
EUROGRAPHICS 2017/ A. Peytavie and C. Bosch Short Paper

Variable k-buffer using Importance Maps

A. A. Vasilakis∗†1 and K. Vardis†2 and G. Papaioannou†2 and K. Moustakas3

1Information Technologies Institute, Centre for Research & Technology, Greece
2Department of Informatics, Athens University of Economics & Business, Greece

3Electrical and Computer Engineering Department, University of Patras, Greece

Figure 1: Our approach, in contrast to current k-buffer approaches (fixed and dynamic), adaptively adjusts k on a per-pixel level, with
respect to regions of the image that are deemed to be important, thus allowing for better utilization of the allocated storage space in the
same memory budget and reduction of view-dependent artifacts.

Abstract

Successfully predicting visual attention can significantly improve many aspects of computer graphics and games. Despite the
thorough investigation in this area, selective rendering has not addressed so far fragment visibility determination problems. To
this end, we present the first “selective multi-fragment rendering” solution that alters the classic k-buffer construction procedure
from a fixed-k to a variable-k per-pixel fragment allocation guided by an importance-driven model. Given a fixed memory
budget, the idea is to allocate more fragment layers in parts of the image that need them most or contribute more significantly
to the visual result. An importance map, dynamically estimated per frame based on several criteria, is used for the distribution
of the fragment layers across the image. We illustrate the effectiveness and quality superiority of our approach in comparison
to previous methods when performing order-independent transparency rendering in various, high depth-complexity, scenarios.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Visible surface algorithms I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data structures

1. Introduction

Multi-fragment rendering (MFR) is increasingly becoming an
important aspect of real-time image generation for supporting
complex effects in games such as order-independent transparency
(OIT) [MCTB11] and image-based global illumination [VVP16].
However, practical implementations must severely constrain both

∗ Corresponding author. email: abasilak@iti.gr.
† These authors contributed equally to this work.

the memory budget and the computation time for the depth-sorted
fragment determination, leading to the adoption of bounded
memory MFR configurations such as the k-buffer [BCL∗07].

The k-buffer assumes a pre-assigned, and global, value of k frag-
ment layers across the entire image. Unfortunately, this standard
practice of employing a fixed number of k for all pixels can lead
to various quality and memory issues. On one hand, setting k to a
small number, can result in view-dependent artifacts as more than k
fragments might be required for some pixels at a particular viewing
configuration to correctly simulate the desired effect. On the other

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/egsh.20171005

mailto:abasilak@iti.gr
http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egsh.20171005

A. A. Vasilakis & K. Vardis & G. Papaioannou & K. Moustakas / Variable k-buffer using Importance Maps

k=1 2 3 4 5 6 7 8 9

memory
limit

Required memory

Fixed k-bu�er Dynamic k-bu�er Variable k-bu�er

Depth complexity

pixel row pixel row

Importance map

Figure 2: A representative example demonstrating the three
compared k-buffer allocation strategies (top row). In the bottom
row, we show the respective actual depth complexity, the required
memory for a fixed k across the image and an importance map.

hand, employing a large value of k can result in excessive memory
demands, as a large and potentially unused storage is pre-allocated
for pixels that contain less than k fragments. Clearly, regardless of
the choice of k, all approaches that use a single value for k across
the entire image result in bad utilization of the allocated space.

The key idea in this work is that, given a fixed memory budget
for MFR, the value of k can be dynamically assigned on a per-pixel
level, according to a pixel importance distribution function, which
determines the depth complexity for each pixel based on its esti-
mated importance and without exceeding the pre-allocated storage
space. This importance distribution is calculated in image-space,
stored in an importance map, and passed on to the k-buffer before
the generation of the fragment data. The importance map can be
statically determined once (e.g., for FOV-based importance in
VR/AR applications and games) or calculated using any number
of metrics, perceptual or otherwise, at each frame. To the best
of our knowledge, this is the first k-buffer implementation that
dynamically adjusts and distributes k across the image according
to the available storage space.

2. Related Work

When low graphics memory requirements are of the utmost
importance, the fixed k-buffer [BCL∗07] with its more recent
variations [Sal13, MCTB13] and extensions [HBT14, VP15] can
objectively be considered a viable alternative to the full A-buffer-
style MFR, which at least ensures the correct depth order on the
closest subset of all generated fragments [MCTB11]. Relying on
an iterative trial-and-error procedure, however, where the user
manually configures the value of k, can inevitably result in (i) bad
memory utilization and (ii) view-dependent artifacts.

The k+-buffer [VPF15], a dynamic k-buffer, solved both issues
by performing, first, a dynamic and precise memory allocation
strategy (inspired by the S-buffer [VF12]), tailoring storage uti-
lization to the depth complexity of individual pixels, and secondly,
an intuitive and automatic method for the optimal estimation of
k value under constrained memory budget via on-the-fly depth
complexity histogram analysis.

Table 1: Overview of the most well-known k-buffer alternatives.

Method [MCTB13, Sal13] [VPF15] Ours
k (Selection) Fixed (Manual) Fixed (Histogram) Variable
Distribution Uniform Uniform Non-uniform
Memory Fixed Adaptive Adaptive
Performance High Average Average

In contrast to previous approaches, where the manually or
automatically chosen k is considered to be the same for all pixels,
(see Figure 2), our variable k-buffer dynamically distributes
the available MFR storage across the image in a non-uniform
manner. Therefore, our importance-based approach is aiming at
optimizing the fragment distribution in the allocated space, rather
than minimizing it, like the k+-buffer approach. Table 1 presents
a comparative summary of the most significant k-buffer variations
with respect to memory requirements, rendering complexity and
fragment extraction distribution.

3. Method Overview

3.1. Variable k-buffer Pipeline

Our algorithm operates in three main steps, as illustrated in
Figure 3. Note that we consider the memory fixed, pre-allocated
(contrary to dynamic k+-buffer which is reallocated in every
frame) and linearly organized into variable contiguous regions of
length k(p) for each pixel p. Similar to the S-buffer [VF12], an
additional, fast, geometry rendering pass is responsible for the
per pixel fragment accumulation process via atomic counters or
blending operations (Per-Pixel Count pass). Note that this stage is
specific to the importance metric we opted to employ (see Sec. 3.2,
Eq. 3). Then, the importance map values I(p) are dynamically
determined in a full-screen quad pass (Importance Estimation
pass). We leave the derivation and discussion about I(p) for sub-
section 3.2. Since we only know I(p) for each pixel in isolation,
we also accumulate the unnormalized values in an atomic value
Itot to derive an importance-based probability P(p) = I(p)/Itot .
If M is the desired k-buffer memory size, the k(p) of our variable
k-buffer is finally estimated as (Per-pixel k Calculation pass):

k(p) = bP(p) ·Mc. (1)

It is often more convenient and intuitive for the sake of comparison
to consider k(p) with respect to an average image layer depth kave
instead of the total requested memory storage M of the k-buffer, in
which case Eq. 1 becomes:

k(p) = bP(p) · kave ·w ·hc, (2)

where w,h are the dimensions of the frame buffer. Finally, any
k-buffer alternative that exploits pixel synchronization can be
employed, e.g., the PixelSync [Sal13] or the k+-buffer [VPF15],
for dynamic depth-sorted fragment determination (Synchronized
k-buffer pipeline).

3.2. Determining Importance

In our implementation, we estimate the unnormalized importance
I(p) of each pixel p based on three general, but highly sensitive to

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

22

A. A. Vasilakis & K. Vardis & G. Papaioannou & K. Moustakas / Variable k-buffer using Importance Maps

older people, factors: (i) Id , the expected depth complexity, (ii) Iper,
the distance of pixel from the fovea region, and (iii) I f , the Fresnel
term of the nearest fragment, as registered in the the previous frame.

The depth-complexity heuristic is the ratio of the number of
visible layers Nlayers that should be drawn at pixel p against a
rough anticipated maximum layer count Nlimit :

Id = α+(1−α)min{1,Nlayers/Nlimit} (3)

where α is a range bias that assists pixels with very low depth
complexity and also dampens the prevalence of pixels with very
high layer count in the importance distribution. We use an α value
of [0.25−0.5] in our experiments. Id is linear with respect to depth
complexity and expresses the raw fragment count demand. The
exact value of Nlimit is not crucial, since it is the same for all pixels
and we typically set it to a scene-dependent large enough value
(20−30 in the example scenes) so that the fraction is not saturated.

The periphery heuristic gradually lowers the significance
of pixels towards the edges of the frame buffer (periphery
vision) [GFD∗12], by assuming that the information near the
center of the image o is perceptually more important. In a more
elaborate setup, the point of interest o could be derived from other
mechanisms, such as an eye tracking input.

Iper = 1−
(||p−o||√

w2 +h2

)d
(4)

In the above metric, d controls the rate of importance drop towards
the periphery. We set d to 3 for all test cases. For steeper falloff
near the edges of the image, d should be set to 10 or more.

Finally, the Fresnel heuristic is based on the observation
that near the grazing viewing angle of a transparent surface,
the reflected radiance prevails over the transmitted one and no
matter how many transparent layers show through the respective
fragments, the transmitted energy in a physically-based renderer
will be significantly dimmer than the (more important) reflected
light. The heuristic depends on the eye direction e and the normal
nprev at the closest visible MFR layer fragment at p from the
previous frame, and is given by the following formula:

I f = 1− (1−nprev · e)5

2
(5)

The importance factor is the product of the above heuristics, since
if at least one of the factors is sufficiently low, the transparency
precision can be reduced. Additionally, a noise bias is added to
mask potentially visible abrupt transition zones across otherwise
smooth image regions,

I(p) = max{0, Iper · I f · Id +λ · (ξ−0.5)}, (6)

where ξ ∈ [0,1] is a uniformly distributed scalar and λ the noise
level, set to 0.1 across all our experiments. An example of the three
heuristics and the combined importance map, scaled to maximum
1 for clarity, is shown in Figure 4.

It is important to note that the above selection of heuristics
was based on the available information in our current rendering
pipeline. Other attributes, such as low- or high-level saliency
predictors [MMKI14], can potentially contribute to the above
equation or even replace the factors involved.

Per-pixel
Count

Importance
Es�ma�on

Per-pixel
k Calcula�on

Quad Pass Generic PassGeometry Pass

Synchronized
k-buffer

Figure 3: The pipeline of the importance-based variable k-buffer.

Figure 4: Heatmaps of the three importance factors used in our
pipeline as well as the final importance map for determining k.

4. Experimental Study

We present an experimental analysis of our variable k-buffer
approach when compared with both a fixed [MCTB13] and an
adaptive one [VPF15] with respect to performance, image quality
and memory budget under different testing configurations (see
also a comparative overview in Table 1). All experiments were
conducted on a 10242 viewport with varying memory demands
M on an NVIDIA GTX980 Ti. We implemented all methods in
modern OpenGL by integrating order-independent transparency
effects into our deferred shading pipeline.

The visual impact of the three methods are shown in Figures 1
and 5. Table 2 presents performance measurements as well as
fragment distribution capabilities of each approach under a fixed
memory budget in all test scenes. The Fragment Loss value corre-
sponds to the percentage of required fragments (for each scenario)
that could not be allocated in the currently defined storage space.

Quality. The fixed k-buffer produced the lowest quality images
(i.e., lowest k) due to its strategy to allocate memory for both
empty as well as occupied fragments in the image, which also
becomes evident by the large percentage of fragments that were not
exploited within the budget M. The dynamic k-buffer was able to
provide an increase in the number of layers, and therefore the qual-
ity of the image, due to its histogram based allocation strategy. The
use of a global and fixed k value, however, constrain this method
in scenes containing near-uniform depth complexity and/or low
transparency objects (e.g., see Fig. 1 right). Finally, our variable
k-buffer outperformed the aforementioned approaches due to its
ability to assign a larger range of k values in the important regions
of the image under the same memory budget (see k row in Table 2).

Performance. The fixed-k approach outperforms the other two
methods due to its ability to exploit atomicMin hardware in-
structions during the k fragment allocation step, while the other
two methods currently require the use of a spinlock mecha-
nism, which is available either as an OpenGL extension for the
NVIDIA Maxwell architecture or through software implementa-
tion [VPF15]. Furthermore, an (expected) additional overhead is
imposed on the variable k-buffer due to the irregular fragmental
complexity, compared to a fixed k value, that consequently in-
creases the thread divergence during the fragment allocation stage.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

23

A. A. Vasilakis & K. Vardis & G. Papaioannou & K. Moustakas / Variable k-buffer using Importance Maps

Figure 5: Quality evaluation between the three k-buffer approaches in a low (left) and a high depth complexity scenes (right) under different
memory budget setups. Our method achieves comparable quality results when compared to the ground-truth images produced by an A-buffer
implementation where all transparent fragments contribute to the final image synthesis [VF12].

5. Conclusions

In this work, we have introduced the first k-buffer method that dy-
namically distributes the desired storage space instead of assuming
the same value of k for all pixels. Our approach assigns k on a per-
pixel basis according to importance-based distribution function,
thus, allowing higher depth complexity in regions that are deemed
important. In the future, we aim to explore further directions for en-
hancing various screen-space rendering problems, such as motion
blur, depth-of-field and ray-tracing [VVP16], by investigating new
importance maps (e.g., motion-based, eye tracking) [MMKI14].

Acknowledgements

The Beard Comic Character shown in Figure 1 was downloaded
from www.cgtrader.com and is used under a royalty-free license.
This research has received funding from the European Union’s
Horizon 2020 research and innovation programme “FrailSafe”
under grant agreement No 690140 and the Athens University of
Economics and Business Research Centre.

References
[BCL∗07] BAVOIL L., CALLAHAN S. P., LEFOHN A., COMBA J.

L. D., SILVA C. T.: Multi-fragment effects on the GPU using the
k-buffer. In Proceedings of the 2007 Symposium on Interactive 3D
Graphics and Games (NY, USA, 2007), I3D ’07, ACM, pp. 97–104. 1, 2

[GFD∗12] GUENTER B., FINCH M., DRUCKER S., TAN D., SNYDER
J.: Foveated 3d graphics. ACM Trans. Graph. 31, 6 (Nov. 2012), 1–10. 3

[HBT14] HILLESLAND K. E., BILODEAU B., THIBIEROZ N.: De-
ferred shading for order-independent transparency. In Proceedings of
Eurographics 2014 Short Papers (France, 2014), EG ’14, pp. 49–52. 2

[MCTB11] MAULE M., COMBA J. L., TORCHELSEN R. P., BASTOS
R.: A survey of raster-based transparency techniques. Computers &
Graphics 35, 6 (2011), 1023 – 1034. 1, 2

[MCTB13] MAULE M., COMBA J., TORCHELSEN R., BASTOS R.:
Hybrid transparency. In Proceedings of the 2013 Symposium on
Interactive 3D Graphics and Games (New York, NY, USA, 2013), I3D
’13, ACM, pp. 103–118. 2, 3, 4

[MMKI14] MCNAMARA A., MANIA K., KOULIERIS G., ITTI L.:
Attention-aware rendering, mobile graphics and games. In ACM
SIGGRAPH 2014 Courses (New York, NY, USA, 2014), SIGGRAPH
’14, ACM, pp. 6:1–6:119. 3, 4

Table 2: Measurements of the three tested k-buffer approaches
in different testing scenarios under a fixed memory budget M. D
denotes the scene’s maximum depth complexity.

Method [MCTB13] [VPF15] Variable k-buffer
Beard scene, D = 92, M ≈ 20MB, Fig. 1 (left)
Time (ms) 1.4 7.3 11.8
k 1 1-4 1-7
Fragments (Loss) 232K (87%) 714K (60%) 840K (53%)
Smoke scene, D = 16, M ≈ 35MB, Fig. 1 (right)
Time (ms) 0.8 5.4 6.5
k 2 1-4 1-5
Fragments (Loss) 1M (62%) 1.4M (47%) 1.7M (39%)
Bottles scene, D = 22, M ≈ 35MB, Fig. 5 (top)
Time (ms) 1 5.7 6.8
k 2 1-3 1-5
Fragments (Loss) 1M (70%) 1.4M (55%) 1.8M (46%)
Greenhouse scene, D = 106, M ≈ 35MB, Fig. 5 (bottom)
Time (ms) 15 47 58
k 3 1-4 1-10
Fragments (Loss) 1.9M (80%) 2.5M (74%) 2.7M (72%)

[Sal13] SALVI M.: Pixel synchronization: Solving old graphics problems
with new data structures. In ACM SIGGRAPH 2013 Courses (New
York, NY, USA, 2013), SIGGRAPH, ACM. 2

[VF12] VASILAKIS A. A., FUDOS I.: S-buffer: Sparsity-aware multi-
fragment rendering. In Proceedings of Eurographics 2012 Short Papers
(Cagliari, Sardinia, Italy, 2012), EG ’12, pp. 101–104. 2, 4

[VP15] VASILAKIS A. A., PAPAIOANNOU G.: Improving k-buffer
methods via occupancy maps. In Proceedings of Eurographics 2015
Short Papers (Zurich, Switzerland, 2015), EG ’15, pp. 69–72. 2

[VPF15] VASILAKIS A. A., PAPAIOANNOU G., FUDOS I.: k+-buffer:
An efficient, memory-friendly and dynamic k-buffer framework. IEEE
Transactions on Visualization and Computer Graphics 21, 6 (June
2015), 688–700. 2, 3, 4

[VVP16] VARDIS K., VASILAKIS A. A., PAPAIOANNOU G.: A multi-
view and multilayer approach for interactive ray tracing. In Proceedings
of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games (New York, USA, 2016), I3D ’16, ACM, pp. 171–178. 1, 4

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

24

https://www.cgtrader.com/free-3d-models/character-people/man/beard-comic-character
http://frailsafe-project.eu/

