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Abstract
This paper examines the methods for exploring volume data by optimization of visualization parameters. The
size and complexity of the parameter space controlling the rendering process makes it challenging to generate
an informative rendering. In particular, the specification of the transfer function (which is a mapping from data
values to visual properties) is frequently a time-consuming and unintuitive task. We propose an information theory
based approach to optimize the transfer function based on the intensity distribution of the volume data set and
the ability for users to specify priority areas of importance in the resulting image in a simple and intuitive way.
This optimization approach reduces the occlusion in the resulting images, and thus improves the perception of
structures.

Categories and Subject Descriptors (according to ACM CCS): I.6.9 [Simulation, Modeling, and Visualization]:
Visualization—Volume visualization

1. Introduction

Transfer functions play an essential role in volume ren-
dering. They assign visual properties, including colour and
opacity, to the volume data being visualized. Hence transfer
functions determine which structures will be visible and how
they will be rendered. However, obtaining an effective trans-
fer function is a non-trivial task, which involves a significant
amount of tweaking of colour and opacity. In addition to the
complex structures contained in volume data, users have dif-
fering goals or features of interest depending on their spe-
cific tasks. Therefore, it is almost impossible to generate a
transfer function that would suit all kinds of visualization
tasks. Also, different subsets of the data may occlude each
other and thus result in ineffective visualization.

2. Related Work

Various strategies have been proposed to simplify transfer
function specification [PLB∗01]. Data-centric strategies ex-
amine the properties of volume data sets. Overlapping in-
tensity intervals corresponding to different materials make
boundary detection difficult. Classical approaches try to de-
tect boundary information between tissues by introducing
derived attributes such as first and second-order derivatives
to isolate materials [KD98]. Another strategy is based on the
selection of rendered images. This strategy lets the user se-
lect one or more favourite images to guide the further search

of transfer functions [WQ07]. More recent approaches intro-
duced visibility and measures derived from information the-
ory. Correa and Ma [CM11] optimize the transfer function
by maximizing the visibility of important structures based
on the visibility histogram, which represents the contribution
of voxels to the resulting image. Ruiz et al. [RBB∗11] opti-
mize the transfer function by minimizing the informational
divergence (Kullback-Leibler distance) between the visibil-
ity distribution captured from several viewpoints and a target
distribution specified by the user.

In contrast, our approach optimizes the transfer func-
tion by minimizing the variance of control point weighting,
which is generated from the intensity distribution of the data
set and user-selected regions to specify priority areas of im-
portance in the resulting image. In our approach, the user
has more control of the optimization by setting up control
points for the optimization. For example, the user can leave
out less relevant data ranges by not covering the data ranges
with control point groups.

3. Motivation

In the specification of a 1D (intensity-based) transfer func-
tion, the user would set up several control points on the in-
terface. Each control point often corresponds to a certain
kind of material or structure. It is common that users have
prior knowledge about which intensity ranges are relevant
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Figure 1: A hypotheti-
cal constituent distribu-
tion of CT data [DCH88]

Figure 2: A trans-
fer function

or which regions should be emphasized in the data. This is
especially the case in medical visualization. For instance, in
computed tomography (CT) data the intensity ranges are de-
termined by the Hounsfield scale [RBB∗11]. The user may
expect the constituent’s intensities of CT data to be similar
to Figure 1 and thus set up control points accordingly. How-
ever, small changes made to the opacity of control points
may lead to dramatic changes in the rendered images. In
many cases, minuscule modulation of opacity is required,
but this kind of tiny adjustment of control points may be
impossible to make by mouse interaction (due to limited ac-
curacy of mouse movements).

Another consideration is that interior structures are likely
to comprise far fewer voxels and are often occluded by the
surrounding material. Consider the transfer function in Fig-
ure 2. The user finds three intensity intervals of interest and
then sets up three sets of control points in order to visual-
ize these intensity intervals. The opacity of the three peak
control points are assigned equally as they are equally im-
portant. However, if the distribution of voxels follows p(x)
(the blue curve), the voxels of the leftmost intensity intervals
may completely occlude voxels of the other two intensity in-
tervals in the resulting image.

4. Method

In this section, we present an optimization approach for
modulating the opacities associated with the control points
in a transfer function. In order to help the user explore the
features of interest within the data sets, we combine the au-
tomatic optimization process with intuitive user interaction
to specify priority areas of importance in the resulting image.

4.1. Information Content of a Voxel

Information theory provides a theoretic framework to mea-
sure the information content (or uncertainty) of a random
variable represented as a distribution [WS11]. Consider a
discrete random variable X which has a set of possible
values {a0,a1, ...,an−1} with probabilities of occurrence
{p0, p1, ..., pn−1}, we can measure the uncertainty of the
outcome with the entropy H(X), which is defined by H(X) =
−∑x∈X p(x) log p(x), where the summation is over the cor-
responding alphabet and the convention 0 log0 = 0 is taken.
The term − log p(x) represents the information content as-
sociated with the result x. If the entire volume data set is

treated as a random variable, I(ax) = − log p(x) represents
the information content of a voxel ax with intensity x, and
the entropy gives us the average amount of information of a
volume data. The probability p(x) is defined by p(x) = nx

n ,
where nx is the number of voxels with intensity x and n is
the total number of voxels in the volume data.

4.2. Weighting of Transfer Function Components

The goal of our transfer function refinement approach is to
balance the opacity settings so that voxels of more signif-
icance contribute more and voxels of less significance con-
tribute less to the resulting images. Similar to the noteworthi-
ness factor by Bordoloi and Shen [BS05], we also use opac-
ity and probability (bin frequency) in our weighting. Given
the intensity of the control points v1,v2, ...,vn of the trans-
fer function t are x1,x2, ...,xn and the corresponding opacity
are α(x1),α(x2), ...,α(xn). The intensity range of the trans-
fer function is normalized to [0,1]. For the convenience of
discussion, two control points v0 and vn+1 are added to the
lower bound and the upper bound respectively, and x0 = 0,
α(x0) = α(x1), xn+1 = 1 and α(xn+1) = α(xn).

We define the weight of the i-th edge (the segment be-
tween vi and vi+1) as

E(i) =−
∫

x∈[xi,xi+1]
α(x)p(x) log p(x)dx, i ∈ [0,n]

and define the significance factor of the i-th control point as
the sum of the weights of its two adjacent edges

V (i) = E(i)+E(i−1), i ∈ [1,n]

Then the average significance factor of all the control points
is

Vmean =
∑

n
i=1 V (i)

n

Hence the energy function of the transfer function t can be
defined as the variance of the significance factors of control
points

F(t) =
n

∑
i=1

(V (i)−Vmean)
2

Consequently, minimizing the energy function is equivalent
of flattening the curve of the significance factors of control
points.

4.3. Optimization Algorithm

Constraints are introduced in the search of the parameter
space. Control points would only be moved vertically in the
transfer function space. In other words, only the opacity as-
sociated with control points would be changed. The intensity
of control points remains the same. This constraint is based
on our assumption that the intensity intervals associated with
control points are the user’s intensity intervals of interest.
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The user has explored the volume data and set up the trans-
fer function according to his/her needs. Our algorithm aims
to help the user reduce occlusion while preserving the user’s
knowledge or judgements of the data set.

A greedy strategy is employed in our algorithm to min-
imize the energy function. In each iteration, there are two
operations: reducing the opacity of the highest control point
(with highest significance factor) and increasing the opac-
ity of the lowest control point (with non-zero lowest signif-
icance factor). In our approach, the optimization ends when
it reaches a user-specified iteration count. The two step sizes
in reducing opacity and increasing opacity can both be user-
specified, or the first one is user-specified and the second one
is computed based on the first one and the ratio of the sig-
nificance factors of the two chosen control points. The ratio
of the two step sizes affects the overall opacity of the result-
ing image, for instance, the image becomes more opaque or
translucent.

4.4. Region-Based Optimization

The optimization above described is an approach to balance
the global opacity and thus reduce occlusions in the ren-
dered images. Although global optimization can help deliver
images with better overall visibility, small details may be
under-enhanced in the global optimization and certain struc-
tures in the image may have to be further enhanced for spe-
cific purposes. A flexible method with user interactions is
necessary to achieve various visualization goals.

We introduce difference factors to prioritize the user’s re-
gion of interest. Assume each control point is assigned a
unique colour, we can get the difference (or similarity) be-
tween a pixel of the region (which is selected in image space)
and the colour of a control point (RGB colour space is used
in our implementation).

Given the colour of the i-th control point is c(i), the dis-
tance between a pixel r in the region R and the i-th control
point is denoted by d(r,c(i)). In our approach, the sum of
the squared distances Ds between each pixel in the region R
and the i-th control point is used to measure the difference
between the region and the control point.

Ds(R, i) = ∑
r∈R

d(r,c(i))2, i ∈ [1,n]

We define the difference factor between the region R and the
i-th control point as

W (R, i) =
Ds(R, i)

∑
n
i=1 Ds(R, i)

, i ∈ [1,n]

Consequently, the modified significance factor (biased to-
wards the region R) of the i-th control point is

VR(i) =W (R, i)V (i), i ∈ [1,n]

To use the modified significance factor with the optimization
algorithm described above, we simply need to replace V (i)

with VR(i) and compute the mean of significance factors ac-
cordingly in the energy function.

The difference factors measure the dissimilarity between
a selected region and a control point. Therefore the differ-
ence factor would be small if the region has an overall colour
similar to the colour of the control point. Since we are min-
imising the energy function, which is the variance of the sig-
nificance factors, reducing the difference factor for a con-
trol point will result in its opacity value being increased.
Optimized with the modified significance factors, the fea-
tures (in this case, the intensity intervals) appear in the se-
lected regions will be enhanced and other features will be
de-emphasized in the rendered image.

The distances in Ds(R, i) are squared, therefore, it results
in a weighting which is more biased towards the selected re-
gion, compared to the weighting based on non-squared dis-
tances. Since the distance is measured in the colour space,
the choice of colours for the control points affects the dis-
tance measured and thus affects the weighting function.

5. Results

In this section, we present some results to demonstrate the
effectiveness of our approach on CT-knee (379 × 229 ×
305) and VisMale head (128× 256× 256) datasets [Roe06].
Automatically generated transfer functions with evenly dis-
tributed control points (with opacity set to 0.5) are used as
the input of the optimization. The colours of control point
groups are evenly distributed in a spectrum (with hue from
0◦ to 360◦ in HSV colour space). In the optimization, the
two step sizes for reducing opacity and increasing are both
set to 1/255. The results below are rendered with Voreen
[MSRMH09] after transfer function optimization using our
approach.

Figure 3 is a pair of knee joints rendered from the CT-
Knee data set with the transfer function in Figure 5, which is
a naive transfer function consisting of 6 control point groups
of various colours with equal opacity. Figure 4 shows the
resulting image rendered with the transfer function in Fig-
ure 7. We tested this specific example as joints are popular
regions of interest in medical visualization and a number of
researchers have extended volume rendering techniques to
examine joints of human body [BCFT06]. The knee in par-
ticular is a commonly studied joint. In Figure 3, only parts of
the skeleton are visible. The rest is occluded by the surround-
ing material (such as the skin and muscles). After optimiza-
tion (Figure 4), the surrounding tissues become translucent,
hence the skeleton is exposed and the knee joint is visible,
while the overall context is preserved. Figure 6 shows how
the energy function changes over the iterations of the solu-
tion. In practice we observed that the energy function usually
converges at a small but non-zero value. In addition, as the
number of control points increases, it takes more iterations
for the optimization to achieve a stable state - a number of
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Figure 3: Before opti-
mization

Figure 4: After optimiza-
tion

Figure 5: A transfer
function with 6 con-
trol point groups

Figure 6: Energy
function converges
at a small value

Figure 7: The
transfer function
after optimization

control point groups ranging from 4 to 16 was found too be
the most effective.

The region-based weighting generation is also tested. Fig-
ure 8 shows the VisMale data set with a generated transfer
function of 4 control point groups. After the optimization
(Figure 9), the outside of the head is less opaque so the inner
structures are revealed to the user. However, the intermediate
material (i.e. the skull) also becomes less clear. If the goal is
to make the skull more visible, the user could select a re-
gion consisting of parts of the skull (Figure 10) to generate
a weighting and perform further optimization of the trans-
fer function. In this step, a clipping plane is used in order
to only select material of the skull without interference from
the surrounding material. As shown in Figure 11, the skull
becomes more clear after the region-based optimization.

6. Limitations and Future Work

Our approach requires to define intensity ranges (number of
control points and region width) as an initial set-up for the
transfer function. In addition, variations to the transfer func-
tion are limited to opacity values. Therefore prior knowledge
of the data sets may be necessary in choosing optimal in-
tensity ranges. In future work we plan to develop methods
for identifying important features in the intensity ranges and
refining the intensity ranges. In our implementation, RGB
colour space is used in calculating the difference factors for
region-based optimization. Other colour spaces especially
perceptually uniform colour spaces such as CIE Lab will be
investigated in future work.
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