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1 Deriving the estimate Vi of the final pixel variance

The final pixel variance is the result of three types of stochastic processes that were

introduced in the main paper: the VRL tracer X̃, the VRL integration X̃ij and the

selection of the representatives for each cluster. The resulting combined stochastic pro-

cess determines the final distribution of the sampled values for a pixel. In principle,

when regarding this highly complex combined process, the three subprocess share cor-

relations with each other which, for instance, depend on the specific clustering method

that was used. However, to derive a practical algorithm, we treat the subprocesses as

independent. Based on our tests, this approximation still yields satisfactory results.

1.1 Variance due to the VRL tracer

We first estimate the variance due to averaging the contribution of N samples from

the VRL tracer X̃ to the pixel i, i.e. we want to estimate Var[C(X̃, i)]/N . This is

the expected variance that would be observed in the pixel value in the case that the

contribution of each of the N sampled VRLs to the eye ray would be integrated exactly

(for the case of VPLs, this corresponds to simply rendering the full set of point lights,

as each VPL evaluation is already exact). It describes a base line variance that cannot

possibly be improved without tracing more VRLs. An estimate of this variance would

be given by

V trace
i =

1

N(N − 1)

∑
j

(
C(Xj , i)−

∑
k

C(Xk, i)

N

)2

. (1)

However, the only values that we have at our disposal are the transfer matrix elements

Aij (which are samples from X̃ij = C(Xj , i)/N+ξ̃ij) and the estimated VRL integration

variances ξ2ij . Let us start with some tentative quantity that estimates the variance in
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the observed sum of the transfer matrix elements
∑

j Aij :

N

N − 1

∑
j

(
Aij −

∑
k

Aik

N

)2

. (2)

It is a realisation of the estimator

N

N − 1

∑
j

(
C(Xj , i)/N + ξ̃ij −

∑
k

C(Xk, i)/N + ξ̃ik
N

)2

(3)

and describes the expected variance of pixel i if we were to render the full set of VRLs

without clustering and with Monte Carlo VRL – eye ray integration. Taking the expec-

tation value 〈·〉 over the VRL integration noise ξ̃ij and rearranging yields〈
N

N − 1

[
1

N

(
C(Xj , i)−

∑
k

C(Xk, i)

N

)
+

(
ξ̃ij −

∑
k

ξ̃ik
N

)]2〉
, (4)

which, after some manipulation, evaluates to

1

N(N − 1)

∑
j

(
C(Xj , i)−

∑
k

C(Xk, i)

N

)2

+
∑
j

Var
(
ξ̃ij

)
. (5)

The first term is exactly the estimate V trace
i of Equation (1) and the second term is

estimated by
∑

j ξ
2
ij . In fact, we could have just written down this estimate at once,

by reasoning that the observed variance in the samples is the independent result of the

VRL tracer variance and the VRL integration variance. Hence, we have the following

estimate of V trace
i in terms of readily available values1

V trace
i =

N

N − 1

∑
j

(
Aij −

∑
k

Aik

N

)2

−
∑
j

ξ2ij . (6)

1.2 Variance due to the VRL integration and VRL undersampling

The undersampling of the VRLs by selecting only a single representative for each cluster

adds additional variance. Moreover, due to the weighting factors of the representative,

the inherent VRL integration noise gets amplified as well.

Because we neglect correlations with the VRL tracer, we can assume that the VRLs

Xj are simply given, fixed quantities. Within a single cluster q that consists of the

VRLs with indices j1, . . . , jn, sampling from
∑

l X̃ijl is then replaced by sampling from

1As an aside, note that this estimate can potentially become negative in rare, pathological cases

where the VRL integration variance is comparable or larger to the actual VRL tracer variance. Then,

variations due to the VRL tracer and integration could happen to cancel each other out in the observed

variation of the samples Aij . However, in such noisy cases, no significant information can be extracted

from the sparse pixel samples anyway, and no informed clustering can be made. Moreover, such cases

do not cause the algorithm to fail as the total pixel variance estimate Vi will always be positive.
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X̃ijm/pm = [C(Xjm , i)/N + ξ̃ijm ]/pm with some probability pm. We use the general

formula Var(x) = E(x2) − E(x)2 to arrive at the estimate V und
iq of the variance of this

process:

V und
iq =

〈∑
l

pl

[
C(Xjl , i)/N + ξ̃ijl

pl

]2〉
−

[∑
l

C(Xjl , i)/N

]2
. (7)

Note that the last term could be written down immediately because the process is

unbiased. The total variance with contributions from all clusters is simply V und
i =∑

q V
und
iq . Because the samples are independent between clusters, we can just focus on

the contribution of a single cluster q.

Performing the average over ξ̃ in Equation (7) and estimating C(Xjl , i)/N by Aijl

gives an estimate of the undersampling variance V und
iq of this cluster in terms of known

quantities:

V und
iq =

∑
l

1

pl

[
A2

ijl
+ ξ2ijl

]
−

[∑
l

Aijl

]2
. (8)

Because the cost of evaluating a cluster is constant (evaluating the contribution of its

representative VRL), the convergence constant c is minimized by choosing pl such that

the variance due to sampling the representative is minimized. If we write pl = wl/
∑

k wk

for some unnormalized weights wl, then taking the derivative of Equation (8) with

respect to wm yields ∑
l

1

wl

[
A2

ijl
+ ξ2ijl

]
−
∑

k wk

w2
m

[
A2

ijm + ξ2ijm
]
, (9)

which equals zero for the optimal weights wm =
√
A2

ijm
+ ξ2ijm . Note that, if ξ2ij = 0 (as

would be the case for LightSlice for VPLs), then pm = Aim/
∑

l Ail, the value returned

from the discrete sampling is Aijm/pm =
∑

l Ail and V und
iq = 0. Indeed, if we have exact

information of all contributions to a pixel, we can just always return the exact total

contribution for that pixel. However, the sampling of the representative VPLs/VRLs

happens for the entire slice and the combined undersampling variance of all pixels in

that slice can in general not be made equal to zero by a single choice of pm. When

combining the variance over such a set of P (or P repr) pixels by summing over the

corresponding i indices in Equation (8), the resulting optimal weights read

wm =

√∑
i

[
A2

ijm
+ ξ2ijm

]
. (10)
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2 Minimizing c

For each slice, we start from a single cluster that holds all the VRLs and repeatedly

split the cluster with the highest contribution to
∑P repr

i Vi until the minimum of the

convergence constant c is reached. In order to do so, we need to efficiently calculate this

contribution for all tentative cluster splittings (Sec. 2.1) and we need to know when the

minimum of c has been reached (Sec. 2.2).

2.1 Computing the cluster contribution to
∑

i Vi

The estimate V und
i depends on the cluster under consideration and can be computed in

a numerically robust on-line manner. This allows the optimal cluster split to be found in

linear time in the number of VRLs in the original cluster by accumulating the variances

of both resulting clusters. If the VRLs are sorted so that j1, . . . , jk and jk+1, . . . , jn

are the tentative sub clusters for k = 1, . . . , n − 1 (through projecting the VRLs on a

P repr-dimensional line as explained in the main text), then the total resulting variance

of the two sub clusters for each of the n−1 possible splits can be found by accumulating

V und
i in a forward (j1, j2, . . .) and backward pass (jn, jn−1, . . .).

2.2 Finding the minimum of c

During the initial phase of the cluster splitting, when there are still few clusters (N repr

is small and N reprP � NP repr), the effect of
∑

i Vi dominates the behaviour of c and

we have c ∼ 1/N repr. As the number of clusters increases, the variance Vi converges

to the unclustered variance V trace
i +

∑
j ξ

2
ij and one has c ∼ N repr. We can use this

knowledge to derive a lower bound on the possible convergence constants that can be

observed after further cluster splitting: no future convergence constant can be smaller

(i.e. better) than

c̄ = (NP repr +N reprP )
P repr∑

i

V trace
i +

∑
j

ξ2ij

 . (11)

Hence, as soon as we arrive at a number of clusters N repr for which c ≥ c̄, we know with

certainty that the optimal clustering that was observed thus far is in fact the global

optimum.

3 Number of VRL evaluations

Figure 1 shows false color images pertaining to the number of evaluated VRLs during

rendering.
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Box For the unclustered rendering of the Box scene, each VRL that was traced is

evaluated exactly once for the direct eye ray, and a second time for the reflected ray if

the reflective sphere is directly visible. When adaptive clustering is enabled, pixels that

are near the light source (or for which the light source is visible, as in the reflection in

the sphere) are assigned the most number of VRLs (around 3% of the total), whereas

pixels in the volumetric shadow regions of the sphere and box are evaluated with only

around 1% of the total number of VRLs. The heterogeneity of the scene allows us to

significantly outperform a fixed clustering rate by locally adapting the number of VRLs.

Brain The unclustered rendering of the Brain scene shows more structure compared

to that of the Box scene, due to extra rays spawned from reflections and refractions in

the dielectric material (Russian roulette keeps the number of evaluated VRLs finite).

The ‘Relative’ image cancels out this effect and cleanly shows the relative number of

evaluated VRLs. The majority of the work is performed for pixels in the center of

the brain, as rays entering this region and reflecting and refracting on the inner lobe

structures of the model get scattered in all directions and hence get contributions from

many VRLs. Rays entering the model near the edges meet less internal structure and get

contributions from a smaller set of VRLs, allowing more aggressive clustering. Overall,

there is less variability that can be exploited compared to the Box scene, and we are

merely on par with the ideal fixed clustering fraction.

Glass The grape juice in the Glass scene shares the behaviour of the dielectric par-

ticipating medium of the Brain scene, but the extra dielectric medium of the glass itself

now leads to the observed less-than-unity fraction of unclustered VRLs. Rays enter-

ing the glass near the back surface at the top or the solid glass portion at the bottom

now first experience refraction and reflection events before entering the participating

medium itself. A fraction of these rays will have been terminated by Russian roulette

before they even meet a single VRL. Again, the ‘Relative’ image cancels out this effect.

In the bulk of the grape juice, similar relative fractions are observed as for the other

scenes (a reduction to around 1%). Near the top and bottom, in the areas where many

internal reflections occur before the eye rays enter the grape juice, there is much less

reduction in the number of evaluated VRLs compared to unclustered rendering: due

to variations in the number of internal reflections, the rays accumulate contributions

from a diverse set of VRLs. The adaptive clustering detects this and only reduces the

number of VRLs to roughly 10%, here. Overall, the relative homogeneity of the lighting

in the bulk of the medium makes it harder for the adaptive clustering to beat an a priori

fixed ideal clustering rate, as it has to base itself on a sparse and noisy sampling. As

a consequence, the ideal fixed clustering rate outperforms the adaptive clustering by

around 3% for this scene.
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Figure 1: Number of evaluated VRLs during rendering (all images in logarithmic scale for clarity). For every pixel, the total fraction of VRLs that are

evaluated during rendering, relative to the number of VRLs that were traced is visualized in the ‘Unclustered’ and ‘Clustered’ columns when

rendering without clustering and with our adaptive clustering method, respectively. The ‘Relative’ column shows the fraction of evaluated

VRLs with clustering, compared to the number of evaluated VRLs without clustering for each pixel (with an equal number of VRLs traced),

i.e. it is the ‘Clustered’ column divided by the ‘Unclustered’ column. See Section 3 for an in-depth discussion.
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