
EUROGRAPHICS 2010 / H. P. A. Lensch and S. Seipel Short Paper

Real-Time Ray Tracing Using Nvidia OptiX

H. Ludvigsen1 and A. C. Elster1

1Dept. of Computer and Info. Science, Norwegian University of Science and Technology, Trondheim, Norway

Abstract
Modern GPUs with their several hundred cores and more accessible programming models are becoming attrac-
tive devices for compute-intensive applications. They are particularly well suited for applications, such as image
processing, where the end result is intended to be displayed via the graphics card. One of the more versatile and
powerful graphics techniques is ray tracing. However, tracing each ray of light in a scene is very computational
expensive and have traditionally been preprocessed on CPUs over hours, if not days. In this paper, Nvidia’s new
OptiX ray tracing engine is used to show how the power of modern graphics cards, such as the Nvidia Quadro FX
5800, can be harnessed to ray trace several scenes that represent real-life applications in real-time speeds ranging
from 20.63 to 67.15 fps. Near-perfect speedup is demonstrated on dual GPUs for scenes with complex geometries.
The impact on ray tracing of the recently announced Nvidia Fermi processor, is also discussed.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing

1. Introduction

Ray tracing makes it possible to render realistic shadows, re-
flections and glass-like objects, which requires trickery when
only rasterization is used. In rasterization, one computes the
area on the screen where each object is to be shown, but do
not analyze light’s impact on the scene. Ray tracing, how-
ever, provides this features "by nature", because it approx-
imates how light actually behaves. The main drawback of
ray tracing is its computational complexity. The computa-
tions have traditionally been done on the CPU, but modern
graphical processing units (GPUs) with their several hun-
dred cores and now also more accessible programming mod-
els, are attractive devices for compute-intensive applications.
By off-loading the ray tracing calculations to a modern GPU,
ray tracing is becomng viable for computer games and real-
time visualizations. In addition, ray tracing has applications
in optical and acoustical design, radiation research, volume
calculations and collision analysis.

Ray tracing is parallelizable because each ray may be
traced independently. There is typically one ray per pixel,
so common 1024 x 1024 pixel images would require tracing
106 rays. Ray tracing is hence a very attractive application
for the massively parallel newer GPUs. Nvidia thus recently
(Sept. 2009) released OptiX, a ray tracing engine for their

Quadro and Tesla GPUs. This paper describes our initial ex-
periences with this engine for real-time ray tracing.

Traditionally, ray traced images are computed a priori.
This process might take a couple of minutes or several days
per rendered image. Real-time ray tracing (> 20 fps) facili-
tates that realistic graphics can be manipulated interactively,
like in a computer game. Similarly, feedback could be given
instantly during optical design, radiation research and the
other areas mentioned above. Last, but not least, the real-
istic visual effects possible by ray tracing could be added to
games and other real-time visualization applications.

2. Previous work related to real-time ray tracing

Both CPU and customized hardware were used until recently
for real-time ray tracing. However, the performance obtained
in both cases have not been satisfactory compared to rasteri-
zation. Wald et al. [WSBW01] presented a highly optimized
CPU implementation where the algorithms take advantage
of caches, SIMD instructions and coherence in image and
object space. Their implementation outperformed the earlier
ray tracers, and even rasterization with graphics hardware
for complex scenes. In their simplest scene with 40 thou-

c© The Eurographics Association 2010.

http://www.eg.org
http://diglib.eg.org


H. Ludvigsen & A. C. Elster / Real-Time Ray Tracing Using Nvidia OptiX

Figure 1: Screenshots from the snow crystals scene and three centerpiece modes implemented in OptiX

sand triangles, they obtained 1.8 fps at a resolution of 512 x
512 pixels on an 800 MHz Pentium III.

A different approach was used by Woop et al. [WSS05],
who developed a programmable ray processing unit (RPU)
chip specialized for real-time ray tracing. At only 66 Mhz,
their prototype was capable of rendering a simple scene of
806 triangles at 21 fps, and a highly complex scene of 187
million triangles obtained 4 fps. However, this was at the
modest resolution of 512 x 384.

In the recent years, attempts have been made to do ray
tracing on the GPU, and the results have been promising.
Purcell et al. [PBMH05] explained how ray tracing can be
mapped to programmable graphics hardware and used a sim-
ulator to analyze the performance one might obtain on future
graphics hardware. Their conclusion was that graphics hard-
ware indeed look promising. Gunther et al. [GPSS07] fol-
lowed up on this work by presenting a GPU ray tracer using
optimized BVH-strctures to obtain 13.6 fps in a 2 million tri-
angle scene at 1024 x 1024 pixels using an Nvidia Geforce
8800 GTX.

Some of the most recent work have obtained true real-
time performance using commodity GPUs. Shih et al.
[SCCC09] implemented a high performance CUDA-based
ray tracer and obtained 30 to 43 fps in scenes ranging
from 66 to 871 thousand triangles at 1024 x 1024 pixels
on the older Nvidia Geforce 8800 GTS. Aila and Laine
(Nvidia Research) [AL09] have developed a CUDA-based
ray tracer which is hand-optimized at the assembly level and
pushed performance towards (their) theoretical limit. Using
the newer Nvidia Geforce GTX285, they obtained from 75
to 142 millions of primary rays per second, which at a res-
olution of 1024 x 768 correspond to 95 to 180 fps. Modern
GPUs may also be used to do real-time implicit surfaces ren-
dering [SN10]. Singh and Narayanan [SN10] also include
several other recent related references.

3. Nvidia OptiX

OptiX [Nvi09c] is a recent programmable ray tracing engine
that runs on top of Nvidia CUDA [Nvi09a]. It is a set of
library functions for both graphics rendering or other appli-
cations that trace rays. The OptiX engine currently only runs
on newer (GT200 core) Nvidia Quadro and Tesla cards. To

use OptiX, the programmer writes programs that handle the
various events of the ray tracing. These programs are really
CUDA kernels, but are called programs in OptiX terminol-
ogy. The events they handle include ray generation, ray hit,
ray miss, etc. In the host code, the API is set up through
a context structure that holds the configuration and compo-
nents of the ray tracing. Such components include the pre-
viously mentioned programs, geometry that the rays hit and
materials that define the surface properties of the geometry.

4. Our implementations using OptiX

Two ray traced scenes have been implemented, where one
of them has several modes that each demonstrate how OptiX
handles different applications of ray tracing. Some screen-
shots are given in Figure 1. Our snow crystals scene was
implemented from scratch with transparent snow crystals
which fall slowly across the screen. Our centerpiece scene
depicts a centered object that changes with different modes
of the scene. The object used include a cow model that
comes with the OptiX SDK. The camera rotates around the
centerpieces. Possible modes of the centerpiece scene are:

1. Phong shaded cow model and spheres
2. Reflective cow model and Phong shaded spheres
3. Reflective cow model and glass spheres
4. Cow model with diffuse reflection on floor
5. Cow model with diffuse shadow on floor
6. High definition car models (1 million triangle polygons)
7. Voxel map of cloud fractal

To compare our results to previous work on real-time
GPU ray tracing, the polygon meshes from [SCCC09] and
[AL09] were obtained, and OptiX used to ray trace them.
The camera angle was adjusted to be approximately equal
to the camera angles used in screenshots given in [SCCC09]
and [AL09]. Note, however, that the results in [SCCC09] are
on older hardware, so in this case, our results are as much
about what scenes one can implement efficiently rather than
fair comparisons. Screenshots of some of the scenes as ren-
dered in the test bench, are given in Figure 4.

Currently most PCs support up to two GPU cards. We
hence also tested OptiX with two identical Nvidia Quadro
FX 5800 GPUs. The performance in fps was measured for

c© The Eurographics Association 2010.

66



H. Ludvigsen & A. C. Elster / Real-Time Ray Tracing Using Nvidia OptiX

Figure 2: Screenshots of conference, fairy, bunny and dragon scene from OptiX test bench

some of the scenes that come with the OptiX SDK in addi-
tion to the scenes implemented in this project. The speedup
was calculated as the ratio between performance with 2 and
1 GPUs.

All OptiX testing was done on a system with:

• GPU: Nvidia Quadro FX 5800
• CPU: Intel Core 2 Quad Q9550 2.83 GHz
• Memory: 4 x Corsair 2 GB DDR3 1333 MHz
• OS: Microsoft Windows XP 64 bit
• Compiler: Microsoft Visual Studio 2008

For all scenes, the performance was measured over 100
frames after a 3 second warm-up. The inverse of the average
frame render time gives the fps. Table 1 summarizes the per-
formance of the snow crystals and centerpiece scenes with
its modes.

Table 1: Performance in fps at 1024 x 768 pixels

Scene fps
Snow crystals 22.10
Centerpiece Phong 67.51
Centerpiece reflective 38.73
Centerpiece reflective and refractive 24.41
Centerpiece diffuse reflection 23.10
Centerpiece diffuse shadows 25.32
Centerpiece 1 million polygons 24.99
Centerpiece voxels 22.08

The main issue faced in our snow crystals scene is refrac-
tion and reflection of rays when they hit the snow crystals. At
the initial intersection the ray is branched into two rays. And
when the refracted ray hits exits the crystal, there is another
branching into two rays. This branching imposes a perfor-
mance penalty, especially when the crystals cover much of
the screen area. The performance obtained is real-time with
an average of 22 fps. A major problem is how the fps varies
depending on what happens in the scene. When a large crys-
tal is close to the screen, the fps is low at around 20 fps.
When this crystal exits the screen, the fps spikes up to around
40. This behaviour results in unstable performance, and is
one of the major drawbacks of the ray tracing algorithm.

In our centerpiece scene, the performance varies for each
of the modes. All of the modes offer real-time performance

at 22-25 fps, but the cheaper Phong shading and reflection
only mode results in 67.51 and 38.73 fps, respectively. Dif-
fuse reflection and diffuse shadows were a disappointment
performance-wise. In both cases the ray branching is set to
only into 4 new rays, but the fps is nevertheless barely real-
time. This shows how ray branching is the major challenge
of ray tracing performance. However, the scene consisting of
three car models and a scooter which has a total of 1 million
polygons, shows that OptiX is indeed capable of rendering
real-time scenes with high definition and complex models.
All representable for real-life objects. The voxel mode has
"only" 250,047 voxels, but does not benefit from primitives
being covered by other primitives such as in the mode with 1
million polygons. At an fps of 22.08, this shows that OptiX
is capable of rendering voxels scenes in real-time.

4.1. Performance vs. optimized GPU ray-tracers

Table 2 shows the number of triangle polygons and mea-
sured OptiX performance of scenes from [AL09], and Table
3 shows the same for scenes from [SCCC09]. Also shown
in these tables is the performance the authors of [AL09]
and [SCCC09] obtained with their ray tracer.

Table 2: Triangles and performance in Mray/s of scenes in
[AL09] at 1024 x 768 pixels

Scene Conference Fairy Sibenik
Triangle polygons 282,759 174,117 80,133
Mray/s OptiX 28.22 20.69 38.12
Mray/s [AL09] 142.2 74.6 117.5

Table 3: Triangles and performance in fps of scenes in
[SCCC09] at 1024 x 1024 pixels

Scene Bunny Sponza Dragon
Triangle polygons 69,451 66,454 871,414
Fps OptiX 49.89 28.16 36.43
Fps [SCCC09] 45.30 42.47 31.88

As seen in Table 2, our results using OptiX are 3-4 times
slower than the implementation in [AL09]. The hardware in
both cases is the GT200 generation GPU. This shows that

c© The Eurographics Association 2010.

67



H. Ludvigsen & A. C. Elster / Real-Time Ray Tracing Using Nvidia OptiX

OptiX has potential for much higher performance. An ex-
planation of the discrepancy can be the flexibility of OptiX,
and the fact that the implementations in [AL09] was hand
optimized at the assembly level for performance only.

Table 3 shows that our OptiX implementations outper-
form [SCCC09] slightly in the bunny and dragon scene, but
lags behind by about 30 % in the sponza scene. However, the
GPU used in [SCCC09] is a Nvidia Geforce 8800 GTS that
is several generations older and substantially slower than the
Quadro FX 5800 used in our test bench. Again, one would
assume that the implementation in [SCCC09] is heavily op-
timized and not as flexible.

4.2. Multiple GPUs

Figure 3: Multiple GPU speedup in various scenes

Figure 3 compares our results on 2 GPUs with 1 GPU
in various scenes. At the lower extreme, there is actually
a slowdown compared to using 1 GPU. However, at the
other end of the chart, we achieve an almost perfect 200 %
speedup. Common for the scenes that speed up well is that
they spend a lot of time on GPU computations compared
to other tasks such as image display, data transfer and CPU
computations. Hence in order to take advantage of the com-
putational power of the GPU, scenes need to have enough
computational complexity that can be done on the GPU, as
can be seen in our centerpiece scene.

5. Conclusions and future work

This paper studied implementations of animated real-time
scenes that represent actual real-life application areas for ray
tracing. Nvidia’s recently released OptiX ray tracing engine
allows users to harness the power of modern GPUs. Our re-
sults demonstrate that several ray tracing applications may
be performed in real-time on the GPU using OptiX. All of
our test cases gave real-time speeds ranging from 20.63 to
67.51 fps on 1 GPU. Our dual GPU results indicated that
OptiX can give near-perfect speedup on multiple GPUs for
scenes with enough computational complexity. Even though
OptiX has showed to be capable of real-time ray tracing,
our initial implementations were slower (3 to 5 times) than

some hand optimized ray tracers such as in [AL09], indicat-
ing room for improvement. Our results do, however, demon-
strate that OptiX is a flexible engine capable of real-time ray
tracing on both single and multiple Nvidia GPUs.

A major difference between CPUs and GPUs is that GPUs
cannot do branching efficiently. Efficient branching is impor-
tant in ray tracing since the directions the rays are reflected
and refracted is not known in advance. Fortunately, newer
GPUs such as the Nvidia CUDA architecture handle branch-
ing better than previous generations. NVIDIA recently an-
nounced their new Fermi [Nvi09b] GPU which includes L1
and L2 cache, better double precision number support and
concurrent kernel execution. The on-chip GPU cache should
be beneficial for ray tracing since previously read or spatially
coherent data can then be quickly accessed when traversing
acceleration structures. When it is publicly available, its im-
pact on OptiX and real-time ray tracing performance should
be investigated.

Future ray tracer designs should also incorporate the ideas
from recent work such as [AL09] and [SCCC09]. Incorpo-
rating ray tracing into full-scale applications such as medi-
cal and seismic visualizations, should also be investigated.
Finally, we would like to thank Nvidia and other sponsors of
our HPC-lab.

References
[AL09] AILA T., LAINE S.: Understanding the efficiency of ray

traversal on gpus. In HPG ’09: Proceedings of the Conference on
High Performance Graphics 2009 (New York, NY, USA, 2009),
ACM, pp. 145–149. 2, 3, 4

[GPSS07] GUNTHER J., POPOV S., SEIDEL H.-P., SLUSALLEK
P.: Realtime ray tracing on gpu with bvh-based packet traversal.
Symposium on Interactive Ray Tracing 0 (2007), 113–118. 2

[Nvi09a] NVIDIA CORPORATION: CUDA Programming Guide
version 2.3.1, August 2009. 2

[Nvi09b] NVIDIA CORPORATION: Fermi Compute Architecture
Whitepaper, 2009. 4

[Nvi09c] NVIDIA CORPORATION: OptiX Ray Tracing Engine
Programming Guide version 1.0, September 2009. 2

[PBMH05] PURCELL T. J., BUCK I., MARK W. R., HANRA-
HAN P.: Ray tracing on programmable graphics hardware. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses (New York,
NY, USA, 2005), ACM, p. 268. 2

[SCCC09] SHIH M., CHIU Y.-F., CHEN Y.-C., CHANG C.-F.:
Real-time ray tracing with cuda. In ICA3PP ’09: Proceed-
ings of the 9th International Conference on Algorithms and Ar-
chitectures for Parallel Processing (Berlin, Heidelberg, 2009),
Springer-Verlag, pp. 327–337. 2, 3, 4

[SN10] SINGH J., NARAYANAN P.: Real-time ray tracing of im-
plicit surfaces on the gpu. Visualization and Computer Graphics,
IEEE Transactions on 16, 2 (march-april 2010), 261 –272. 2

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER
M.: Interactive rendering with coherent ray tracing. In Computer
Graphics Forum (2001), pp. 153–164. 1

[WSS05] WOOP S., SCHMITTLER J., SLUSALLEK P.: Rpu: a
programmable ray processing unit for realtime ray tracing. ACM
Trans. Graph. 24, 3 (2005), 434–444. 2

c© The Eurographics Association 2010.

68


