improve image quality.

3. Ray Tracing based Rendering of Rectilinear Data

Regular and rectilinear data sets are the most common grid
types in volume rendering. Almost all scanner devices and
many simulation applications output these grids. In the fol-
lowing three sub-sections we will discuss efficient algo-
rithms for iso-surface rendering, semi-transparent volume
rendering, and MIP in addition to the necessary data struc-
tures to speed up the rendering process or to increase the
image quality.

3.1. Ray Tracing based Iso-Surface Rendering

The performance of iso-surface ray tracing depends heav-
ily on two algorithms: the intersection test of the ray with
the implicitly defined surface function within a cell, and
the identification of cells which contain a piece of the iso-
surface in front-to-back order.

3.1.1. Ray Iso-Surface Intersection Tests in a Cell

Various methods have been proposed to calculate the inter-
section point of a ray with the implicit iso-surface function
in a cell.

Analytic Methods

The iso-surface within a cell can be reconstructed using a
trilinear interpolation. To do so, the ray equationR(t) is
substituted into the trilinear interpolation equation. Solving
the resulting equation fort results in a cubic polynomial
(see [PSL∗98] for a complete derivation and discussion).

This cubic polynomial can be solved analytically by ap-
plying i.e. Cardano’s formula. Nonetheless, an efficient and
numerical stable implementation is non-trivial [Sch90], even
when usingdouble precision computations. Furthermore,
computational expensive calculations like(a)cos are in-
volved. Marmitt et al. [MFK∗04] proposed a faster and nu-
merical more stable method, although onlysingle preci-
sion computations are used. The key to their fast algorithm is
the observation that actually only one root of the cubic poly-
nomial is needed. They isolate the roots by computing the
extrema of the polynomial. These extrema split the ray seg-
ment into at most three parts. Then they step through these
segments from front to back, computing the data values at
its start and end point from the cubic polynomial. Once an
interval containing zero is found, it can be guaranteed that
it contains exactly one root, that the root lies in the interval
and that it is the first relevant root.

The root in the interval can then be calculated by a simple
recursive bi-section until the desired accuracy is reached or a
small number of bi-section steps is performed. The latter one
is more efficient and after three to four iterations commonly
no visual differences can be observed. The calculation of an
intersection point with this method is exact, numerical more
stable, and approximately three times [MFK∗04] faster com-
pared to i.e. Schwarze’s algorithm [Sch90] to solve Cardanos
formula.

Approximative Methods

Faster methods are only reported for intersection tests that
roughly approximate the intersection points but may fail to
find valid intersections although existing. One representative
for this is the method of Neubauer [NMHW02]. He sug-
gested to use repeated linear interpolations. At the intersec-
tion pointspin andpout of the ray with the cell the valuesvin
andvout are calculated. Then it is assumed that the function
alongpin andpout is linear. Solving the linear interpolation
formula for ti an intersection pointti can be calculated. By
applying a trilinear interpolation atti and looking atvin and
vout a ray segment can be identified where a more accurate
intersection point can be found. This process is repeated re-
cursively. Although this method is computational very cheap
it is error prone since it only linearly approximates the trilin-
ear function.

Intersection Test Satisfying Smoothness Conditions

Until now we have only considered intersection tests that
operate solely in one cell and thus there is no higher order
continuity, i.e. C1, guaranteed at cell boundaries.
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Rössel et al. showed in [RZNS04] how to exploit
quadratic super splinesto reconstruct iso-surfaces that sat-
isfy a pseudoC1 continuity criterion along cell boundaries
and thus produce smooth iso-surfaces contours. To do so,
each cell of the data set is partitioned into 24 congruent tetra-
hedra and 65 Bernstein-Bézier coefficients are calculated.
This allows for performing a ray iso-surface intersection test
by solvingquadratic equationsalong a ray, for each tetrahe-
dron. The quasi-interpolating spline is a univariate piecewise
quadratic polynomial.

The required 65 coefficients per cell (50 on the cells faces,
14 on the midpoints of the tetrahedra edges and one at the
center position) are computed by a repeated averaging pat-
tern using 27 data values at the centers from the surrounding
cells. This results in ten coefficients per tetrahedron (four at
the vertices and six at the middle of the edges).

To intersect a ray with the iso-surface within a tetrahe-
dron, first three valuesw1, w2 andw are calculated apply-
ing de Casteljaus algorithm at the intersection points of the
ray with the tetrahedronq1 andq2 as well as their midpoint
(q1 + q2)/2 using the ten Bézier coefficients of the tetrahe-
dron (see Figure8).

The required quadratic equation

ατ2 +δβτ+δ2w1 = 0 ,τ ∈ [0,δ], (3)

specifying the intersection pointp of the ray with the iso-
surface can be now set up usingw1, w2, andw. δ denotes
the maximum in the hit interval,α = 2(w1 +w2−2w), β =
4w−3w1−w2.

This intersection test is quite efficient in terms of compu-
tational requirements and allows for rendering high quality
iso-surfaces which satisfy a pseudoC1 continuity along cell

q1

q2

w1
w2

w

q

Figure 8: The ten Bézier points (green points) of a quadratic
polynomial inside a tetrahedron are associated with the
Bernstein-Bézier coefficients. The restriction of this trivari-
ate polynomial piece to an arbitrary ray is a quadratic, uni-
variate polynomial (orange curve) which is uniquely deter-
mined by the values (orange boxes) at three points (blue
boxes).

boundaries of the iso-surface. Additionally, shading gradi-
ents can be directly computed from the polynomial pieces
of the splines. Nevertheless, the memory requirements for
the needed coefficients is high and a careful tradeoff must
be made between pre-processing of all values and on-the-fly
computation.

3.1.2. Fast Boundary Cell Traversal

A naïve ray casting algorithm would step along a ray and
test all pierced cells whether a piece of the iso-surface can
be found within the cell. This is only applicable for small
data sets due to the high number of memory requests for
the voxels which would cause cache thrashing. Addition-
ally, it is computational expensive to determine if a cell is
a boundary cell. In order to quickly locate cells that contain
the specified iso-value along the ray, acceleration structures
and -techniques are required.

Implicit Min/Max KD-Trees

An approach by Wald et al. [WFM∗05] utilizes min/max kd-
trees forcoherentiso-surface ray tracing (see Figure9 for
some example screen-shots). In coherent ray tracing, SIMD
extensions can be successfully exploited for traversingpack-
etsof rays in parallel. This can be realized efficiently with
kd-trees, which require only a single binary decision per ray
in each traversal step. Although kd-trees seem ill-suited for
data-parallel packet traversal, as all of the cells in a regular
data set are small and thus rays in a packet could diverge
and may traverse/intersect different cells, this argument is
less relevant for iso-surface rendering.

A particular iso-surface defined by the data set is only lo-
cated within a small subset of all cells. These cells, called
boundary cells, are in general irregularly distributed, sparse,
and often enclosed by large regions of empty space. These
properties are ideal for kd-trees [Hav01] (see Figure10).

Figure 10: Rather then traversing all cells along the rays
until an iso-surface is hit (left), a top down traversal in a
min/max hierarchy can be used to quickly skip regions with-
out boundary cells (right). Since the traversal of neighboring
rays bears high coherence,at least on the higher levels of the
hierarchy, SIMD packet traversal can be efficiently applied.
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Figure 9: Various iso-surfaces rendered with Wald’s kd-tree approach [WFM∗05]. From left to right: the aneurysm, the bonsai
data set with two opaque iso-surfaces, the head of the visible female projectwith two transparent surfaces, and finally the bonsai
tree in a polygonal environment including instant global illumination [WKB∗02]. All images can be rendered at interactive
frame rates on commodity PCs.

Building such an implicit kd-tree is quite easy. First, a kd-
tree over all the voxels of the entire data set is build. This is
done in a way that a kd-tree split plane always coincides with
the cell boundaries of the volume’s cells, yielding a one-to-
one mapping between the volume’s cells and the voxels of
the kd-tree. A simple way is to split the volume at the cell
boundary that is closest to the center in the largest dimen-
sion. Second, the minimum/maximum values are computed
recursively for all kd-tree nodes: Each leaf node stores the
min/max values of its associated cell, and each inner node
stores the min/max values of its children. Note that this ac-
celeration structure is similar to the one used by Wilhelm
and van Gelder [WV92].

In a naïve implementation, one would store the entire tree
simply using the same node layout as for surface ray tracing
[WSBW01] simply by adding the two min/max values to
each node to allow early subtree culling if no parts of the
iso-surface can be found in the subtrees. Assuming default
16-bit data values this naïve approach however requires 12
bytes for each node: 8 bytes for specifying the plane and
pointers, plus 4 bytes for the min/max values. As a kd-tree
of N leaves has an additionalN− 1 inner nodes, forN 16-
bit voxels it requires(2N − 1)× 12 bytes for the kd-tree.
At 2 bytes per input data value, the size of the acceleration
structure would then be 12 times the size of the input data.
Obviously, this overhead is too high. For 8-bit voxels, the
relative overhead would be even worse.

Fortunately, the memory overhead can be significantly re-
duced. If we assume for a moment that the number of cells
in each dimension is a power of two (the number of voxels
is then 2N +1), the resulting kd-tree would be a balanced bi-
nary tree, i.e. all its leaves are in the same level. In a balanced
binary tree however it is easy to show that all the nodes in the
same levell will use the same splitting dimensiondl . There-
fore, we only have to store this value once per level and not
in all nodes of levell . Furthermore, in a balanced kd-tree no
pointers are needed for address computations.

The remaining split plane positions in the nodes can also
be avoided. The number of distinct splitting planes for a par-
ticular levell and splitting dimensioni ∈ {x,y,z} can be cal-

Single PC 5-Node Cluster
Scene C SIMD Ratio C SIMD Ratio
Bonsai 3.4 5.2 1.5 16.2 24.6 1.5
Aneurysm 3.0 6.2 2.0 14.6 29.8 2.0
ML 5123 1.2 2.3 1.8 6.1 11.3 1.8
Female 2.7 4.2 1.5 13.6 20.7 1.5
” (zoom) 2.3 7.9 3.5 11.2 39.1 3.5
LLNL 0.9 1.3 1.5 – – –
” (zoom) 1.6 5.4 3.9 7.6 28.7 3.8

Table 1: Overall rendering performance data when running
our framework in various scenes including diffuse shading,
for both a single (dual-CPU) PC, as well as with a 5-node
dual-Opteron cluster. The overview of the LLNL data set
could not be rendered, because the memory footprint at this
view was larger than the 2 GB RAM per client in the cluster
setup.

culated by 2n, wheren is the number ofi as splitting dimen-
sion up to levell . This allows to store all splitting position
of a particular level in a small array.

All that remains to be stored are the min/max values in
the kd-tree nodes. A further memory saving can be accom-
plished if the min/max values at the leaf nodes are not stored,
and instead are computed on the fly from the cell’s vox-
els. This is tolerable since this computations have to be per-
formed only at leaf nodes.

As mentioned before, this implicit kd-tree construction
works only if the data set has 2N cells in each dimension.
One simple method of making arbitrary data sets comply to
this constraint would be topad them to a suitable size. In-
stead, a better solution is to assume that all nodes are embed-
ded in a largervirtual grid that exceeds the scene’s original
bounding box and to build the kd-tree over that virtual grid.

By properly assigning the splitting plane positions, we can
make sure that all virtual nodes lie outside the real scene’s
bounding box. As the kd-tree traversal code always clips the
ray to that bounding box we know that rays will never be
traversed outside the box, and thus can guarantee that no ray
will ever touch any of these virtual nodes. As such, we do not
have to store them, either. For more details see [WFM∗05].
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Implicit KD-Tree Traversal

The described data structure is – except for the min/max
values stored per node – very similar to the polygonal case
where kd-trees are usually used. Thus, the already existing
traversal code requires only a minor modification: During
each traversal step we first test whether the current iso-value
lies in the min/max range specified by the current node. If
this is not the case, we immediately cull this subtree, and
jump to the next node in the traversal stack. Otherwise, we
perform exactly the same operations as in the polygonal case
(see [Wal04] for a thorough discussion).

Results

Table1 provides some performance numbers of Wald’s ap-
proach. The data sets used for their experiments are: The
bonsai tree (2563), the aneurysm (2563), various resolutions
of the synthetic Marschner-Lobb data set (5123), the Vis-
ible Female (5122 × 1734), and the Lawrence-Livermore
(LLNL) Richtmyer-Meshkov simulation (20482 × 1920)
These data span a wide range of different data, from low
(ML) to high surface frequency (bonsai, LLNL), from med-
ical (aneurysm and female) to scientific data (LLNL), and
from very small (aneurysm) to extremely large data sets.

The performance is compared between a pure C and
SIMD implementation (parallel ray kd-tree traversal and in-
tersection test) on a single PC with an 1.8 GHz Opteron 246
processor and on a 5-Node cluster each equipped with two
of these CPUs linked via Gigabit Ethernet. At a resolution
of 512×512 pixels one can achieve interactive performance
for all test scenes even on the single PC. An almost perfect
performance increase can be achieved by running the frame-
work on multiple PCs in parallel. As can be seen, this setup
allows up to 39 fps, even including the most complex data
sets. Finally, since the kd-tree structure is stored in the im-
plicit form, rectilinear data sets can be supported as well.

3.1.3. Interactive Large Iso-Surface Ray Tracing

An interactive out-of-core iso-surface ray tracing engine
was presented by DeMarle et al. [DPH∗03]. They exploit
a PC cluster to render volume data sets that are too large
to fit into the main memory of a single PC (see Figure
11). The core rendering engine is basically a port of Park-
ers [PSL∗98,PPL∗99,PSL∗99] *-Ray engine. The *-Ray ray
tracer is considered as one of the first interactive ray tracing
systems and runs on an parallel shared memory SGI Onyx
2000 with typically 128 - 256 processors.

For volumes, the ray tracer uses a hierarchical grid accel-
eration structure and a three level bricking approach with a
very low memory overhead for the acceleration structure. In
some sense this is similar to storing min/max values only
everyN levels in a tree structure.

For the time-varying Lawrence Livermore National Lab-
oratory (LLNL) data set of a Richtmyer-Meshkov instabil-
ity simulation (270 time steps) with a voxel resolution of

Figure 11: Two time steps (45, 270) of the LLNL data set
rendered with DeMarles approach [DPH∗03] between6.1
(left) and2.1 (right) fps using a PC cluster with 31 machines
equipped with two Pentium IV 1.7 GHz each. The resolution
for each time step is2048×2048×1920voxel.

2048×2048×1920 and 8 bit voxel values (7.5 GB per time
step) only 8.5 MB of memory are needed per time step for
the hierarchical grid data structure.

Their application uses a typical client/server approach
similar to Wald’s distributed OpenRT rendering sys-
tem [Wal04]. A master system divides the image into rectan-
gular tiles and distributes the render tasks to the render nodes
on a per tile basis. If a node is a multi-processor system
the render task is broken down into sub tasks i.e. scan-lines.
A DataServer container on each node is used as an ab-
straction layer for data management. TheDataServer is
shared between all processors usingsemaphoresandshared
memory. If a ray touches a brick, it must request the brick
from theDataServer which loads the data from the net-
work if the data are not present.

The hierarchical grid is similar to Neubauer’s approach
(see Section2). At the leaves a macro-cell size of approx.
83 voxels is used and the min/max values are propagated
up in the hierarchy. Rays start traversal at the top hierarchy
level using an incremental grid walking algorithm. If an iso-
surface is contained within a macro cell, the traversal starts
again at the lower level grid. This process is executed recur-
sively through the hierarchy until the ray hits the iso-surface
or the ray exits the volume. Ray iso-surface intersection tests
at the lowest level are performed using an analytic approach
solving Cardano’s formula (see Section3.1.1).

Results

DeMarle presents performance numbers for two data sets:
the torso part of the visible female (428 MB) and the above
mentioned LLNL data set (7.5 GB). Their test system con-
sists of 32 Linux PC each equipped with 2 Pentium IV 1.7
GHz processors and 1 GB of RAM. All renderings are done
with a screen resolution of 512×512 pixels.

The first benchmark, performed with the visible female
data set, is a scaling test. As expected the performance in-
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creases linearly with the number of render nodes. With one
render node approx. 1 fps can be achieved and with 32 nodes
up to 22 fps. All in between values lie on a almost perfect
linear line. The LLNL data set can be rendered, dependent
on the complexity of the iso-surface, with 2.2 up to 6.7 fps
using the complete cluster system.

3.1.4. Comparisons

In comparison to Wald’s kd-tree approach the system of De-
Marle consumes much less additional memory for its accel-
eration structures. However, the reported performance is al-
most five times slower for the visible female data. Wald re-
ports a performance of approximately 8.1 fps on a single PC
with two AMD Opteron 1.8 GHz CPUs. Furthermore, their
out-of-core extension from [WDS04] allows to render the
LLNL data set interactively on asinglePC. Reasons for this
are mainly the optimized intersection test and the kd-tree ac-
celeration structure which in general compares favorably to
the multi-level grid structure used by DeMarle.

3.1.5. Discussion and Conclusions

In this section we have presented several algorithms to inter-
sect rays with implicit iso-surfaces, acceleration structures
and further optimization techniques as well as out-of-core
techniques for the rendering of extremely large datasets.

For iso-surface rendering the intersection tests of Mar-
mitt [MFK∗04] and Rössel [RZNS04] have both their
strength and weakness. If memory overhead and computa-
tional costs are not an issue and high accuracy, i.e.C1 con-
tinuity, is required the approach of [RZNS04] is probably
the algorithm of choice. In all other cases the approach of
Marmitt et al. [MFK∗04] should be considered since correct
results are obtained, i.e. all intersections are found, the com-
putational costs are very low, and no additional memory is
needed.

Similar as for polygonal scenes, kd-trees have proven to
be an efficient acceleration structure for iso-surface render-
ing and the memory footprint is also within practical lim-
its. Furthermore, just a single technique is necessary and no
“magic” parameters have to be selected to speed up the ren-
dering performance.

In recent work of Wald et al. [WIK∗06, WBS06],
Reshetov et al. [RSH05] and Lauterbach et al. [LYTM06]
new traversal algorithms for grids, kd-trees and bounding
volume hierarchies have been proposed to speed up the ray
tracing performance for polygonal scenes up to a factor of
ten. It would be interesting to exploit these new techniques
also in the domain of volume rendering.

3.2. Semi-Transparent Rendering

Maybe the most important visualization method for volu-
metric data sets is the semi-transparent rendering model.

Many interactive solutions have been proposed during recent
years, each trading rendering speed for quality or flexibility.

The key for fast semi-transparent volume rendering is
the optimization of the following three elements (beside the
early ray termination previously described in Section1.3):

60% to 80% of all voxel values are classified transpar-
ent by the transfer function in real world applications and
thus are not visible. Efficientspace leapingstructures and
techniques are required to skip cells and complete volume
regions that do not contribute to the final image (Section
3.2.1).

Many results of computations, i.e. normal estimations for
shading, are (re)computed whenever they are needed. As
neighboring rays tend to perform very much the same com-
putations, it is worthwhile to cache values which can be
reused for the next ray, or packet of rays (Section3.2.2).

Volume rendering requires a very high memory band-
width and may causes cache thrashing by displacing fre-
quently used data values from the caches. In order to achieve
high rendering performance this cache thrashing should be
reduced as much as possible since memory requests can be
extremely expensive in terms of clock cycles (Section3.2.3).

3.2.1. Space Leaping/Empty Space Skipping

Space leaping is maybe the most effective acceleration tech-
nique for semi-transparent volume rendering as it reduces
the number of reconstruction samples. In general we can dif-
ferentiate between techniques which use a spatial data struc-
ture to skip empty regions and methods that exploit coher-
ence without pre-computing any data structures.

Space Leaping with Spatial Data Structures

In Section3.1.2we have described two acceleration struc-
tures namely multi-level grids and kd-trees to speed up iso-
surface ray tracing. Other structures like octrees [WV92] and
bounding volume hierarchies can be exploited as well. The
important point is that min/max values are available at ev-
ery granularity level of the acceleration structure in order to
know the range of values within the sub-structures.

This min/max values are not effective for semi-transparent
rendering as the transfer function determines which voxels
are visible and which are not. Commonly asummed area
table is build over the opacity values of the transfer func-
tion. With two simple lookups in this table, one for the min
and one for the max of a data structure element, it can then
be determined if a spatial region is fully transparent or not.
However, this scheme is only correct if the color and opacity
lookup in the transfer function occurs after sampling (post-
classification). Pre-classification first determines the colors
and opacities for the cell’s voxels and then use them for in-
terpolation. Thus, it might be possible that a color value of
zero is computed when the mapping of the voxels specifies

c© The Eurographics Association 2006.



Gerd Marmitt, Heiko Friedrich & Philipp Slusallek / Interactive Volume Rendering with Ray Tracing

Figure 12: A close up of the visible male data set (hip region) rendered with the approach of Grimm et al. [GBKG04].

the opacities to be zero. In post-classification a voxel value
might be computed which has a non-zero color. This behav-
ior occurs often when high opacity frequencies are specified
in the transfer function for large voxel value intervals.

To avoid a false transparent/opaque classification for
a particular node in the spatial hierarchy Grimm et
al. [GBKG04] proposed for pre-classification applications
the use ofquantized binary histograms. These histograms
are conservative such that a transparent region can be classi-
fied as opaque but not vice versa and thus no non-transparent
regions are skipped.

Basically this histogram is a list of sizes wheres is the
range of voxel values i.e. 255 if 8 bit voxel values are given
in a data set. During the pre-processing phase for each brick
such a histogram is build. By iterating over the brick’s vox-
els, a flag is set to everys[v], wherev is the voxel value,
and the rest is left to zero. To save memory and increase the
lookup efficiency this list is quantized into buckets of size
32. A similar histogram can be build for the opacity values
of the transfer function. To determine if a brick is fully trans-
parent one has to iterate over all buckets in both lists and
check if all buckets are classified as transparent.

Space Leaping without Spatial Data Structures

Sarang et al. [SK04] proposed a space leaping technique
that exploits coherence in brute force ray casting applica-
tions. Their idea is driven by the fact that a group of rays
very likely traverses the same amount of empty space until a
semi-transparent region is reached.

To exploit this observation two different kinds of rays are
used in two render passes:detectorrays, shoot in the first
pass, andleap rays used in the second pass. In the first ren-
der pass one detector ray is shoot for a group of four pixels
(see Figure13 for the sampling pattern) on the image plane.
All detector rays are shot and behave like in a traditional ray
casting system performing ray marching, sampling etc. Ad-
ditionally they keep track of the first non-empty region they
reach and store this information in aleap buffer.

For every pixel the leap buffer has in the image plane a
corresponding entry that encodes a distance. For detector
rays this distance is the number of transparent samples un-
til a semi-transparent cell is found. The empty entries for

Figure 13: Left: a part of the image plane showing the lo-
cation of the detector rays (orange dots). For the rest of the
pixels leap rays are used. Right: the distances of the detector
rays are spread to the remaining pixels by using a minimum
operator.

the leap rays are filled with theminimumnumber of samples
during which the rays encounter empty space by spreading
the values from the detector rays to the eight neighboring
pixels. The space leaping rays are then shoot in the second
pass starting at the minimum position encoded in the leap
buffer.

Please note that this algorithm is only correct if the vol-
umetric object is not too far away from the camera. If this
distance exceeds a certain value rays diverge too much i.e. in
perspective rendering and sampling artefacts can occur due
to missed features. However, Sarang et al. [SK04] report that
with this algorithm brute force ray casting can be accelerated
up to 165% for various models with a size between 643 and
512×512×361. This speed up yields interactive frame rates
of up to ten fps with a view-port size of 256×256 pixel.

3.2.2. Caching and Pre-Computations

As previously mentioned it can be worthwhile to cache some
values during ray casting that are likely to be reused in near
future. Grimm et al. [GBKG04] proposed to use agradient
cacheon a per brick basis (see Section3.2.1), for gradients
calculated in thederivative firstmanner [MMMY97] (see
Figure12 for an example image).

They use two data structures for efficient caching. The
gradient cache itself and a bit list which indicates if a partic-
ular gradient has already been computed and is in the cache
or not. The number of entries in the cache is equal to the

c© The Eurographics Association 2006.



Gerd Marmitt, Heiko Friedrich & Philipp Slusallek / Interactive Volume Rendering with Ray Tracing

number of voxels in the brick. Every time a gradient has to
be computed the corresponding presence bit is checked if
the gradient is already computed. If not, the gradient is cal-
culated. After processing the brick, the cache is flushed for
the next brick. Therefore the gradients on the border of a
brick have to be calculated up to eight times, which is rarely
the case and thus no significant performance is lost. In aver-
age a speed up factor of approximately 2.2 can be expected
by using the gradient cache. Nevertheless, this high speed
up can only be expected if orthogonal projection is used. In
perspective rendering the rays can diverge for bricks that are
far away from the image plane. As a result the distance be-
tween neighboring rays is large, which will lower the reuse
ratio for the caches.

3.2.3. Memory and Cache Optimizations

Knittel [Kni00] presented with UltraVis a highly optimized
ray casting approach for semi-transparent volume rendering
which is especially targeted for Intel’s Pentium III proces-
sor. His approach depends heavily on concrete details of
the cache replacement strategies of the PIII processor. He

Figure 14: Two example images of the UNC MRI-head, with
256× 256× 110 voxel resolution, rendered with the Ultra-
Vis system on a PIII 500MHz system and256× 256 image
resolution. The images are rendered between1.7 and7.0 fps.

observed that a major obstacle for high performance vol-
ume rendering is the limited memory bandwidth. Ray tracing
based volume rendering has a memory access pattern that
does not fit today’s cache architectures and thus many data
have to be reloaded numerous times due to cache thrashing.

Cache Optimizations and Spread Memory Layout

In Knittel’s UltraVis system three different data structures
are accessed: thevolume dataitself, the transfer function
and additional parameterssuch as thresholds and shading
parameters.

In order to avoid the replacement of frequently used data
in the cache, i.e. the transfer function values, a spread mem-
ory layout is used to virtuallylock the data in the level
one cache once they are loaded. The Pentium III proces-
sor uses a4-way associative cachewhich means that there

are four cache lines (the so calledset) where a particular
data from the memory can be mapped to. Considering that
the main memory is internally subdivided into equal sized
pageswhereby the offset of a particular data in this page
determines the set in the cache, four times more memory
for the volume data set is allocated as actually needed. The
voxel data are then only placed in the first quarter of each
page. Now we know that data which are placed in the re-
maining parts of the pages will never be replaced by voxel
data, within the cache.

In order to reduce the cache thrashing of the voxel data,
the order of the voxel values is altered via a cubic interleaved
address function. Using such an interleaved memory stor-
age a cube ofn3 voxels occupiesn×n×n cache locations
(assumingn is a power of two, andn3 is smaller than the
cache size). This reduces cache thrashing and thus increases
the cache hit ratio since neighboring rays very likely access
some of the previous cached voxel values.

3.2.4. Discussion and Conclusions

Many techniques have been proposed to speed up semi-
transparent volume rendering and only a fraction could be
discussed here. However, today there is no software imple-
mentation that is able to render high quality images of mid-
sized data sets on a single PC without any limitation either
in terms of quality or flexibility i.e. orthographic rendering is
used to simplify the rendering process. Furthermore, accel-
eration techniques like object-order ray casting [MJC02] are
only useful for primary rays. If secondary rays are needed
there is no single basis like the image plane where these
tricks can emanate from.

However, new processors like IBMs Cell are on the way
which can avoid some of the problems that are inherent
in semi-transparent volume rendering. For example Knittels
approach to avoid cache thrashing is not necessary on the
Cell architecture since there is simply no cache on the Cell’s
SPUs. The new challenges are then mainly how to keep the
SPUs busy using i.e.virtual hypertheadingtechniques in
software as well as “hand tuned” caching for data which are
not frequently used and sometimes altered. Additionally, to-
days solutions which rely on massive computational power
using compute clusters can maybe shrunk to a single PC us-
ing the Cell processor.

3.3. Maximum Intensity Projection

MIP is an important technique mainly used in real world
medical imaging applications to visualize thin structures like
blood vessels or contrast-enhanced tissues. Not very much
research has been done for this kind of volume render-
ing [ME05].

Parker et al. suggested in [PPL∗99] the use of a prior-
ity queue in conjunction with a spatial data structure i.e.
min/max multilevel grids. The priority queue is used to keep

c© The Eurographics Association 2006.



Gerd Marmitt, Heiko Friedrich & Philipp Slusallek / Interactive Volume Rendering with Ray Tracing

track of cells or macro-cells in the grid with the maximum
values. Although they use the priority queue in conjunction
with a min/max multi-level grid all other common min/max
hierarchical data structures could be exploited as well.

First the priority queue is initialized with the root node
and its maximum value. Iteratively, the node with the highest
max value is taken from the list and its children are inserted
instead. At a leaf node, a macro-cell traversal is started and at
each pierced cell-face a bi-linear interpolation is performed
since they assume a linear function along the ray and thus
no extremal value can be foundwithin a cell. The maximum
value encountered along the ray segment through a macro-
cell is again stored in the priority queue. The algorithm ter-
minates if one of these leaf cells appears at the head of the
priority queue.

4. Ray Tracing based Rendering of Irregular Data Sets

Handling curvilinear or even unstructured data is more
demanding compared to regular grid structures. However,
software ray-casting systems were proposed as early as
1990 [Gar90, Lev90, WCA∗90]. Different methods have
been developed in the following years. Usually, two steps
needs to be taken for rendering irregular data. In a first step,
the initial cell (tetrahedron or hexahedron) is determined us-
ing some acceleration structure over the volume boundary
faces. The following step iteratively traverses all subsequent
cells along a ray until the last cell is reached. Incremental
traverser require adjacency information and hence do not al-
low for sliding interfaces, i.e. complete faces must be shared
between adjacent cells

4.1. Locating the initial Cell

One obvious way to find the initial cell is the extraction of
boundary faces from the data set for tetrahedral and hexa-
hedral meshes. Such faces are easily identified as they are
the only faces not shared between two cells. A spatial in-
dex structure over those faces of the cells then allows to
quickly locate the entry point and cell using standard ray
tracing techniques.

Several researchers [BKS97, HK98, HK99, KN91] pro-
posed to project the boundary faces onto the image-plane
and fetch the associated cell from the data set. A disad-
vantage of these approaches is, that they require an up-
date each time the view-point changes. This is avoided
by using a spatial index as acceleration structure. So far
grids [Gar90,PPL∗99] and kd-trees [MS06] were proposed.

4.2. Ray-Primitive Traversal

Image order ray casting was not only one of the first meth-
ods proposed for rendering irregular grids but also reached
interactive frame rates as early as 1999 [PPL∗99]. We will

Figure 15: A convex hexahedron can be approximated by
five tetrahedra if the renderer supports tetrahedral meshes
only.

therefore cover recent implementations in this area in more
detail.

Garrity [Gar90] and Williams et al. [WCA∗90] were the
first who considered software ray casting for irregular grids.
Wiliams decomposes each hexahedral cell into twelve trian-
gles and uses the barycentric coordinates for interpolation of
data values. Garrity decomposes each hexahedral cell into
five tetrahedra (see Figure15) and performs ray-plane inter-
sections for his incremental traversal.

4.2.1. Computational Space Traversal

Frühauf [Frü94] traverses a curvilinear grid in computational
space. This greatly reduces the difficulties of resampling
along the ray since the computational space is regular. First,
the Jacobian is approximated using the central differences
of the adjacent vertices in computational and physical space.
Each vertex or vector can then be transformed from compu-
tational into physical space and backwards using the Jaco-
bian matrix.

An incremental grid-traversal for regular grids is then em-
ployed to resample the scalar values. At each face intersec-
tion of a grid cell, the ray is bend according to the pre-
computed vectors, using bilinear interpolation. To reduce the
computational costs, all computed bending vectors along a
ray are stored and updated only when changing the view-
point. Hence, if the mapping parameters, e.g. transfer func-
tion, changes, the pre-computed ray paths can be used di-
rectly. Unfortunately no performance measurements were
reported.

4.2.2. Ray-Plane-based Traversal

Ma [Ma95] was one of the first exploiting the parallelism
of ray tracing for rendering tetrahedral data. The data set as
well as the rendering is distributed among processing nodes.
In a pre-processing step, the volume is partitioned such that
each processor handles only a sub-volume. Boundary faces
are projected orthographically onto the screen to determine
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the first cell along a ray. Exit faces are determined as de-
scribed in [Gar90]. All processors accumulate the interpo-
lated values along a ray independently. These contributions
need to be sorted with respect to the visibility order before
the final image can be composed. Ma showed that the frame
rate scales linearly with the number of processors.

4.2.3. Grid-based Traversal

To our knowledge Parker et al. [PPL∗99] showed one of the
first methods that was able to render irregular volume data at
interactive rates on a supercomputer. The hierarchical data
structure for rectilinear grids is used to quickly determine
the tetrahedra possibly hit by the traversed grid cells. All
tetrahedra intersecting a given grid cell are attached to this
cell, as depicted in Figure16. Here a multilevel grid with
three layers was used. Minimum and maximum values are
again helpful to cull regions outside of the current iso-value.
Since no connectivity information is used, all tetrahedra as-

Figure 16:Parker [PPL∗99] sort the tetrahedral mesh into a
grid. Once a suitable grid-cell is determined, all tetrahedra
intersecting the grid-cell are tested sequentially.

signed to grid leafs needs to be checked, like in a traditional
surface ray tracer. First, the barycentric coordinates from the
intersected faces, i.e. triangles are determined for interpolat-
ing the scalar value. The intersection with the iso-surface can
then be computed using linear interpolation.

Results

The rendered bioelectric field consists of over one million
tetrahedra. Using a 512x512 view-port, interactive rendering
rendering was possible with 16 processors or more. Curvi-
linear volumes are not supported by this system although
possible when decomposing each hexahedron into five tetra-
hedra as demonstrated in Figure15. Parker demonstrated
high-quality volume rendering of large data sets on super-
computer. The iso-surface was not extracted but computed
on the fly and could hence be changed during rendering. The
measured performances showed again that a ray tracing sys-
tem scales well with the number of processors.

Figure 17: Ray tracing of over 1 million tetrahedra from
bioelectric field simulation. Heart and lungs are represented
as polygonal mesh for orientation [PPL∗99].

4.2.4. Plücker Space Traversal

An optimized traversal algorithm suitable for unstructured
and curvilinear data sets was presented by Marmitt et
al. [MS06]. The volume is traversed using so-called Plücker
tests after finding the initial cell using a kd-tree. Basi-
cally, the Plücker coordinates allow for easy determina-
tion whether anoriented line passes clockwise or counter-
clockwise around anotherorientedline.

The exiting face of a cell can be determined by testing all
edges with the traversing ray in Plücker coordinates. Using
connectivity information, the next cell can be processed in
the same way until the last cell along a ray is reached. Since
this test is line based, it can be used for arbitrary polygons
and hence especially for triangles and quadrilaterals, as the
faces of tetrahedra or hexahedra respectively.

Properties of Plücker Space

Plücker coordinates are a way of specifying directed lines
in three-dimensional space [Eri97]. Plücker coordinatesπr

represent a rayR(t) = O+D∗ t by anoriented line:

πr = {d : d×o} = {pr : qr} (4)

Then the inner product of Plücker space

πr �πs = pr ·qs+qr · ps (5)

defines the relative orientation of the two linesr and s. A
positive result means thatr passess clockwise, while in the
negative caser passess counter-clockwise. If this product
is zero both lines intersect each other. Note that this inner
product is proportional to the signed volume of a tetrahedron
spanned by the origin and direction values ofr ands.
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Furthermore, the Plücker test directly provides the scaled
barycentric coordinates of the intersection of a ray with
the three edgesei of a triangle, which is a major advan-
tage to plane intersection-based approaches. Thus to com-
pute barycentric coordinates each Plücker value only needs
to be divided by the sum of all three values obtained from
the three edges of a triangle:

wi = πr �πei and ui = wi/
3

∑
i=0

wi (6)

Tetrahedral Traversal

Intersecting a single tetrahedron with a ray by converting all
lines into Pücker space was already demonstrated by Platis
et al. [PT03]. To achieve this, the tetrahedron was decom-
posed into four faces resp. triangles. In general a ray hits
two of the four triangles when intersecting the tetrahedron.
In a tetrahedral mesh, all inner tetrahedra are connected and
therefore one intersected face is already known when reach-
ing a tetrahedra during traversal.

The advantage of the Plücker space is however, that not all
faces need to be tested separately, as in the ray-plane inter-
section case. Instead we benefit from the fact, that each edge
of the tetrahedron is shared by two faces. Since also each
face is shared by two tetrahedrons, the computed Plücker
tests for the exiting face corresponds to the subsequent entry
face and need not to be calculated again. These known edges
from the previous exiting face are given by the verticesv0,
v1, v2, andv3 in Figure18. To determine the exit face, lines

(a) (b)

v3 v3

v2v2

v0 v0 v1v1

Figure 18: (a) Naïve approach: All three exiting faces of
the triangle are tested independently although each line is
shared by two faces, and (b) Optimized approach: The solid
lines tests are given from the previous tetrahedron and the
dotted line needs only to be computed if the test with the
dashed lines failed to provide an unambiguous result.

v0 → v3 andv1 → v3 are tested against the ray which al-
ready provides a final result for one third of all cases on aver-
age. Otherwise an additional test of the ray againstv2 → v3
finally determines the exit face. With these optimizations the
number of tests is reduced to 2.66 in average [MS06].

The tetrahedral mesh itself needs to be enriched with con-
nectivity information that requires 16 additional bytes per
tetrahedron. Since all edges as well as the traversing ray
are converted into Plücker coordinates on-the-fly, no further
memory is consumed. For the final rendering, the interpo-
lated scalar value at the intersection point is needed for vi-
sualization. As already shown, the computed Plücker values

provide the scaled barycentric coordinates directly. To visu-

Figure 19: Seamless integration with surface ray tracing.
The volume data set, in this case the Bucky-ball, is aug-
mented and surrounded by reflective surfaces and light
sources [MS06].

alize iso-surfaces it is sufficient to check whether the user-
defined value is within the interpolated scalar values com-
puted at the entry and exit face with the barycentric coor-
dinates. Figure19 shows the Bucky-ball in a polygonal en-
vironment with several light sources. For semi-transparent
rendering, the values interpolated at the faces can be accu-
mulated directly.

Hexahedral Traversal

In [Gar90] it was suggested to decompose each hexahedral
of the curvilinear grid into five tetrahedra as depicted in Fig-
ure15. This, however, does not only increase memory con-
sumption but diminishes the speed of the cell traversal itself.
The preferable way is therefore to traverse the hexahedral
cells directly.

For this purpose Marmitt et. al [MS06] use again the prop-
erties of the Plücker space and basically apply the same op-
timizations as in the tetrahedral case. When optimized for
convex hexahedral faces at most four tests per tetrahedron
are necessary. The algorithm is illustrated in Figure20. In
this figure the entry face is determined byv0, v1, v2, andv3.
The opposite face is determined byv4, v5, v6, andv7. In a
first step the ray is tested against the edgesv4 → v5 resp.
v5 → v7 (bold horizontal lines in Figure20). Note that each
area contains at most three faces of the hexahedron, i.e. there
are only two edges left to check. These are different for each
area, e.g.v2 → v6 and v3 → v7 for A0, v4 → v6 and
v5 → v7 for A1, andv0 → v4 andv1 → v5 for A2. Test-
ing the second edge is only necessary, if the first test does
not lead to a decision. Again simple sign comparisons are
sufficient to determine the correct exit face.

Unfortunately, fetching new data is not as efficient as in
the tetrahedral case. Analysis revealed that the costs for this
operation is seven times higher compared to the tetrahedral

c© The Eurographics Association 2006.



Gerd Marmitt, Heiko Friedrich & Philipp Slusallek / Interactive Volume Rendering with Ray Tracing

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

v0 v1

v3v2

v4

v6

A1

A2

A0

(b)(a)
v0

v3

v6

A1

A2

A0

v5
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v2

v4 v5

Figure 20: (a) To determine the exiting face, the hexahedron
is subdivided into three areas (A1 - A3). (b) The next step
is then to check which face is intersected by applying two
additional Plücker tests (A0: dotted edges, A1: solid edges,
and A2: dashed edges).

traverser. This is probably caused by re-arranging vertices
relative to the entry face. Pücker coordinates representori-
ented linesand hence the correct processing order needs to
be guaranteed. Another problem is that Plücker coordinates
cannot be used directly for computing barycentric coordi-
nates, since they are only suitable for triangles. Splitting
each face into two triangles decrease the performance and
introduce discontinuities.

Instead of using additional Plücker tests within the areas
A0 - A3 it is also possible to apply three ray-bilinear patch
intersections [RPH04]. The correct exiting face is found iff
the intersection(u,v)∈ [0,1]2. Since the bilinear patches de-
liver meaningful parametric coordinates, they can be directly
used for interpolation. The result can be ambiguous at shared
edges due to numerical issues. Holes or overlaps are intro-
duced in this case, but an additional Plücker test can be ap-
plied to uniquely decide this case. Basically, the same types
of visualization are possible like in the tetrahedral traversal.

Results

The rendering performance of a 512x512 view-port on a
dual-core Opteron with 2 GHz are reported in Table2 for
iso-surface rendering (iso), maximum-intensity projection
(mip), and semi-transparent (semi) rendering. Finding the
initial face using a kd-tree needs 6 - 18% of the total ren-
dering time (initial ). More importantly, the hybrid approach
(hex-H) delivers not only a better quality but is in most cases
significantly faster compared to the pure Plücker approach
(hex-P) when rendering hexahedral meshes. In general, it is
suggested to use this hybrid approach for traversing curvi-
linear grids on a ray tracing basis. Using OpenRT [Wal04]
as ray tracing framework, it is also easy to combine and let
interact different primitives in one scene and account for all
their optical interactions (see Figure21). OpenRT also sup-
ports efficient ray tracing on PC clusters and shared memory
systems [MS05] providing almost linear scalability in both
cases.

Data set initial iso mip semi
Blunt-fin (tetra) 27.35 1.67 1.99 1.74
Bucky-ball (tetra) 21.68 0.92 0.95 0.84
Blunt-fin (hex-P) 27.35 1.86 1.35 1.55
Blunt-fin (hex-H) 27.35 2.00 2.16 1.77
Comb (hex-P) 18.43 2.48 0.88 3.14
Comb (hex-H) 18.43 2.43 1.25 3.55

Table 2: While the performance (fps) of the hexahedral
Plücker traverser is sometimes even lower than the tetrahe-
dra Plücker, our hybrid approach outperforms the other two
algorithms in every rendering task.

Figure 21: Unstructured (Bucky-ball) and curvilinear
(Combustion Chamber) data sets can not only be rendered
into one scene. Even more important is that all primitives
interact with each other [MS06].

4.3. Discussion and Conclusion

Despite the more complicated handling of irregular data
sets, the previous discussed algorithms demonstrate interac-
tive rendering of unstructured and curvilinear meshes. Even
Parker’s [PPL∗99] brute-force approach was able to render
a large volume with up to 16 fps on a larger shared mem-
ory system. Marmitts [MS06] traversal in Plücker space was
optimized in many ways allowing for rendering mid-sized
models at near-interactive rates on a single dual-core CPU.
Both methods benefit from the easy parallelization of ray
tracing. Due to the linear scaling with the number proces-
sors, future chip generations with four and eight cores or
more will certainly enable interactive frame rates on a con-
sumer PC.

Ray tracing is also well known for its easy implemen-
tation of advanced rendering effects. The demand for such
features is rising steadily, especially for visualization tasks.
There can be no doubt, that such advanced rendering effects
together with parallelization will increase research activities
in the near future.
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5. Hardware Support

The discussion of previous ray tracing approaches for vol-
ume rendering leads naturally to the conclusion, that paral-
lelism will be a key component of future ray tracing systems.
Using shared-memory systems [PPL∗99] or a cluster of con-
sumer PCs [WFM∗05] it is already possible to achieve inter-
active frame rates. In contrast to consumer graphics boards
their flexibility allows for a far easier implementation even
for sophisticated rendering effects like global illumination
(see Figure22). The gap between processor speed and mem-

Figure 22: The aneurysm data set in the Cornell Box in-
cluding global illumination using the IGI approach of Wald
et al. [WKB∗02].

ory latency is steadily increasing which is bad for applica-
tions like volume rendering since they require an enormous
memory bandwidth. Even worse, the size of volumetric data
sets is rapidly increasing too. One possibility to reduce the
memory bandwidth requirements is parallelism. This paral-
lelism can be exploited on three different levels.

5.1. Single Instruction Multi Data

Single Instruction Multi Data (SIMD) instructions allow to
operate on several rays in parallel. Today, SIMD can operate
on four 32 bit floating point or integer data at the same time.
If data coherency can be exploited, SIMD significantly re-
duces the instruction count and thus improves performance.
Furthermore, SIMD instruction sets allow often to avoid
costly conditionals [Kni00] using masking operations.

5.2. Multi-Core CPUs

All major chip manufacturers are currently developing
multi-core processors which will certainly work in favor of
ray tracing. Preliminary measurements show that the scaling
is close to linear.

Volume visualization usually requires a high memory
bandwidth to conquer the large amount of data. Therefore
such processor architectures need to maintain or even im-
prove the memory connection bandwidth. Recently, IBM re-
alized a processor aiming for both high parallelism and high
memory bandwidth. TheCell [Int05] processor architecture
consists of a single simplified PowerPC that is in charge
of controlling eight Synergistic Processor Elements (SPEs)
by a fast interconnection bus. Using this bus more than 20
GB/sec of data can be transfered. Each of the SPEs acts as
an independent vector processor equipped with 256 KB local
store and 128 SIMD registers.

Since SPEs are vector processors they also support a
SIMD instruction set similar to AltiVec or SSE. As previ-
ously demonstrated, ray traversal and computations within a
cell e.g. ray iso-surface intersection test can be significantly
speed-up [WFM∗05, MFK∗04] and it should be relatively
straight forward to adapt this technique for theCell.

It needs to be added however, that developers and com-
pilers are faced with new challenges. The SPUs in-order ex-
ecution makes it necessary to carefully arrange crucial in-
structions by hand. Additionally, the SPU’s local store has
no hardware caching support and a software implementa-
tion has to be used. Due to high memory latency it is costly
to wait for requested data from main memory and thus a
hand tuned virtual multi-threading must be exploited to keep
maybe several rays – or ray bundles – busy. These and other
restrictions demand a more intelligent implementation to ex-
ploit the theoretical possible performance.

In general, multi-core processors will enable a series of
applications for future scientific visualization. One impor-
tant issue is the large amount of data produced by scien-
tific simulations or devices. An example is the Richtmyer-
Meshkov instability11consisting of 200 time steps with 7.5
GB of data per time step.

5.3. GPU Fragment Programs

Finally, the latest graphics boards offer enough flexibility to
implement ray casting on the GPU. Especially fragment pro-
grams are suitable for such implementations which fully ex-
ploits the build-in parallelism of modern graphics boards.

In 2005, Stegmaier et al. [SSKE05] already presented an
implementation of a rectilinear volume ray caster on modern
consumer graphics boards. A fragment programs simulates
ray tracing of individual pixels through the volume. The vol-
ume rendering integral is approximated by sampling at a fi-
nite number of positions. After the initial intersection with
the bounding box is found, subsequent voxels are fetched
from a 3D texture map. The opacity and color values ac-
cumulated so far are updated according to the chosen optical
model. The sampling position is then advanced along the ray
by a given step size. Even more parallelism can be exploited
by clustering several graphics boards together [MSE06]. The
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Figure 23: Simulation of the convection flow in the earths
crust including refractive effects [SKB∗].

.

quality of Stegmaiers approach can be enhanced as demon-
strated by Strengert [SKB∗] by implementing the Kubelka-
Munk approach for trecking reflectance and transmittance.
Figure23shows a rendered image.

However, the programming model as well as the applica-
tion interface of GPUs is still tedious to use. For example,
the number of loops in fragment program is restricted to 256
at the current state. A ray caster therefore has to use nested
loops for traversing the volume. Even then, secondary rays
for advanced shading can hardly be implemented, since no
recursion is available. First steps in porting ray tracing to
GPUs have already been taken [PBMH02], but it depends
upon future flexibility of graphic boards whether this will be
a sufficient basis for allowing for full featured ray tracing.

6. Summary and Conclusions

In this report we presented an overview of ray tracing tech-
niques suitable for volumetric rendering. After briefly re-
capping the main visualization tasks for volume visualiza-
tion we grouped all major contributions in two categories.
Object-order algorithms and hybrids project the voxel data
onto the image plane and thus follow the basic rasteriza-
tion principle. They can be further classified into cell projec-
tion, splatting, and texture mapping. Important alternatives
were summarized as alternative approaches including shear-
warp and custom hardware. With their increasing flexibility,
high memory bandwidth, and excellent floating point per-
formance, graphics boards establish themselves as a serious
competitor.

Ray tracing itself has several advantages. Volumes,
whether they are regular, curvilinear or even unstructured,
are just another primitive for the ray tracer and hence
can be easily combined even with polygonal surfaces in
a simple plug ’n’ play fashion. This was demonstrated by
Parker [PPL∗99], Wald [WFM∗05], and Marmitt [MS06].
Additionally, shadows, reflections, refractions or translu-
cency interact with each other without additional effort.

Even advanced shaders, e.g. for global illumination need just
to be implemented once and subsequently work for all prim-
itives. The flexibility which is necessary for supporting all of
these effects is today only available for software ray tracing
systems. Nevertheless, recent developments in custom ray
tracing hardware for surface models [WSS05] have shown
that programmable ray tracing hardware may become avail-
able and might also be extended for volume rendering.

The lack of realtime rendering performance especially for
large data sets can be reduced by exploiting coherence and
parallelism. Right now it is not clear which hardware archi-
tecture will be best suited in future for volume rendering
since GPUs and custom hardware become more flexible, and
CPUs more parallel.

Scientific visualization becomes more and more impor-
tant in major research activities today. Natural disasters, un-
derstanding weather and climate changes, improving human
health, and the simulation of physical processes are just a
few key words of an endless list. Such tasks require flexi-
ble rendering approaches that are readily provided using ray
tracing.
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